1
|
Kazam J, Iqbal KJ, Shafi A, Majeed U, Lackner M. Neem Oil ( Azadirachta indica L.) Response Surface Methodology (RSM)-Optimized Nanoemulsions for Sensory Quality Preservation of Oreochromis niloticus Fillets. BIOLOGY 2025; 14:400. [PMID: 40282265 PMCID: PMC12025214 DOI: 10.3390/biology14040400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/07/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025]
Abstract
Neem oil nanoemulsions (NO NEs) have gained attention as natural antibacterial agents due to toxicity concerns surrounding synthetic preservatives. This study aimed to prepare a response surface methodology (RSM)-optimized NO NE < 200 nm to achieve a stable dip solution to maintain the sensory quality of Oreochromis niloticus fillets. The NO NE achieved a stable formulation with a particle size of 160.2 ± 0.04 nm on average. The polydispersity index (PDI) was 0.1 ± 0.05, and the zeta potential was found to be 18.2 ± 0.09 mV. Gas chromatography confirmed the presence of nimbiol, nimbandiol, 6-deacetyl nimbinene, and azadirachtin in NO after ultrasonic homogenization for 10 min (alternating between 30 s rest and 30 s work time). The NE had a spherical shape with a smooth surface, as was evident from transmission electron microscopy (TEM). Furthermore, NO:PM (neem oil-potassium metabisulphite) had an MIC (minimum inhibitory concentration) value of 150 ppm, compared to 210 ppm for the NO NE alone, against Staphylococcus aureus. Time-kill dynamics revealed the more effective control of S. aureus until 72 h with NO:PM. Moreover, DNA and protein leakage also increased from 0.145 ± 0.001 to 0.769 ± 0.002 OD (optical density) and from 0.142 ± 0.002 to 0.740 ± 0.001 OD, respectively, with the co-formulation of NO:PM. Conclusively, NO:PM inhibited S. aureus at a lower dose compared to the NO NE alone. Time-kill dynamics revealed complete inhibition of S. aureus in vitro for a period of 72 h. On the other hand, a proximate analysis of O. niloticus fillets showed no alteration in pH, no protein loss, and juiciness/moisture retention during 30 days of storage (4 °C). Sensory panelists reported that O. niloticus fillets treated with NE NO had improved color, flavor, juiciness, aroma, and overall quality. These results show that NE NO is a suitable green preservative for fish and possibly other meat-based products.
Collapse
Affiliation(s)
- Jamal Kazam
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Khalid Javed Iqbal
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Afshan Shafi
- Department of Food Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan;
| | - Usman Majeed
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Maximilian Lackner
- Department of Industrial Engineering, University of Applied Sciences Technikum Wien, Hoechstaedtplatz 6, 1200 Vienna, Austria
| |
Collapse
|
2
|
Kong T, Li G, Zhao X, Shi E, Wang Y, Wu M, Zhao Y, Ma Y, Chu L. Polysaccharide edible film-the new star in food preservation: A review. Int J Biol Macromol 2025; 308:142716. [PMID: 40180108 DOI: 10.1016/j.ijbiomac.2025.142716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/19/2025] [Accepted: 03/30/2025] [Indexed: 04/05/2025]
Abstract
Polysaccharide edible film (PEF) plays an important role in protecting food from physical extrusion, chemical hazards and microbial invasion. In recent years, on the basis of ensuring food safety, consumers have put forward higher requirements for maintaining sensory characteristics and nutritional value of food in the process of storage and circulation. As a natural component with convenient preparation and rich sources, polysaccharides have antibacterial, anti-inflammatory, antioxidant and other biological activities. The edible preservative film based on polysaccharide has the advantages of environmental protection, safety and no residue. Considering the health of consumers and the sustainable development of the environment, the environment-friendly, safe and effective PEF has become an important material in the field of food preservation and a creative solution to the problem of food preservation. Based on this, review focuses on the application of PEF in the preservation of different kinds of food, and briefly expounds the mechanism of PEF in the preservation of food, the production methods and different types of PEF. At the same time, it summarizes the existing problems and future development prospects and directions of PEF. After years of in-depth research and application, PEF technology has shown an important role and application potential in the field of food preservation. This paper hopes to provide reference value for the further application of PEF in the field of food preservation.
Collapse
Affiliation(s)
- Tianyu Kong
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China
| | - Gen Li
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China
| | - Xiaodan Zhao
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China
| | - Enjuan Shi
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China
| | - Yixi Wang
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China
| | - Maoyu Wu
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China
| | - Yan Zhao
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China
| | - Yinfei Ma
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China.
| | - Le Chu
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China.
| |
Collapse
|
3
|
Yang M, Zhu Y, Ying T, Rong J, Wang P, Hu Y. Preparation, characterization, and coating effect of bio-active nano-emulsion based on combined plant essential oils on quality of grass carp fillets. Food Chem 2024; 453:139618. [PMID: 38795435 DOI: 10.1016/j.foodchem.2024.139618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 04/23/2024] [Accepted: 05/07/2024] [Indexed: 05/28/2024]
Abstract
This study aimed to develop a satisfactory essential oil (EO) nano-emulsion through high pressure microjet technology and explore its physiochemical properties and synergistic coating effects on grass carp fillets. The optimal conditions for oregano/litsea cubeba (6:4, wt%/wt%) nano-emulsion were shown to be 80 s high pressure microjet pretreatment time, 9000 lb per square inch pretreatment pressure, 6 % oil phase, and 3:2 Km (mass ratio of surfactant to co-surfactant). The obtained nano-emulsion exhibited 100.42 ± 0.96 nm oil diameter at 4 °C after 15-day storage, coupled with high stability after centrifugation, freeze-thaw and heating treatment. Compared with untreated samples at day 6 storage, the nano-emulsion-treated grass carp fillets exhibited improved textural properties, higher water-holding capacity (74.23 % ± 0.80 %), lower total volatile basic nitrogen (TVB-N, 13.46 ± 0.30 mg/100g)/thiobaric acid (TBA,0.43 ± 0.02 mgMDA/100g), and lower total viable spoilage bacteria count (4.98 ± 0.21 lgCFU/g). This study facilitates understanding the combined EOs nano-emulsion on improving the shelf life of grass carp fillets.
Collapse
Affiliation(s)
- Mingtao Yang
- College of Chemistry and Bioengineering, Yichun University, Yichun 336000, China
| | - Yunshan Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Tianhao Ying
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jianhua Rong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Pengkai Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China.
| | - Yang Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
4
|
Gheorghe-Irimia RA, Tăpăloagă D, Tăpăloagă PR, Ghimpețeanu OM, Tudor L, Militaru M. Spicing Up Meat Preservation: Cinnamomum zeylanicum Essential Oil in Meat-Based Functional Foods-A Five-Year Review. Foods 2024; 13:2479. [PMID: 39200406 PMCID: PMC11353328 DOI: 10.3390/foods13162479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Today, in the modern consumer era, we are facing a significant change in terms of preferences and behaviour. This tendency is not only a basic desire, but rather a significant social and cultural movement that exerts a tremendous influence on the food industry and correlated sectors. In this direction, food authorities and experts have thoroughly evaluated the practicality of employing natural preservation methods to enhance the quality and safety of foodstuffs, while preserving their nutritional and sensory attributes. Given this context, the development of meat products enhanced with Cinnamomum zeylanicum essential oil (CZEO) poses promising avenues, such as extended shelf-life due to its antimicrobial, antifungal, and antioxidant properties. CZEO also has many health benefits, rendering it as a promising ingredient in functional meat product formulations. Conversely, challenges such as higher associated costs, sensory interactions, and variability arise. Hence, the aim of this review is to offer a novel critical perspective on CZEO's potential application as a functional ingredient in meat products formulations and to address the inherent associated challenges, based on the last five years of scholarly publications.
Collapse
Affiliation(s)
- Raluca-Aniela Gheorghe-Irimia
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine Bucharest, 050097 Bucharest, Romania; (R.-A.G.-I.); (O.-M.G.); (L.T.); (M.M.)
| | - Dana Tăpăloagă
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine Bucharest, 050097 Bucharest, Romania; (R.-A.G.-I.); (O.-M.G.); (L.T.); (M.M.)
| | - Paul-Rodian Tăpăloagă
- Faculty of Animal Productions Engineering and Management, University of Agronomic Sciences and Veterinary Medicine Bucharest, 011464 Bucharest, Romania;
| | - Oana-Mărgărita Ghimpețeanu
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine Bucharest, 050097 Bucharest, Romania; (R.-A.G.-I.); (O.-M.G.); (L.T.); (M.M.)
| | - Laurențiu Tudor
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine Bucharest, 050097 Bucharest, Romania; (R.-A.G.-I.); (O.-M.G.); (L.T.); (M.M.)
| | - Manuella Militaru
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine Bucharest, 050097 Bucharest, Romania; (R.-A.G.-I.); (O.-M.G.); (L.T.); (M.M.)
| |
Collapse
|
5
|
Tian Y, Lei Q, Yang F, Xie J, Chen C. Development of cinnamon essential oil-loaded PBAT/thermoplastic starch active packaging films with different release behavior and antimicrobial activity. Int J Biol Macromol 2024; 263:130048. [PMID: 38336322 DOI: 10.1016/j.ijbiomac.2024.130048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/08/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
The poly (butylene adipate-co-terephthalate)/thermoplastic starch (PBAT/TPS) active packaging films containing cinnamon essential oil (CEO) were fabricated by melting blending and extrusion casting method. The effects of TPS content (0 %, 10 %, 20 %, 30 %, 40 % and 50 %) on the properties of the films and their application in largemouth bass preservation were studied. As TPS content increased from 0 % to 50 %, the water vapor permeability increased from 7.923 × 10-13 (g•cm/(cm2•s•Pa)) to 23.967 × 10-13 (g•cm/(cm2•s•Pa)), the oxygen permeability decreased from 8.642 × 10-11 (cm3•m/(m2•s•Pa)) to 3.644 × 10-11 (cm3•m/(m2•s•Pa)), the retention of CEO in the films increased. The release rate of CEO from the films into food simulant (10 % ethanol) accelerated with increasing TPS. The films exhibited different antibacterial activity against E. coli, S. aureus, and S. putrefaciens. It was closely related with the release behavior of the CEO. The films containing CEO could efficiently inhibit the decomposition of protein and the growth of microorganisms in largemouth bass. It showed that the higher TPS in the films, the better inhibitory effect. This study provided a new idea for developing PBAT/TPS active films with different release behavior of active agents and different antibacterial activity for food packaging.
Collapse
Affiliation(s)
- Yifan Tian
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qiao Lei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
| | - Fuxin Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai MOE Information Technology Co., Ltd., Shanghai 201600, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
| | - Chenwei Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China.
| |
Collapse
|
6
|
Jitpasutham S, Sinsomsak W, Chuesiang P, Ryu V, Siripatrawan U. Green active coating from chitosan incorporated with spontaneous cinnamon oil nanoemulsion: Effects on dried shrimp quality and shelf life. Int J Biol Macromol 2024; 262:129711. [PMID: 38278379 DOI: 10.1016/j.ijbiomac.2024.129711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
Green active film from chitosan (C) incorporated with spontaneous emulsified cinnamon oil nanoemulsion (CONE; droplet size of 79.27 nm and polydispersity index of 0.27) was developed. The obtained chitosan film containing CONE (C + CONE) had tensile elongation and light protective effect higher than C film due to the incorporation of bioactive compounds from cinnamon oil as proven by Fourier Transform Infrared Spectroscopy. The effect of C + CONE as active edible coating on the physical, chemical, and microbiological properties of dried shrimp was then investigated. The quality of samples coated with C + CONE (DS + C + CONE) was compared to those coated with C (DS + C) and without coating (DS). In this study, C + CONE could enhance astaxanthin content and reduce lipid oxidation in dried shrimp. During 6 weeks of storage, C + CONE was found to be an effective antimicrobial coating that significantly inhibited growth of bacteria, delayed lipid oxidation and retarded the production of volatile amines in dried shrimp. DS + C + CONE had lower malonaldehyde equivalents (0.52 mg/kg oil), trimethylamine (11.74 mg/100 g), total volatile base nitrogen (84.33 mg/100 g) and total viable count (4.80 Log CFU/g), but had higher astaxanthin content (12.53 ± 0.12 μg/g) than DS and DS + C. The results suggested that the developed C + CONE coating has potential to be used as active coating for preserving food quality.
Collapse
Affiliation(s)
- Supisara Jitpasutham
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Watcharin Sinsomsak
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Piyanan Chuesiang
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Victor Ryu
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, USA
| | - Ubonrat Siripatrawan
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
7
|
Fan Q, Yan X, Jia H, Li M, Yuan Y, Yue T. Antibacterial properties of hexanal-chitosan nanoemulsion against Vibrio parahaemolyticus and its application in shelled shrimp preservation at 4 °C. Int J Biol Macromol 2024; 257:128614. [PMID: 38061528 DOI: 10.1016/j.ijbiomac.2023.128614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/19/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023]
Abstract
Vibrio parahaemolyticus has been considered as the leading pathogen associated with seafood-borne disease. Hexanal possesses antibacterial property but the hydrophobicity and volatility limit its application. The purpose of this study was to prepare hexanal-chitosan nanoemulsion (HCN), investigate its antibacterial ability against V. parahaemolyticus, and examine the combination of HCN with sodium alginate coating on the quality attributes of shrimp during cold storage. The mean droplet size of HCN fabricated by ultrasonic emulsification was 91.28 nm. HCN showed regular spherical shape and exhibited good centrifugation stability and storage stability at 4 °C. HCN exerted anti-V. parahaemolyticus effect with the minimum inhibitory concentration and minimal bactericidal concentration of both 5 mg/mL. Furthermore, HCN induced morphological changes and destroyed bacterial membrane, resulting in cell death. The results of preservation test showed that HCN alone and its combination with sodium alginate coating effectively retarded the quality deterioration and microbial spoilage of shelled shrimps during refrigerated storage. Comparatively, the combination treatment exhibited better preservation effect. The present study suggested that HCN prepared by ultrasonic emulsification is an effective alternative to control V. parahaemolyticus contamination in seafood and also shows great application potential in the quality maintaining of seafood during cold storage.
Collapse
Affiliation(s)
- Qiuxia Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Xiaohai Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hang Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Menghui Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yahong Yuan
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
8
|
Zhao J, Lan W, Xie J. Recent developments in nanoemulsions against spoilage in cold-stored fish: A review. Food Chem 2023; 429:136876. [PMID: 37481985 DOI: 10.1016/j.foodchem.2023.136876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Nanoemulsion-based technology is developing rapidly in the food industry, especially in the design of delivery systems for bioactive compounds. This review presents an in-depth understanding of the composition, function, antibacterial mechanism and successful application of nanoemulsions as preservative agents against fish spoilage. The results showed that the inclusion of bioactive substances in the food-grade nanoemulsions encapsulation system could improve its stability, control its release, inhibit the microbial growth and reproduction through a variety of targets. These nanoemulsions can inhibit fish spoilage via reducing microbial load and retarding the oxidation of proteins and lipids, thereby maintaining quality attributes of fish. In addition, nanoemulsions could be coupled with vacuum package for enhancing microbial destruction, retaining nutritional value and extending the shelf-life of fish. Accordingly, nanoemulsions are suggested as a promising strategy to inhibit fish spoilage.
Collapse
Affiliation(s)
- Jiaxin Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| |
Collapse
|
9
|
Amarante JF, da Costa MM, da Silva Almeida JRG, de Oliveira HP. Synergistic interaction of clove, cinnamon, and eucalyptus essential oils impregnated in cellulose acetate electrospun fibers as antibacterial agents against Staphylococcus aureus. Braz J Microbiol 2023; 54:1635-1643. [PMID: 37391674 PMCID: PMC10485187 DOI: 10.1007/s42770-023-01048-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/19/2023] [Indexed: 07/02/2023] Open
Abstract
The development of antibiotic-free antibacterial strategies applied in the control of bacterial and biofilm proliferation on surfaces is an important topic in discussion in the literature. Essential oils have been explored as isolated and combined components to act as an antibacterial material that inhibits bacterial proliferation, avoiding the contamination of surfaces. Herein, cellulose acetate electrospun fibers impregnated with essential oils of clove, cinnamon and eucalyptus and their combination (clove + cinnamon, cinnamon + eucalyptus and clove + eucalyptus) were explored against the standard strain of Staphylococcus aureus (ATCC 25923). As isolated components, the best performance follows the order clove>cinnamon>eucalyptus essential oil. The association of clove and cinnamon into cellulose acetate electrospun fibers returned a promising and fast antibacterial and antibiofilm activity (improvement in 65%), as a piece of evidence that synergism is observed for the association of essential oils incorporated into electrospun fibers that preserves the antibacterial activity by encapsulation of components.
Collapse
Affiliation(s)
- Jarbas Freitas Amarante
- Institute of Materials Science, Universidade Federal do Vale do São Francisco, Av. José de Sá Maniçoba S/N, Petrolina, PE, Brazil
| | - Mateus Matiuzzi da Costa
- Institute of Materials Science, Universidade Federal do Vale do São Francisco, Av. José de Sá Maniçoba S/N, Petrolina, PE, Brazil
| | | | - Helinando Pequeno de Oliveira
- Institute of Materials Science, Universidade Federal do Vale do São Francisco, Av. José de Sá Maniçoba S/N, Petrolina, PE, Brazil.
| |
Collapse
|
10
|
Fernandes SS, Egea MB, Salas-Mellado MDLM, Segura-Campos MR. Chia Oil and Mucilage Nanoemulsion: Potential Strategy to Protect a Functional Ingredient. Int J Mol Sci 2023; 24:7384. [PMID: 37108546 PMCID: PMC10139160 DOI: 10.3390/ijms24087384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/29/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Nanoencapsulation can increase the stability of bioactive compounds, ensuring protection against physical, chemical, or biological degradations, and allows to control of the release of these biocompounds. Chia oil is rich in polyunsaturated fatty acids-8% corresponds to omega 3 and 19% to omega 6-resulting in high susceptibility to oxidation. Encapsulation techniques allow the addition of chia oil to food to maintain its functionality. In this sense, one strategy is to use the nanoemulsion technique to protect chia oil from degradation. Therefore, this review aims to present the state-of-the-art use of nanoemulsion as a new encapsulation approach to chia oil. Furthermore, the chia mucilage-another chia seed product-is an excellent material for encapsulation due to its good emulsification properties (capacity and stability), solubility, and water and oil retention capacities. Currently, most studies of chia oil focus on microencapsulation, with few studies involving nanoencapsulation. Chia oil nanoemulsion using chia mucilage presents itself as a strategy for adding chia oil to foods, guaranteeing the functionality and oxidative stability of this oil.
Collapse
Affiliation(s)
- Sibele Santos Fernandes
- School of Chemistry and Food, Federal University of Rio Grande, Av Italy km 8, Carreiros 96203-900, Brazil;
| | - Mariana Buranelo Egea
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Sul Goiana, Km 01, Rio Verde 75901-970, Brazil
| | | | - Maira Rubi Segura-Campos
- Faculty of Chemical Engineering, Autonomous University of Yucatán, Periférico Norte km 33.5, Tablaje Catastral 13615, Mexico;
| |
Collapse
|
11
|
Alqarni MH, Foudah AI, Aodah AH, Alkholifi FK, Salkini MA, Alam A. Caraway Nanoemulsion Gel: A Potential Antibacterial Treatment against Escherichia coli and Staphylococcus aureus. Gels 2023; 9:gels9030193. [PMID: 36975642 PMCID: PMC10048749 DOI: 10.3390/gels9030193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Novel antibiotics are needed due to the rise of antibiotic-resistant pathogens. Traditional antibiotics are ineffective due to antibiotic-resistant microorganisms, and finding alternative therapies is expensive. Hence, plant-derived caraway (Carum carvi) essential oils and antibacterial compounds have been selected as alternatives. In this, caraway essential oil as an antibacterial treatment was investigated using a nanoemulsion gel. Using the emulsification technique, a nanoemulsion gel was developed and characterized in terms of particle size, polydispersity index, pH, and viscosity. The results showed that the nanoemulsion had a mean particle size of 137 nm and an encapsulation efficiency of 92%. Afterward, the nanoemulsion gel was incorporated into the carbopol gel and was found to be transparent and uniform. The gel had in vitro cell viability and antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The gel safely delivered a transdermal drug with a cell survival rate of over 90%. With a minimal inhibitor concentration (MIC) of 0.78 mg/mL and 0.78 mg/mL, respectively, the gel demonstrated substantial inhibition for E. coli and S. aureus. Lastly, the study demonstrated that caraway essential oil nanoemulsion gels can be efficient in treating E. coli and S. aureus, laying the groundwork for the use of caraway essential oil as an alternative to synthetic antibiotics in the treatment of bacterial infections.
Collapse
Affiliation(s)
- Mohammed H. Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Ahmed I. Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Alhussain H. Aodah
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al kharj 11942, Saudi Arabia
| | - Faisal K. Alkholifi
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Mohammad Ayman Salkini
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
- Correspondence:
| |
Collapse
|
12
|
Al-Moghazy M, Abou baker D, El-Sayed HS. Antimicrobial-prebiotic: Novel dual approach of pomegranate peel extract in vitro and in food system. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
13
|
Topical advances of edible coating based on the nanoemulsions encapsulated with plant essential oils for foodborne pathogen control. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Quality and shelf life assessment of steam-cooked chicken fingers coated with essential oil nanoemulsions. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
In-Vitro Study on the Antibacterial and Antioxidant Activity of Four Commercial Essential Oils and In-Situ Evaluation of Their Effect on Quality Deterioration of Pacific White Shrimp (Litopenaeus vannamei) during Cold Storage. Foods 2022; 11:foods11162475. [PMID: 36010475 PMCID: PMC9407435 DOI: 10.3390/foods11162475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
The antioxidant and antibacterial properties of four essential oils (oregano essential oil (OEO), tea tree essential oil (TTEO), wild orange essential oil (WOEO), and clove leaf essential oil (CLEO)) were determined. The in-vitro experiment indicated that CLEO had the highest total phenolic content and DPPH scavenging activity, and OEO displayed the highest antibacterial effect, so they were applied to maintain the quality of shrimp for further study. In-situ study, the total viable counts of shrimp were inhibited from 9.05 log CFU/g to 8.18 and 8.34 log CFU/g by 2% of OEO and CLEO treated alone on 10 d. The melanosis ratio was also retarded from 38.16% to 28.98% and 26.35% by the two essential oils. The inhibitory effects of OEO and CLEO on the increase of PPO activity, weight loss, and TCA-soluble peptides, and the decreasing tendency of whiteness, the contents of myofibrillar and sarcoplasmic proteins were also founded. The samples treated with 1% OEO + 1% CLEO had better quality than those treated alone. Therefore, the combination of OEO and CLEO had a synergistic effect, which displayed the highest efficiency to prevent the melanosis, bacterial growth, and protein hydrolysis of shrimp.
Collapse
|
16
|
Bontzolis C, Plioni I, Dimitrellou D, Boura K, Kanellaki M, Nigam PS, Koutinas A. Isolation of antimicrobial compounds from aniseed and techno‐economic feasibility report for industrial‐scale application. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Iris Plioni
- Department of Chemistry University of Patras 26504 Patras Greece
| | - Dimitra Dimitrellou
- Department of Food Science and Technology Ionian University 28100 Argostoli Kefalonia Greece
| | | | - Maria Kanellaki
- Department of Chemistry University of Patras 26504 Patras Greece
| | - Poonam S. Nigam
- Biomedical Sciences Research Institute Ulster University Coleraine Northern Ireland UK
| | | |
Collapse
|
17
|
Fan Q, Yuan Y, Zhang T, Song W, Sheng Q, Yue T. Inhibitory effects of lactobionic acid on Vibrio parahaemolyticus planktonic cells and biofilms. Food Microbiol 2022; 103:103963. [DOI: 10.1016/j.fm.2021.103963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/21/2022]
|
18
|
He R, Zhang Z, Xu L, Chen W, Zhang M, Zhong Q, Chen H, Chen W. Antibacterial mechanism of linalool emulsion against Pseudomonas aeruginosa and its application to cold fresh beef. World J Microbiol Biotechnol 2022; 38:56. [PMID: 35165818 DOI: 10.1007/s11274-022-03233-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/10/2022] [Indexed: 12/29/2022]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is the dominant spoilage bacterium in cold fresh beef. The current strategy is undertaken to overcome the low water solubility of linalool by encapsulating linalool into emulsions. The results of field emission scanning electron microscopy and particle size distribution revealed that the appearance of the bacterial cells was severely disrupted after exposure to linalool emulsion (LE) with an minimum inhibitory concentration (MIC) of 1.5 mL/L. Probes combined with fluorescence spectroscopy were performed to detect cell membrane permeability, while intracellular components (protein and ion leakage) and crystal violet staining were further measured to characterize cell membrane integrity and biofilm formation ability. The results confirmed that LE could destroy the structure of the cell membrane, thereby leading to the leakage of intracellular material and effective removal of biofilms. Molecular docking confirmed that LE can interact with the flagellar cap protein (FliD) and DNA of P. aeruginosa, inhibiting biofilm formation and causing genetic damage. Furthermore, the results of respiratory metabolism and reactive oxygen species (ROS) accumulation revealed that LE could significantly inhibit the metabolic activity of P. aeruginosa and induce oxidative stress. In particular, the inhibition rate of LE on P. aeruginosa was 23.03% and inhibited mainly the tricarboxylic acid cycle (TCA). Finally, LE was applied to preserve cold fresh beef, and the results showed that LE could effectively inhibit the activity of P. aeruginosa and delay the quality change of cold fresh beef during the storage period. These results are of great significance to developing natural preservatives and extending the shelf life of cold fresh beef.
Collapse
Affiliation(s)
- Rongrong He
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, People's Republic of China
| | - Zhengke Zhang
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, People's Republic of China
| | - Lilan Xu
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, People's Republic of China
| | - Weijun Chen
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, People's Republic of China
| | - Ming Zhang
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, People's Republic of China
| | - Qiuping Zhong
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, People's Republic of China
| | - Haiming Chen
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, People's Republic of China.
| | - Wenxue Chen
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, People's Republic of China. .,Spice and Beverage Research Institute, Chinese Academy of Tropical Agriculture Science, Wanning, Hainan, 571533, People's Republic of China.
| |
Collapse
|
19
|
Gao Y, Liu Q, Wang Z, Zhuansun X, Chen J, Zhang Z, Feng J, Jafari SM. Cinnamaldehyde nanoemulsions; physical stability, antibacterial properties/mechanisms, and biosafety. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01110-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
20
|
Asghar S, Khan IU, Salman S, Khalid SH, Ashfaq R, Vandamme TF. Plant-derived nanotherapeutic systems to counter the overgrowing threat of resistant microbes and biofilms. Adv Drug Deliv Rev 2021; 179:114019. [PMID: 34699940 DOI: 10.1016/j.addr.2021.114019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/03/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022]
Abstract
Since antiquity, the survival of human civilization has always been threatened by the microbial infections. An alarming surge in the resistant microbial strains against the conventional drugs is quite evident in the preceding years. Furthermore, failure of currently available regimens of antibiotics has been highlighted by the emerging threat of biofilms in the community and hospital settings. Biofilms are complex dynamic composites rich in extracellular polysaccharides and DNA, supporting plethora of symbiotic microbial life forms, that can grow on both living and non-living surfaces. These enforced structures are impervious to the drugs and lead to spread of recurrent and non-treatable infections. There is a strong realization among the scientists and healthcare providers to work out alternative strategies to combat the issue of drug resistance and biofilms. Plants are a traditional but rich source of effective antimicrobials with wider spectrum due to presence of multiple constituents in perfect synergy. Other than the biocompatibility and the safety profile, these phytochemicals have been repeatedly proven to overcome the non-responsiveness of resistant microbes and films via multiple pathways such as blocking the efflux pumps, better penetration across the cell membranes or biofilms, and anti-adhesive properties. However, the unfavorable physicochemical attributes and stability issues of these phytochemicals have hampered their commercialization. These issues of the phytochemicals can be solved by designing suitably constructed nanoscaled structures. Nanosized systems can not only improve the physicochemical features of the encapsulated payloads but can also enhance their pharmacokinetic and therapeutic profile. This review encompasses why and how various types of phytochemicals and their nanosized preparations counter the microbial resistance and the biofouling. We believe that phytochemical in tandem with nanotechnological innovations can be employed to defeat the microbial resistance and biofilms. This review will help in better understanding of the challenges associated with developing such platforms and their future prospects.
Collapse
|
21
|
Cai M, Zhang G, Wang J, Li C, Cui H, Lin L. Application of glycyrrhiza polysaccharide nanofibers loaded with tea tree essential oil/ gliadin nanoparticles in meat preservation. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Al-Otaibi WA, AlMotwaa SM. Preparation, characterization, optimization, and antibacterial evaluation of nano-emulsion incorporating essential oil extracted from Teucrium polium L. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1980000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Waad A. Al-Otaibi
- Department of Chemistry, College of Science and Humanities, Shaqra University, Shaqra, Saudi Arabia
| | - Sahar M. AlMotwaa
- Department of Chemistry, College of Science and Humanities, Shaqra University, Shaqra, Saudi Arabia
| |
Collapse
|
23
|
Muhoza B, Qi B, Harindintwali JD, Koko MYF, Zhang S, Li Y. Encapsulation of cinnamaldehyde: an insight on delivery systems and food applications. Crit Rev Food Sci Nutr 2021; 63:2521-2543. [PMID: 34515594 DOI: 10.1080/10408398.2021.1977236] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cinnamaldehyde is an essential oil extracted from the leaves, bark, roots and flowers of cinnamon plants (genus Cinnamomum). Cinnamaldehyde has shown biological functions such as antioxidants, antimicrobials, anti-diabetic, anti-obesity and anti-cancer. However, poor solubility in water as well as molecular sensitivity to oxygen, light, and high temperature limit the direct application of cinnamaldehyde. Researchers are using different encapsulation techniques to maximize the potential biological functions of cinnamaldehyde. Different delivery systems such as liposomes, emulsions, biopolymer nanoparticles, complex coacervation, molecular inclusion, and spray drying have been developed for this purpose. The particle size and morphology, composition and physicochemical properties influence the performance of each delivery system. Consequently, the individual delivery system has its advantages and limitations for specific applications. Given the essential role of cinnamaldehyde in functional food and food preservation, appropriate approaches should be applied in the encapsulation and application of encapsulated cinnamaldehyde. This review systematically analyzes available encapsulation techniques for cinnamaldehyde in terms of their design, properties, advantages and limitations, and food application status. The information provided in this manuscript will assist in the development and widespread use of cinnamaldehyde-loaded particles in the food and beverage industries.
Collapse
Affiliation(s)
- Bertrand Muhoza
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jean Damascene Harindintwali
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | | | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China.,Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China.,Heilongjiang Green Food Science Research Institute, Harbin, China.,National Research Center of Soybean Engineering and Technology, Harbin, China
| |
Collapse
|
24
|
Jamali SN, Assadpour E, Feng J, Jafari SM. Natural antimicrobial-loaded nanoemulsions for the control of food spoilage/pathogenic microorganisms. Adv Colloid Interface Sci 2021; 295:102504. [PMID: 34384999 DOI: 10.1016/j.cis.2021.102504] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023]
Abstract
Both consumers and producers of food products are looking for natural ingredients and efficient formulation strategies to improve the shelf life of final products. Natural antimicrobial ingredients such as essential oils can be applied as alternatives to synthetic preservatives, but their main challenge is low stability, adverse effects on sensory properties, low solubility, high needed doses, etc. Formulation of these bioactive compounds into nanoemulsions can be an efficient strategy to improve their properties and practical applications in food products. In this review, after an overview on nanoemulsion formulation, ingredients and fabrication methods, different types of natural antimicrobial agents have been discussed briefly. In addition, properties and action mechanisms of antimicrobial-loaded nanoemulsions, along with their application in preservation and shelf life improvement of different food products have been explained. Finally, safety and regulatory issues of antimicrobial delivery via nanoemulsions have been examined. As a conclusion antimicrobial-loaded nanoemulsions can be promising candidates and alternatives for common synthetic preservatives in real food systems.
Collapse
|
25
|
da Silva Bruni AR, de Oliveira VMAT, Fernandez AST, Sakai OA, Março PH, Valderrama P. Attenuated total reflectance Fourier transform (ATR-FTIR) spectroscopy and chemometrics for organic cinnamon evaluation. Food Chem 2021; 365:130466. [PMID: 34247048 DOI: 10.1016/j.foodchem.2021.130466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/18/2021] [Accepted: 06/24/2021] [Indexed: 11/29/2022]
Abstract
Organic food consumption has increased significantly over time. This contributes to the increased demand and price of this kind of food. Among the organic products, cinnamon stands out for its characteristic flavor and bioactive compounds. Thus, the work aimed to verify the potentials of attenuated total reflectance Fourier transform mid-infrared spectroscopy (ATR-FT-MIR) coupled with Parallel Factor Analysis (PARAFAC) for evaluation of cinnamon organic samples. As result, the proposal is feasible in the differentiation of organic cinnamon powder, in which ATR-FT-MIR coupled with PARAFAC showed the differentiation of organic from non-organic ones on the scores mode, the precision at repeatability level on one loading mode, and the spectral region, on the other loading mode, above 2600 cm-1 was related to the differentiation of the organic and non-organic samples.
Collapse
Affiliation(s)
| | | | | | | | - Paulo Henrique Março
- Universidade Tecnológica Federal do Paraná (UTFPR), 87301-899 Campo Mourão, Paraná, Brazil
| | - Patrícia Valderrama
- Universidade Tecnológica Federal do Paraná (UTFPR), 87301-899 Campo Mourão, Paraná, Brazil.
| |
Collapse
|
26
|
Cui R, Zhu B, Yan J, Qin Y, Yuan M, Cheng G, Yuan M. Development of a Sodium Alginate-Based Active Package with Controlled Release of Cinnamaldehyde Loaded on Halloysite Nanotubes. Foods 2021; 10:foods10061150. [PMID: 34063767 PMCID: PMC8223774 DOI: 10.3390/foods10061150] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/03/2021] [Accepted: 05/11/2021] [Indexed: 12/02/2022] Open
Abstract
The worsening environment and the demand for safer food have accelerated the development of new food packaging materials. The objective of this research is to prepare antimicrobial food packaging film with controlled release by loading cinnamaldehyde (CIN) on etched halloysite nanotubes (T-HNTs) and adding it to sodium alginate (SA) matrix. The effects of T-HNTs-CIN on the physical functional properties and antibacterial activity of the film were systematically evaluated, and the release of CIN in the film was also quantified. Transmission electron microscopy and nitrogen adsorption experiments showed that the halloysite nanotubes had been etched and CIN was successfully loaded into the T-HNTs. The addition of T-HNTs-CIN significantly improved the water vapor barrier properties and tensile strength of the film. Similarly, the presence of T-HNTs-CIN in the film greatly reduced the negative effects of ultraviolet rays. The release experiment showed that the diffusion time of CIN in SA/T-HNTs-CIN film to fatty food simulation solution was delayed 144 h compared with that of SA/CIN film. Herein, the antibacterial experiment also confirmed the controlled release effect of T-HNTs on CIN. In conclusion, SA/T-HNTs-CIN film might have broad application prospects in fatty food packaging.
Collapse
Affiliation(s)
- Rui Cui
- Institute of Agriculture and Food Engineering, Kunming University of Science and Technology, Kunming 650550, China; (R.C.); (B.Z.); (J.Y.); (G.C.)
| | - Bifen Zhu
- Institute of Agriculture and Food Engineering, Kunming University of Science and Technology, Kunming 650550, China; (R.C.); (B.Z.); (J.Y.); (G.C.)
| | - Jiatong Yan
- Institute of Agriculture and Food Engineering, Kunming University of Science and Technology, Kunming 650550, China; (R.C.); (B.Z.); (J.Y.); (G.C.)
| | - Yuyue Qin
- Institute of Agriculture and Food Engineering, Kunming University of Science and Technology, Kunming 650550, China; (R.C.); (B.Z.); (J.Y.); (G.C.)
- Correspondence: (Y.Q.); (M.Y.)
| | - Mingwei Yuan
- Engineering Research Center of Biopolymer Functional Materials of Yunnan, Yunnan Nationalities University, Kunming 650550, China;
- Correspondence: (Y.Q.); (M.Y.)
| | - Guiguang Cheng
- Institute of Agriculture and Food Engineering, Kunming University of Science and Technology, Kunming 650550, China; (R.C.); (B.Z.); (J.Y.); (G.C.)
| | - Minglong Yuan
- Engineering Research Center of Biopolymer Functional Materials of Yunnan, Yunnan Nationalities University, Kunming 650550, China;
| |
Collapse
|