1
|
García-Pizarro Á, Romero A, Schorn-García D, Ezenarro J, Mestres M, Aceña L. Improving Sensory Differentiation: Refining the 'Fruitiness' Descriptor in Extra Virgin Olive Oil. Foods 2025; 14:1390. [PMID: 40282791 PMCID: PMC12027139 DOI: 10.3390/foods14081390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
Sensory analysis is a fundamental tool in evaluating extra virgin olive oil (EVOO) quality, playing an essential role in both consumer markets and international competitions that recognize and promote high-quality olive oils. Among the key attributes assessed, the fruitiness descriptor-subcategorized as green or ripe-is particularly significant, especially considering that higher green fruitiness is often associated with greater prestige. However, a clear methodological approach to distinguish between green fruitiness and ripe fruitiness perceptions, particularly in their overlapping zone, is still lacking. This study aims to establish precise criteria for defining these boundaries by analyzing monovarietal EVOOs produced from nine olive varieties at three maturity stages over two consecutive harvest seasons (2021/2022 and 2022/2023). Sensory assessments were conducted by the Official Tasting Panel of Virgin Olive Oils of Catalunya, ensuring representativeness across the different fruitiness perceptions. Volatile compounds of the samples were extracted using headspace solid-phase microextraction (HS/SPME) and separated and identified via gas chromatography-mass spectrometry (GC/MS). Multivariate analysis revealed three distinct volatile profiles corresponding to different sensory perceptions. These findings suggest that incorporating an intermediate sensory attribute between green fruitiness and ripe fruitiness could improve classification accuracy in both competitions and premium markets, enhancing the appreciation and valuation of high-quality EVOOs.
Collapse
Affiliation(s)
- Ángel García-Pizarro
- Universitat Rovira i Virgili (URV), Department of Analytical Chemistry and Organic Chemistry, Chemosens Research Group, Campus Sescelades, Edifici N4, C/Marcel⋅lí Domingo 1, 43007 Tarragona, Spain; (Á.G.-P.); (D.S.-G.); (J.E.); (L.A.)
- Fruit Production Program, IRTA Mas Bové, Ctra. Reus-El Morell Km. 3.8, Constantí, 43120 Tarragona, Spain;
| | - Agustí Romero
- Fruit Production Program, IRTA Mas Bové, Ctra. Reus-El Morell Km. 3.8, Constantí, 43120 Tarragona, Spain;
| | - Daniel Schorn-García
- Universitat Rovira i Virgili (URV), Department of Analytical Chemistry and Organic Chemistry, Chemosens Research Group, Campus Sescelades, Edifici N4, C/Marcel⋅lí Domingo 1, 43007 Tarragona, Spain; (Á.G.-P.); (D.S.-G.); (J.E.); (L.A.)
| | - Jokin Ezenarro
- Universitat Rovira i Virgili (URV), Department of Analytical Chemistry and Organic Chemistry, Chemosens Research Group, Campus Sescelades, Edifici N4, C/Marcel⋅lí Domingo 1, 43007 Tarragona, Spain; (Á.G.-P.); (D.S.-G.); (J.E.); (L.A.)
| | - Montserrat Mestres
- Universitat Rovira i Virgili (URV), Department of Analytical Chemistry and Organic Chemistry, Chemosens Research Group, Campus Sescelades, Edifici N4, C/Marcel⋅lí Domingo 1, 43007 Tarragona, Spain; (Á.G.-P.); (D.S.-G.); (J.E.); (L.A.)
| | - Laura Aceña
- Universitat Rovira i Virgili (URV), Department of Analytical Chemistry and Organic Chemistry, Chemosens Research Group, Campus Sescelades, Edifici N4, C/Marcel⋅lí Domingo 1, 43007 Tarragona, Spain; (Á.G.-P.); (D.S.-G.); (J.E.); (L.A.)
| |
Collapse
|
2
|
Lazzarini C, Tura M, Mandrioli M, Setti M, Mokhtari N, Ait Elkassia A, Barbieri S, Valli E, Bendini A, Gallina Toschi T. Characterization of New Flavored Oils Obtained Through the Co-Milling of Olives and Vegetable Food Products. Foods 2025; 14:687. [PMID: 40002129 PMCID: PMC11853759 DOI: 10.3390/foods14040687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/27/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Consumers are increasingly attracted to innovative, gourmand, and sustainable food products. This has led to a growing interest in flavored olive oils through co-milling processing. This study explores the production and characterization of flavored olive oils obtained by co-milling olives with orange pomace, black pepper, and hemp seeds, aiming to enhance their sensory and compositional properties while promoting sustainability through the valorization of agri-food by-products. The flavored olive oils and their control samples were analyzed for free acidity, tocopherols, phenolic compounds, volatiles, and sensory profiles. The flavored oils exhibited an acceptable hydrolytic state and peculiar sensory notes, depending on the ingredients used, as well as enhanced compositional qualities. This research highlights the potential of using oranges and hemp by-products in flavored oil production, offering an innovative approach to reducing food waste, with the possibility of future industrial applications.
Collapse
Affiliation(s)
- Celeste Lazzarini
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum—Università di Bologna, Viale Fanin, 40, 40127 Bologna and Piazza Goidanich, 60, 47521 Cesena, Italy; (C.L.); (M.T.); (M.M.); (M.S.); (S.B.); (A.B.); (T.G.T.)
| | - Matilde Tura
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum—Università di Bologna, Viale Fanin, 40, 40127 Bologna and Piazza Goidanich, 60, 47521 Cesena, Italy; (C.L.); (M.T.); (M.M.); (M.S.); (S.B.); (A.B.); (T.G.T.)
| | - Mara Mandrioli
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum—Università di Bologna, Viale Fanin, 40, 40127 Bologna and Piazza Goidanich, 60, 47521 Cesena, Italy; (C.L.); (M.T.); (M.M.); (M.S.); (S.B.); (A.B.); (T.G.T.)
| | - Marco Setti
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum—Università di Bologna, Viale Fanin, 40, 40127 Bologna and Piazza Goidanich, 60, 47521 Cesena, Italy; (C.L.); (M.T.); (M.M.); (M.S.); (S.B.); (A.B.); (T.G.T.)
| | - Noureddine Mokhtari
- Ecole Nationale d’Agriculture de Meknès, Meknès 50001, Morocco; (N.M.); (A.A.E.)
| | | | - Sara Barbieri
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum—Università di Bologna, Viale Fanin, 40, 40127 Bologna and Piazza Goidanich, 60, 47521 Cesena, Italy; (C.L.); (M.T.); (M.M.); (M.S.); (S.B.); (A.B.); (T.G.T.)
| | - Enrico Valli
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum—Università di Bologna, Viale Fanin, 40, 40127 Bologna and Piazza Goidanich, 60, 47521 Cesena, Italy; (C.L.); (M.T.); (M.M.); (M.S.); (S.B.); (A.B.); (T.G.T.)
| | - Alessandra Bendini
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum—Università di Bologna, Viale Fanin, 40, 40127 Bologna and Piazza Goidanich, 60, 47521 Cesena, Italy; (C.L.); (M.T.); (M.M.); (M.S.); (S.B.); (A.B.); (T.G.T.)
| | - Tullia Gallina Toschi
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum—Università di Bologna, Viale Fanin, 40, 40127 Bologna and Piazza Goidanich, 60, 47521 Cesena, Italy; (C.L.); (M.T.); (M.M.); (M.S.); (S.B.); (A.B.); (T.G.T.)
| |
Collapse
|
3
|
González-Coria J, Mesirca-Prevedello C, Lozano-Castellón J, Casadei E, Valli E, López-Yerena A, Jaime-Rodríguez C, Pinto D, Illan M, Torrado X, Romanyà J, Vallverdú-Queralt A, Bendini A, Lamuela-Raventós RM, Pérez M. Chemometric study on the effect of cooking on bioactive compounds in tomato pomace enriched sauces. NPJ Sci Food 2024; 8:58. [PMID: 39223210 PMCID: PMC11369157 DOI: 10.1038/s41538-024-00300-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Tomato pomace (TP) is an underutilized source of bioactive compounds with potential application in the food sector. A factorial experiment was designed to compare three culinary techniques, Thermomix®, Roner®, and traditional pan-frying, for the preparation of tomato sauces, enriched or not with TP, applying two temperatures and two cooking times. A multivariate analysis was performed on all the results obtained for the metabolites. The addition of TP significantly increased the content of bioactive compounds, especially phenolic compounds. OPLS-DA models were generated using cooking technique, temperature, and time as discriminant factors. The cooking technique had a greater effect on the phenolic content than cooking temperature or time. Thermomix® released bioactive compounds from the tomato into the sauce to a similar extent as pan-frying. Roner® proved to be effective in preserving the volatile fraction of the sauce. The Thermomix® significantly increased the amount of bioactive compounds, while the Roner® increased the volatile compounds.
Collapse
Affiliation(s)
- Johana González-Coria
- Department of Biology, Health, and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
| | - Camilla Mesirca-Prevedello
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-Università di Bologna, Cesena, Italy
- Interdepartmental Centre for Industrial Agrofood Research, Alma Mater Studiorum-Università di Bologna, Cesena, Italy
| | - Julián Lozano-Castellón
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Enrico Casadei
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-Università di Bologna, Cesena, Italy
- Interdepartmental Centre for Industrial Agrofood Research, Alma Mater Studiorum-Università di Bologna, Cesena, Italy
| | - Enrico Valli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-Università di Bologna, Cesena, Italy
- Interdepartmental Centre for Industrial Agrofood Research, Alma Mater Studiorum-Università di Bologna, Cesena, Italy
| | - Anallely López-Yerena
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Carolina Jaime-Rodríguez
- Department of Biology, Health, and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
| | - Diana Pinto
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida, Porto, Portugal
| | - Montse Illan
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Xavier Torrado
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Joan Romanyà
- Department of Biology, Health, and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Anna Vallverdú-Queralt
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Alessandra Bendini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-Università di Bologna, Cesena, Italy.
- Interdepartmental Centre for Industrial Agrofood Research, Alma Mater Studiorum-Università di Bologna, Cesena, Italy.
| | - Rosa M Lamuela-Raventós
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Maria Pérez
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain.
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Mascrez S, Aspromonte J, Spadafora ND, Purcaro G. Vacuum-assisted and multi-cumulative trapping in headspace solid-phase microextraction combined with comprehensive multidimensional chromatography-mass spectrometry for profiling virgin olive oil aroma. Food Chem 2024; 442:138409. [PMID: 38237298 DOI: 10.1016/j.foodchem.2024.138409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024]
Abstract
In the present work vacuum (Vac) and multiple cumulative trapping (MCT) headspace solid phase microextraction (HS-SPME) were evaluated as alternative or combined techniques for the volatile profiling. A higher extraction performance for semi-volatiles was shown by all three techniques. Synergic combination of Vac and MCT showed up to 5-times extraction power for less volatile compounds. The hyphenation of said techniques with comprehensive two-dimensional gas chromatography (GC × GC) enabled a comprehensive analysis of the volatilome. Firstly, 18 targeted quality markers, previously defined by means of classical HS-SPME, were explored for their ability to classify commercial categories. The applicability of such markers proved to be limited with the alternative sampling techniques. An untargeted approach enables the selection of specific features for each technique showing a better classification capacity of the commercial categories. No misclassifications were observed, except for one extra virgin olive oil classified as virgin olive oil in 3 × 10 min Vac-MCT-HS-SPME.
Collapse
Affiliation(s)
- Steven Mascrez
- Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, B-5030 Gembloux, Belgium
| | - Juan Aspromonte
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos, LIDMA, Facultad de Ciencias Exactas (Universidad Nacional de La Plata, CIC-PBA, CONICET), Calle 47 esq. 115, 1900 La Plata, Argentina
| | - Natasha Damiana Spadafora
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Giorgia Purcaro
- Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, B-5030 Gembloux, Belgium.
| |
Collapse
|
5
|
Casadei E, Valli E, Bendini A, Barbieri S, Tucci R, Ferioli F, Gallina Toschi T. Valorization of monovarietal Nostrana di Brisighella extra virgin olive oils: focus on bioactive compounds. Front Nutr 2024; 11:1353832. [PMID: 38638290 PMCID: PMC11024785 DOI: 10.3389/fnut.2024.1353832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
A "green breakthough" at the table due to consumer demand for healthy and sustainable foods, which aligns with the typical Mediterranean diet, has recently led to an increase in the consumption of products such as extra virgin olive oil. In fact, Italian olive cultivation, which contributes an average of 15% of world production, has seen the production of extra virgin olive oil with a value of exports that have doubled in the last 20 years. In this context, the olive oil sector of the Emilia-Romagna region (Italy), and in particular the PDO Brisighella, could achieve greater success with consumers by proposing a product obtained through sustainable agriculture that enhances the content of bioactive compounds. For these reasons, in this study, different agronomic variables are investigated in order to optimize the presence of bioactive components in extra virgin olive oil made from monovarietal Nostrana di Brisighella, namely phenolic and positive volatile compounds, thus naturally enriching this product both from health and sensory points of view. The study focuses on the volatile and phenolic fractions (derivatives of hydroxytyrosol and tyrosol) of olive oil and the positive sensory attributes (fruity, bitter and pungent) that are known to be associated with these molecules. The phenolic content is of particular interest due to the potential to support health claims. Extra virgin olive oil samples were produced from olives of the Nostrana di Brisighella cultivar; fruits were obtained through integrated pest management or organic farming and picked at four increasing indices of maturity, corresponding to four successive weeks of harvesting. These agronomic variables influenced the compositional and sensory characteristics of the extra virgin olive oils assessed, highlighting differences that likely derive from the effect of the agronomic system used, i.e., integrated pest management or organic farming.
Collapse
Affiliation(s)
- Enrico Casadei
- Department of Agricultural and Food Science, Alma Mater Studiorum – Università di Bologna, Bologna, Italy
- Interdepartmental Centre for Industrial Agrofood Research, Alma Mater Studiorum – Università di Bologna, Cesena, Italy
| | - Enrico Valli
- Department of Agricultural and Food Science, Alma Mater Studiorum – Università di Bologna, Bologna, Italy
- Interdepartmental Centre for Industrial Agrofood Research, Alma Mater Studiorum – Università di Bologna, Cesena, Italy
| | - Alessandra Bendini
- Department of Agricultural and Food Science, Alma Mater Studiorum – Università di Bologna, Bologna, Italy
- Interdepartmental Centre for Industrial Agrofood Research, Alma Mater Studiorum – Università di Bologna, Cesena, Italy
| | - Sara Barbieri
- Department of Agricultural and Food Science, Alma Mater Studiorum – Università di Bologna, Bologna, Italy
| | - Rosalba Tucci
- Department of Agricultural and Food Science, Alma Mater Studiorum – Università di Bologna, Bologna, Italy
| | - Federico Ferioli
- Department of Agricultural and Food Science, Alma Mater Studiorum – Università di Bologna, Bologna, Italy
| | - Tullia Gallina Toschi
- Department of Agricultural and Food Science, Alma Mater Studiorum – Università di Bologna, Bologna, Italy
- Interdepartmental Centre for Industrial Agrofood Research, Alma Mater Studiorum – Università di Bologna, Cesena, Italy
| |
Collapse
|
6
|
Lozano-Castellón J, Olmo-Cunillera A, Casadei E, Valli E, Domínguez-López I, Miliarakis E, Pérez M, Ninot A, Romero-Aroca A, Bendini A, Lamuela-Raventós RM, Vallverdú-Queralt A. A targeted foodomic approach to assess differences in extra virgin olive oils: Effects of storage, agronomic and technological factors. Food Chem 2024; 435:137539. [PMID: 37742466 DOI: 10.1016/j.foodchem.2023.137539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
Extra virgin olive oil (EVOO) quality and composition are mainly affected by genetics, agronomic and technological parameters, undergoing further modifications during storage. In this work, a chemometric approach was applied to study the impact of olive maturity, malaxation time/temperature, and oil storage on the quality and compositional parameters of Arbequina EVOO (basic quality indices, volatile and sensory profiles, contents in phenolic compounds, squalene, vitamin E and fatty acids). Storage emerged as the most influential factor, followed by olive maturity and malaxation temperature, while malaxation time had almost no effect. Storage at room temperature had a significant impact on the phenolic profile and quality parameters, mainly the peroxide value and K270. The determination of K270, an indicator of secondary oxidation products, was relevant to analyze the effect of storage conditions. Volatile compounds and fatty acids were good markers of ripeness, and the volatile profile was highly affected by malaxation temperature.
Collapse
Affiliation(s)
- Julián Lozano-Castellón
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Alexandra Olmo-Cunillera
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Enrico Casadei
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - Università di Bologna, 47521 Cesena, Italy
| | - Enrico Valli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - Università di Bologna, 47521 Cesena, Italy; Interdepartmental Centre for Industrial Agrofood Research, Alma Mater Studiorum - Università di Bologna, 47521 Cesena, Italy
| | - Inés Domínguez-López
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Eleftherios Miliarakis
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
| | - Maria Pérez
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Antònia Ninot
- Institute of Agrifood Research and Technology (IRTA), Fruit Science Program, Olive Growing and Oil Technology Research Team, 43120 Constantí, Spain
| | - Agustí Romero-Aroca
- Institute of Agrifood Research and Technology (IRTA), Fruit Science Program, Olive Growing and Oil Technology Research Team, 43120 Constantí, Spain
| | - Alessandra Bendini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - Università di Bologna, 47521 Cesena, Italy; Interdepartmental Centre for Industrial Agrofood Research, Alma Mater Studiorum - Università di Bologna, 47521 Cesena, Italy
| | - Rosa M Lamuela-Raventós
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Anna Vallverdú-Queralt
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
7
|
Eckert S, Eilers EJ, Jakobs R, Anaia RA, Aragam KS, Bloss T, Popp M, Sasidharan R, Schnitzler JP, Stein F, Steppuhn A, Unsicker SB, van Dam NM, Yepes S, Ziaja D, Müller C. Inter-laboratory comparison of plant volatile analyses in the light of intra-specific chemodiversity. Metabolomics 2023; 19:62. [PMID: 37351733 DOI: 10.1007/s11306-023-02026-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
INTRODUCTION Assessing intraspecific variation in plant volatile organic compounds (VOCs) involves pitfalls that may bias biological interpretation, particularly when several laboratories collaborate on joint projects. Comparative, inter-laboratory ring trials can inform on the reproducibility of such analyses. OBJECTIVES In a ring trial involving five laboratories, we investigated the reproducibility of VOC collections with polydimethylsiloxane (PDMS) and analyses by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). As model plant we used Tanacetum vulgare, which shows a remarkable diversity in terpenoids, forming so-called chemotypes. We performed our ring-trial with two chemotypes to examine the sources of technical variation in plant VOC measurements during pre-analytical, analytical, and post-analytical steps. METHODS Monoclonal root cuttings were generated in one laboratory and distributed to five laboratories, in which plants were grown under laboratory-specific conditions. VOCs were collected on PDMS tubes from all plants before and after a jasmonic acid (JA) treatment. Thereafter, each laboratory (donors) sent a subset of tubes to four of the other laboratories (recipients), which performed TD-GC-MS with their own established procedures. RESULTS Chemotype-specific differences in VOC profiles were detected but with an overall high variation both across donor and recipient laboratories. JA-induced changes in VOC profiles were not reproducible. Laboratory-specific growth conditions led to phenotypic variation that affected the resulting VOC profiles. CONCLUSION Our ring trial shows that despite large efforts to standardise each VOC measurement step, the outcomes differed both qualitatively and quantitatively. Our results reveal sources of variation in plant VOC research and may help to avoid systematic errors in similar experiments.
Collapse
Affiliation(s)
- Silvia Eckert
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Elisabeth J Eilers
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Ruth Jakobs
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Redouan Adam Anaia
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | | | - Tanja Bloss
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Moritz Popp
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Munich, Germany
| | - Rohit Sasidharan
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | | | - Florian Stein
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Anke Steppuhn
- Department of Molecular Botany, Hohenheim University, Stuttgart, Germany
| | - Sybille B Unsicker
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Nicole M van Dam
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
| | - Sol Yepes
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Dominik Ziaja
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
8
|
Ríos-Reina R, Aparicio-Ruiz R, Morales MT, García-González DL. Contribution of specific volatile markers to green and ripe fruity attributes in extra virgin olive oils studied with three analytical methods. Food Chem 2023; 399:133942. [DOI: 10.1016/j.foodchem.2022.133942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/15/2022] [Accepted: 08/10/2022] [Indexed: 12/01/2022]
|
9
|
Aparicio-Ruiz R, Casadei E, Ortiz-Romero C, García-González DL, Servili M, Selvaggini R, Lacoste F, Escobessa J, Vichi S, Quintanilla-Casas B, Tres A, Golay PA, Lucci P, Moret E, Valli E, Bendini A, Gallina Toschi T. Method for the analysis of volatile compounds in virgin olive oil by SPME-GC-MS or SPME-GC-FID. MethodsX 2022; 10:101972. [PMID: 36593759 PMCID: PMC9803772 DOI: 10.1016/j.mex.2022.101972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
During the course of the EU H2020 OLEUM project, a harmonized method was developed to quantify volatile markers of the aroma of virgin olive oil with the aim to support the work of sensory panel test to assess the quality grade. A peer validation of this method has been carried out, with good results in terms of analytical quality parameters. The method allows the quantification of volatile compounds by SPME-GC with two possible detectors, flame ionization detector and mass spectrometry, depending on the technical facilities of the labs applying this method. The method was optimized for the quantification of 18 volatile compounds that were selected as being markers responsible for positive attributes (e.g. fruity) and sensory defects (e.g. rancid and winey-vinegary). The quantification is carried out with calibration curves corrected by the internal standards. Additionally, a protocol is provided to prepare the calibration samples. This procedure enhances reproducibility between labs since one of the main sources of errors is the application of different procedures in calibration.
Collapse
Affiliation(s)
| | - Enrico Casadei
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - Università di Bologna, Cesena, Italy
| | | | | | - Maurizio Servili
- Department of Agricultural, Food and Environmental Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Roberto Selvaggini
- Department of Agricultural, Food and Environmental Sciences, Università degli Studi di Perugia, Perugia, Italy
| | | | | | - Stefania Vichi
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Campus de l'Alimentació de Torribera, Universitat de Barcelona, Santa Coloma de Gramenet, Spain
| | - Beatriz Quintanilla-Casas
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Campus de l'Alimentació de Torribera, Universitat de Barcelona, Santa Coloma de Gramenet, Spain
| | - Alba Tres
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Campus de l'Alimentació de Torribera, Universitat de Barcelona, Santa Coloma de Gramenet, Spain
| | | | - Paolo Lucci
- Università degli Studi di Udine, Udine, Italy
| | - Erica Moret
- Università degli Studi di Udine, Udine, Italy
| | - Enrico Valli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - Università di Bologna, Cesena, Italy,Corresponding authors.
| | - Alessandra Bendini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - Università di Bologna, Cesena, Italy
| | - Tullia Gallina Toschi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - Università di Bologna, Cesena, Italy
| |
Collapse
|
10
|
Olmo-Cunillera A, Casadei E, Valli E, Lozano-Castellón J, Miliarakis E, Domínguez-López I, Ninot A, Romero-Aroca A, Lamuela-Raventós RM, Pérez M, Vallverdú-Queralt A, Bendini A. Aromatic, Sensory, and Fatty Acid Profiles of Arbequina Extra Virgin Olive Oils Produced Using Different Malaxation Conditions. Foods 2022; 11:3446. [PMID: 36360058 PMCID: PMC9656856 DOI: 10.3390/foods11213446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 08/03/2023] Open
Abstract
The demand for high-quality extra virgin olive oil (EVOO) is growing due to its unique characteristics. The aroma and flavor of EVOO depend on its content of volatile organic compounds (VOCs), whose formation is affected by the olive variety and maturity index, and the oil production process. In this study, the sensory quality and VOC and fatty acid (FA) profiles were determined in Arbequina olive oils produced by applying different malaxation parameters (20, 25, and 30 °C, and 30 and 45 min). All the olive oils were classified as EVOO by a sensory panel, regardless of the production conditions. However, cold extraction at 20 °C resulted in more positive sensory attributes (complexity). The FA concentration increased significantly with the malaxation temperature, although the percentage profile remained unaltered. Finally, an OPLS-DA model was generated to identify the discriminating variables that separated the samples according to the malaxation temperature. In conclusion, the tested range of malaxation parameters appeared not to degrade the distinctive attributes/organoleptic profile of olive oil and could be applied to obtain an EVOO of high sensory quality, especially at 20 °C.
Collapse
Affiliation(s)
- Alexandra Olmo-Cunillera
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 28029 Madrid, Spain
| | - Enrico Casadei
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—Università di Bologna, 47521 Cesena, Italy
| | - Enrico Valli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—Università di Bologna, 47521 Cesena, Italy
- Interdepartmental Centre for Industrial Agrofood Research, Alma Mater Studiorum—Università di Bologna, 47521 Cesena, Italy
| | - Julián Lozano-Castellón
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 28029 Madrid, Spain
| | - Eleftherios Miliarakis
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
| | - Inés Domínguez-López
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 28029 Madrid, Spain
| | - Antònia Ninot
- IRTA Institute of Agrifood Research and Technology, Fruit Science Program, Olive Growing and Oil Technology Research Team, 43120 Constantí, Spain
| | - Agustí Romero-Aroca
- IRTA Institute of Agrifood Research and Technology, Fruit Science Program, Olive Growing and Oil Technology Research Team, 43120 Constantí, Spain
| | - Rosa Maria Lamuela-Raventós
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 28029 Madrid, Spain
| | - Maria Pérez
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 28029 Madrid, Spain
- Laboratory of Organic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Anna Vallverdú-Queralt
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 28029 Madrid, Spain
| | - Alessandra Bendini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—Università di Bologna, 47521 Cesena, Italy
- Interdepartmental Centre for Industrial Agrofood Research, Alma Mater Studiorum—Università di Bologna, 47521 Cesena, Italy
| |
Collapse
|
11
|
Mariotti R, Núñez-Carmona E, Genzardi D, Pandolfi S, Sberveglieri V, Mousavi S. Volatile Olfactory Profiles of Umbrian Extra Virgin Olive Oils and Their Discrimination through MOX Chemical Sensors. SENSORS (BASEL, SWITZERLAND) 2022; 22:7164. [PMID: 36236259 PMCID: PMC9572317 DOI: 10.3390/s22197164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Extra virgin olive oil (EVOO) is the best vegetable oil worldwide but, at the same time, is one of the product victims of fraud in the agri-food sector, and the differences about quality within the extra-virgin olive oil category are often missed. Several scientific techniques were applied in order to guarantee the authenticity and quality of this EVOO. In the present study, the volatile compounds (VOCs) by gas chromatography-mass spectrometry with solid-phase micro-extraction detection (GC-MS SPME), organoleptic analysis by the official Slow Food panel and the detection by a Small Sensor System (S3) were applied. Ten EVOOs from Umbria, a central Italian region, were selected from the 2021 Slow Food Italian extra virgin olive oil official guide, which includes hundreds of high-quality olive oils. The results demonstrated the possibility to discriminate the ten EVOOs, even if they belong to the same Italian region, by all three techniques. The result of GC-MS SPME detection was comparable at the discrimination level to the organoleptic test with few exceptions, while the S3 was able to better separate some EVOOs, which were not discriminated perfectly by the other two methods. The correlation analysis performed among and between the three methodologies allowed us to identify 388 strong associations with a p value less than 0.05. This study has highlighted how much the mix of VOCs was different even among few and localized EVOOs. The correlation with the sensor detection, which is faster and chipper compared to the other two techniques, elucidated the similarities and discrepancies between the applied methods.
Collapse
Affiliation(s)
- Roberto Mariotti
- Institute of Biosciences and Bioresources, National Research Council, 06128 Perugia, Italy
| | - Estefanía Núñez-Carmona
- Institute of Biosciences and Bioresources, National Research Council, URT-Reggio Emilia, Via J. F. Kennedy 17/I, 42124 Reggio Emilia, Italy
| | - Dario Genzardi
- Institute of Biosciences and Bioresources, National Research Council, URT-Reggio Emilia, Via J. F. Kennedy 17/I, 42124 Reggio Emilia, Italy
| | - Saverio Pandolfi
- Institute of Biosciences and Bioresources, National Research Council, 06128 Perugia, Italy
| | - Veronica Sberveglieri
- Institute of Biosciences and Bioresources, National Research Council, URT-Reggio Emilia, Via J. F. Kennedy 17/I, 42124 Reggio Emilia, Italy
| | - Soraya Mousavi
- Institute of Biosciences and Bioresources, National Research Council, 06128 Perugia, Italy
| |
Collapse
|
12
|
Tarapoulouzi M, Agriopoulou S, Koidis A, Proestos C, Enshasy HAE, Varzakas T. Recent Advances in Analytical Methods for the Detection of Olive Oil Oxidation Status during Storage along with Chemometrics, Authenticity and Fraud Studies. Biomolecules 2022; 12:1180. [PMID: 36139019 PMCID: PMC9496477 DOI: 10.3390/biom12091180] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Olive oil is considered to be a food of utmost importance, especially in the Mediterranean countries. The quality of olive oil must remain stable regarding authenticity and storage. This review paper emphasizes the detection of olive oil oxidation status or rancidity, the analytical techniques that are usually used, as well as the application and significance of chemometrics in the research of olive oil. The first part presents the effect of the oxidation of olive oil during storage. Then, lipid stability measurements are described in parallel with instrumentation and different analytical techniques that are used for this particular purpose. The next part presents some research publications that combine chemometrics and the study of lipid changes due to storage published in 2005-2021. Parameters such as exposure to light, air and various temperatures as well as different packaging materials were investigated to test olive oil stability during storage. The benefits of each chemometric method are provided as well as the overall significance of combining analytical techniques and chemometrics. Furthermore, the last part reflects on fraud in olive oil, and the most popular analytical techniques in the authenticity field are stated to highlight the importance of the authenticity of olive oil.
Collapse
Affiliation(s)
- Maria Tarapoulouzi
- Department of Chemistry, Faculty of Pure and Applied Science, University of Cyprus, P.O. Box 20537, Nicosia CY-1678, Cyprus
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece
| | - Anastasios Koidis
- Institute for Global Food Security, School of Biological Science, Queen’s University Belfast, Belfast BT9 5DL, Northern Ireland, UK
| | - Charalampos Proestos
- Food Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Hesham Ali El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Johor 81310, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor 81310, Malaysia
- City of Scientific Research and Technology Applications (SRTA), New Borg Al Arab 21934, Egypt
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Johor 81310, Malaysia
| |
Collapse
|
13
|
Spadafora ND, Mascrez S, McGregor L, Purcaro G. Exploring multiple-cumulative trapping solid-phase microextraction coupled to gas chromatography-mass spectrometry for quality and authenticity assessment of olive oil. Food Chem 2022; 383:132438. [PMID: 35183954 DOI: 10.1016/j.foodchem.2022.132438] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 01/18/2023]
Abstract
This study explores the potential of an innovative multi-cumulative trapping headspace solid-phase microextraction approach coupled with untargeted data analysis to enhance the information provided by aroma profiling of virgin olive oil. Sixty-nine samples of different olive oil commercial categories (extra-virgin, virgin and lampante oil) and different geographical origins were analysed using this novel workflow. The results from each sample were aligned and compared using for the first time a tile-based approach to enable the mining of all of the raw data within the chemometrics platform without any pre-processing methods. The data matrix obtained allowed the extraction of multiple-level information from the volatile profile of the samples. Not only was it possible to classify the samples within the commercial category that they belonged to, but the same data also provided interesting information regarding the geographical origin of the extra-virgin olive oil.
Collapse
Affiliation(s)
- Natasha D Spadafora
- DiBEST, University of Calabria, Via Ponte P. Bucci, Cubo 6b, Arcavacata Di Rende, 87036, Italy; Markes International Ltd, 1000B Central Park, Western Avenue, Bridgend, CF31 3RT, UK; Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari, n. 46, Ferrara 44121, UK
| | - Steven Mascrez
- Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, Gembloux 5030, Belgium
| | - Laura McGregor
- SepSolve Analytical, 4 Swan Court, Peterborough PE7 8GX, UK
| | - Giorgia Purcaro
- Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, Gembloux 5030, Belgium.
| |
Collapse
|
14
|
Aparicio-Ruiz R, Ortiz Romero C, Casadei E, García-González DL, Servili M, Selvaggini R, Lacoste F, Escobessa J, Vichi S, Quintanilla-Casas B, Golay PA, Lucci P, Moret E, Valli E, Bendini A, Gallina Toschi T. Collaborative peer validation of a harmonized SPME-GC-MS method for analysis of selected volatile compounds in virgin olive oils. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
15
|
Stilo F, Jiménez-Carvelo AM, Liberto E, Bicchi C, Reichenbach SE, Cuadros-Rodríguez L, Cordero C. Chromatographic Fingerprinting Enables Effective Discrimination and Identitation of High-Quality Italian Extra-Virgin Olive Oils. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8874-8889. [PMID: 34319731 PMCID: PMC8389832 DOI: 10.1021/acs.jafc.1c02981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 05/21/2023]
Abstract
The challenging process of high-quality food authentication takes advantage of highly informative chromatographic fingerprinting and its identitation potential. In this study, the unique chemical traits of the complex volatile fraction of extra-virgin olive oils from Italian production are captured by comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry and explored by pattern recognition algorithms. The consistent realignment of untargeted and targeted features of over 73 samples, including oils obtained by different olive cultivars (n = 24), harvest years (n = 3), and processing technologies, provides a solid foundation for sample identification and discrimination based on production region (n = 6). Through a dedicated multivariate statistics workflow, identitation is achieved by two-level partial least-square (PLS) regression, which highlights region diagnostic patterns accounting between 58 and 82 of untargeted and targeted compounds, while sample classification is performed by sequential application of soft independent modeling for class analogy (SIMCA) models, one for each production region. Samples are correctly classified in five of the six single-class models, and quality parameters [i.e., sensitivity, specificity, precision, efficiency, and area under the receiver operating characteristic curve (AUC)] are equal to 1.00.
Collapse
Affiliation(s)
- Federico Stilo
- Dipartimento
di Scienza e Tecnologia del Farmaco, Università
degli Studi di Torino, Via Pietro Giuria 9, Torino I-10125, Italy
| | - Ana M. Jiménez-Carvelo
- Department
of Analytical Chemistry, Faculty of Science, University of Granada, Av. Fuentenueva S/N, Granada E-18071, Spain
- . Phone: +39 011 6707172
| | - Erica Liberto
- Dipartimento
di Scienza e Tecnologia del Farmaco, Università
degli Studi di Torino, Via Pietro Giuria 9, Torino I-10125, Italy
| | - Carlo Bicchi
- Dipartimento
di Scienza e Tecnologia del Farmaco, Università
degli Studi di Torino, Via Pietro Giuria 9, Torino I-10125, Italy
| | - Stephen E. Reichenbach
- University
of Nebraska, Lincoln, Nebraska 68588, United
States
- GC
Image LLC, Lincoln, Nebraska 68508, United
States
| | - Luis Cuadros-Rodríguez
- Department
of Analytical Chemistry, Faculty of Science, University of Granada, Av. Fuentenueva S/N, Granada E-18071, Spain
| | - Chiara Cordero
- Dipartimento
di Scienza e Tecnologia del Farmaco, Università
degli Studi di Torino, Via Pietro Giuria 9, Torino I-10125, Italy
- . Phone: +34 958240797
| |
Collapse
|
16
|
Stilo F, Segura Borrego MDP, Bicchi C, Battaglino S, Callejón Fernadez RM, Morales ML, Reichenbach SE, McCurry J, Peroni D, Cordero C. Delineating the extra-virgin olive oil aroma blueprint by multiple headspace solid phase microextraction and differential-flow modulated comprehensive two-dimensional gas chromatography. J Chromatogr A 2021; 1650:462232. [PMID: 34051578 DOI: 10.1016/j.chroma.2021.462232] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 01/08/2023]
Abstract
Comprehensive two-dimensional gas chromatography with parallel mass spectrometry and flame ionization detection (GC × GC-MS/FID) enables effective chromatographic fingerprinting of complex samples by comprehensively mapping untargeted and targeted components. Moreover, the complementary characteristics of MS and FID open the possibility of performing multi-target quantitative profiling with great accuracy. If this synergy is applied to the complex volatile fraction of food, sample preparation is crucial and requires appropriate methodologies capable of providing true quantitative results. In this study, untargeted/targeted (UT) fingerprinting of extra-virgin olive oil volatile fractions is combined with accurate quantitative profiling by multiple headspace solid phase microextraction (MHS-SPME). External calibration on fifteen pre-selected analytes and FID predicted relative response factors (RRFs) enable the accurate quantification of forty-two analytes in total, including key-aroma compounds, potent odorants, and olive oil geographical markers. Results confirm good performances of comprehensive UT fingerprinting in developing classification models for geographical origin discrimination, while quantification by MHS-SPME provides accurate results and guarantees data referability and results transferability over years. Moreover, by this approach the extent of internal standardization procedure inaccuracy, largely adopted in food volatiles profiling, is measured. Internal standardization yielded an average relative error of 208 % for the fifteen calibrated compounds, with an overestimation of + 538% for (E)-2-hexenal, the most abundant yet informative volatile of olive oil, and a -89% and -80% for (E)-2-octenal and (E)-2-nonenal respectively, analytes with a lower HS distribution constant. Compared to existing methods based on 1D-GC, the current procedure offers better separation power and chromatographic resolution that greatly improve method specificity and selectivity and results in lower LODs and LOQs, high calibration performances (i.e., R2 and residual distribution), and wider linear range of responses. As an artificial intelligence smelling machine, the MHS-SPME-GC × GC-MS/FID method is here adopted to delineate extra-virgin olive oil aroma blueprints; an objective tool with great flexibility and reliability that can improve the quality and information power of each analytical run.
Collapse
Affiliation(s)
- Federico Stilo
- University of Turin, Dipartimento di Scienza e Tecnologia del Farmaco, Turin, Italy
| | - Maria Del Pilar Segura Borrego
- Área de Nutrición y Bromatología, Dpto. de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Carlo Bicchi
- University of Turin, Dipartimento di Scienza e Tecnologia del Farmaco, Turin, Italy
| | - Sonia Battaglino
- Área de Nutrición y Bromatología, Dpto. de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Raquel Maria Callejón Fernadez
- Área de Nutrición y Bromatología, Dpto. de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Maria Lourdes Morales
- Área de Nutrición y Bromatología, Dpto. de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Stephen E Reichenbach
- Computer Science and Engineering Department, University of Nebraska - Lincoln, Lincoln, NE, USA; GC Image LLC, Lincoln, NE, USA
| | - James McCurry
- Agilent Technologies, Gas Phase Separations Division, Wilmington DE, USA
| | | | - Chiara Cordero
- University of Turin, Dipartimento di Scienza e Tecnologia del Farmaco, Turin, Italy.
| |
Collapse
|