1
|
Li X, Yao J, Lei D, Xiong J, Wang H, Cai T, Xiang W, Tang J. The dynamic of biogenic amines and higher alcohols of Chinese rice wine during fermentation. Food Sci Biotechnol 2025; 34:1423-1432. [PMID: 40110404 PMCID: PMC11914677 DOI: 10.1007/s10068-024-01754-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/28/2024] [Accepted: 11/13/2024] [Indexed: 03/22/2025] Open
Abstract
Chinese rice wine (CRW), characterized by its extensive history, nutritional richness, and wide popularity among consumers, but the presence of biogenic amines (BAs) and higher alcohols, which are considered potential health risks, will severely limit CRW development. However, there are few studies on the dynamic monitoring of BAs and higher alcohols in CRW. This study dynamically monitored the changes in physicochemical properties, BAs and higher alcohols of CRW during fermentation. Among the measured BAs, tryptamine attained the highest concentration, with 189.90 mg L-1, while histamine had the lowest concentration at 3.68 mg L-1 at the day 15 fermentation. The predominant higher alcohols identified in CRW include isoamyl alcohol and phenethyl alcohol, with the total higher alcohols content reaching 278.75 mg L-1 at the day 15 fermentation, the concentration (below 300 mg L-1) was considered the optimal level of the fermented wine, which imparted a pleasant character. The results provided some data to support the establishment of standards for potential risk substances of CRW. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01754-2.
Collapse
Affiliation(s)
- Xin Li
- School of Food and Bioengineering, Xihua University, Chengdu, 610039 Sichuan China
| | - Jie Yao
- School of Food and Bioengineering, Xihua University, Chengdu, 610039 Sichuan China
| | - Dan Lei
- School of Food and Bioengineering, Xihua University, Chengdu, 610039 Sichuan China
| | - Jie Xiong
- School of Food and Bioengineering, Xihua University, Chengdu, 610039 Sichuan China
| | - Hanyang Wang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039 Sichuan China
| | - Ting Cai
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039 Sichuan China
- School of Food and Bioengineering, Xihua University, Chengdu, 610039 Sichuan China
| | - Wenliang Xiang
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039 Sichuan China
- School of Food and Bioengineering, Xihua University, Chengdu, 610039 Sichuan China
| | - Jie Tang
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039 Sichuan China
- School of Food and Bioengineering, Xihua University, Chengdu, 610039 Sichuan China
| |
Collapse
|
2
|
Li P, Chen Y, Bai J, Yang H, He P, Zeng J. The Determination of Eight Biogenic Amines Using MSPE-UHPLC-MS/MS and Their Application in Regard to Changes in These Biogenic Amines in Traditional Chinese Dish-Pickled Swimming Crabs. Molecules 2025; 30:1353. [PMID: 40142129 PMCID: PMC11945975 DOI: 10.3390/molecules30061353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 03/28/2025] Open
Abstract
In this study, a method for the determination of eight biogenic amines (BAs), including tyramine (Tyr), 2-phenylethylamine (2-Phe), histamine (His), tryptamine (Trp), spermidine (Spd), spermine (Spm), cadaverine (Cad), and putrescine (Put), in crab was established using ultra-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS), using a magnetic solid-phase extraction (MSPE) pretreatment, without derivatization, and the content changes in regard to these eight biogenic amines in the traditional Chinese dish, pickled swimming crabs, were investigated. The samples were purified via MSPE, using C nanofiber-coated magnetic nanoparticles (Fe3O4@C-NFs) as sorbents. The experimental variables involved in the MSPE, including the solution pH, adsorption and desorption time, adsorbent usage, and type and volume of the eluent, were investigated and optimized. Method validation indicated that the developed method showed good linearity (R2 > 0.995); the average recovery rates were 84.7% to 115%, with the intra-day and inter-day relative standard deviations (RSD, n = 6) ranging from 3.7% to 7.5% and 4.2% to 7.7%, respectively. The limit of detection (LOD) and limit of quantification (LOQ) for the eight BAs were 0.1 mg/kg~1.0 mg/kg and 0.3 mg/kg~3.0 mg/kg, respectively. Finally, this method was applied to determine the changes in the eight biogenic amines in pickled swimming crabs (Portunus trituberculatus) during storage at 20 °C and 400 BAC. Among the BAs evaluated, Cad, Put, and Tyr were the predominant amines formed during storage. The final content of Cad, Put, and Tyr reached 22.9, 20.1, and 29.0 mg/100 g at 4 °C for 16 d, and 47.1, 52.3, and 72.0 mg/100 g at 20 °C for 96 h, respectively. The results from this study can be used to expand the application range of magnetic materials in biogenic amine pretreatment and to strengthen the quality control of the traditional Chinese dish, pickled swimming crabs.
Collapse
Affiliation(s)
- Peipei Li
- Zhejiang Marine Fisheries Research Institute, Tiyu Road 28, Zhoushan 316021, China; (Y.C.); (P.H.); (J.Z.)
| | - Yu Chen
- Zhejiang Marine Fisheries Research Institute, Tiyu Road 28, Zhoushan 316021, China; (Y.C.); (P.H.); (J.Z.)
| | - Junlu Bai
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, China;
| | - Huicheng Yang
- Zhejiang Marine Development Research Institute, Zhoushan 316021, China
| | - Pengfei He
- Zhejiang Marine Fisheries Research Institute, Tiyu Road 28, Zhoushan 316021, China; (Y.C.); (P.H.); (J.Z.)
| | - Junjie Zeng
- Zhejiang Marine Fisheries Research Institute, Tiyu Road 28, Zhoushan 316021, China; (Y.C.); (P.H.); (J.Z.)
| |
Collapse
|
3
|
Xu H, Li D, Jiang X, Pei Q, Li Z, Madjirebaye P, Xie M, Xiong T, Liu Z. Screening of Lactic Acid Bacteria Isolated from Fermented Cowpea and Optimization of Biomass Production Conditions. Foods 2025; 14:150. [PMID: 39856818 PMCID: PMC11765374 DOI: 10.3390/foods14020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/13/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Considering the four characteristics of strains, including acid production, acid tolerance, salt tolerance, and nitrite degradation rate, Pediococcus pentosaceus NCU006063 was selected as the fermentation agent, and the medium composition of Pediococcus pentosaceus NCU006063 was optimized using Plackett-Burman and central composite rotational design. Three of the seven factors studied in the Plackett-Burman design significantly affected the viable counts. A central composite rotational design was used to optimize the significant factors and generate response surface plots. Using these response surface plots and point predictions, the optimal factors were soy peptone (38.75 g/L), FeSO4 (0.10 g/L), and VB7 (20 g/L). In addition, the optimized incubation conditions were a temperature of 39 °C, an initial pH value of 7, and an inoculation volume of 3%. The optimized biomass production parameters were a constant pH (6.5), neutralizing agent types (25% NH3·H2O), and gas types (N2). Under these optimal conditions, Pediococcus pentosaceus NCU006063 exhibited a great viable bacterial count of up to 2.65 × 1010 CFU/mL, which is 9.71 times higher than that of MRS broth (2.73 × 109 CFU/mL). These results demonstrated that the Pediococcus pentosaceus NCU006063 strain has excellent potential as a fermentation agent and can provide a theoretical base for the in-depth exploration and promotion of fermented cowpea use in human diets.
Collapse
Affiliation(s)
- Hong Xu
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang 330047, China; (H.X.); (D.L.); (X.J.); (Q.P.); (Z.L.); (P.M.); (M.X.); (T.X.)
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- International Institute of Food Innovation International, Nanchang University, Luozhu Road, Xiaolan Economic and Technological Development Zone, Nanchang 330200, China
| | - Danyang Li
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang 330047, China; (H.X.); (D.L.); (X.J.); (Q.P.); (Z.L.); (P.M.); (M.X.); (T.X.)
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- International Institute of Food Innovation International, Nanchang University, Luozhu Road, Xiaolan Economic and Technological Development Zone, Nanchang 330200, China
| | - Xue Jiang
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang 330047, China; (H.X.); (D.L.); (X.J.); (Q.P.); (Z.L.); (P.M.); (M.X.); (T.X.)
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- International Institute of Food Innovation International, Nanchang University, Luozhu Road, Xiaolan Economic and Technological Development Zone, Nanchang 330200, China
| | - Qi Pei
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang 330047, China; (H.X.); (D.L.); (X.J.); (Q.P.); (Z.L.); (P.M.); (M.X.); (T.X.)
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- International Institute of Food Innovation International, Nanchang University, Luozhu Road, Xiaolan Economic and Technological Development Zone, Nanchang 330200, China
| | - Zhengqin Li
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang 330047, China; (H.X.); (D.L.); (X.J.); (Q.P.); (Z.L.); (P.M.); (M.X.); (T.X.)
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- International Institute of Food Innovation International, Nanchang University, Luozhu Road, Xiaolan Economic and Technological Development Zone, Nanchang 330200, China
| | - Philippe Madjirebaye
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang 330047, China; (H.X.); (D.L.); (X.J.); (Q.P.); (Z.L.); (P.M.); (M.X.); (T.X.)
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- International Institute of Food Innovation International, Nanchang University, Luozhu Road, Xiaolan Economic and Technological Development Zone, Nanchang 330200, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang 330047, China; (H.X.); (D.L.); (X.J.); (Q.P.); (Z.L.); (P.M.); (M.X.); (T.X.)
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- International Institute of Food Innovation International, Nanchang University, Luozhu Road, Xiaolan Economic and Technological Development Zone, Nanchang 330200, China
| | - Tao Xiong
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang 330047, China; (H.X.); (D.L.); (X.J.); (Q.P.); (Z.L.); (P.M.); (M.X.); (T.X.)
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- International Institute of Food Innovation International, Nanchang University, Luozhu Road, Xiaolan Economic and Technological Development Zone, Nanchang 330200, China
| | - Zhanggen Liu
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang 330047, China; (H.X.); (D.L.); (X.J.); (Q.P.); (Z.L.); (P.M.); (M.X.); (T.X.)
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- International Institute of Food Innovation International, Nanchang University, Luozhu Road, Xiaolan Economic and Technological Development Zone, Nanchang 330200, China
- International Institute of Food Innovation Co., Ltd., Nanchang University, Luozhu Road, Xiaolan Economic and Technological Development Zone, Nanchang 330200, China
| |
Collapse
|
4
|
Çelebi Y, Kavrut E, Bulut M, Çetintaş Y, Tekin A, Hayaloğlu AA, Alwazeer D. Incorporation of hydrogen-producing magnesium into minced beef meat protects the quality attributes and safety of the product during cold storage. Food Chem 2024; 448:139185. [PMID: 38574715 DOI: 10.1016/j.foodchem.2024.139185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
The impact of hydrogen (H2) producing magnesium (Mg) incorporation into minced beef meat (MBM) on the quality and safety of the product was investigated. The H2-producing Mg (H2-P-Mg)-incorporated MBMs were vacuumed (VP) and stored at 4 °C for 12 days. Other MBMs were vacuumed and gassed with H2 or N2. At the end of storage, the lowest browning index values were for H2 and H2-P-Mg samples. H2- PMg and VP methods generally decreased the counts of mesophilic and psychrotrophic bacteria and yeast molds and restricted the formation of thiobarbituric acid reactive substances and biogenic amines. Heat mapping, PCA, and multivariate analysis methods confirmed chemical analysis results. The volatile compounds were at their highest levels in the control samples at the end of storage, followed by H2, N2, H2-P-Mg, and VP samples. Using the H2-P-Mg method in MBM preparation could protect the quality characteristics and safety of the product during cold storage.
Collapse
Affiliation(s)
- Yasemin Çelebi
- Department of Food Processing, Eşme Vocational School, Uşak University, Uşak 64600, Türkiye
| | - Enes Kavrut
- Igdir Vocational School, Hotel, Restaurant and Catering Services Department, 76002, Igdir, Türkiye; Innovative Food Technologies Development, Application and Research Center, Igdir University, 76002 Igdir, Türkiye
| | - Menekşe Bulut
- Department of Food Engineering, Faculty of Engineering, Igdir University, 76002 Igdir, Türkiye; Innovative Food Technologies Development, Application and Research Center, Igdir University, 76002 Igdir, Türkiye
| | - Yunus Çetintaş
- Food Analysis Application and Research Center, Research Laboratories Center, Muğla Sıtkı Koçman University, 48000 Muğla, Türkiye.
| | - Ali Tekin
- Department of Food Technology, Vocational School of Keban, Firat University, 23700 Keban, Elazig, Türkiye; Department of Food Engineering, Faculty of Engineering, Inonu University, 44280 Malatya, Türkiye.
| | - Ali Adnan Hayaloğlu
- Department of Food Engineering, Faculty of Engineering, Inonu University, 44280 Malatya, Türkiye.
| | - Duried Alwazeer
- Innovative Food Technologies Development, Application and Research Center, Igdir University, 76002 Igdir, Türkiye; Department of Nutrition and Dietetics, Faculty of Health Sciences, Igdir University, 76002 Iğdır, Türkiye.
| |
Collapse
|
5
|
Kao CC, Lin JY. Culture condition optimization of naturally lacto-fermented cucumbers based on changes in detrimental and functional ingredients. Food Chem X 2023; 19:100839. [PMID: 37780341 PMCID: PMC10534157 DOI: 10.1016/j.fochx.2023.100839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/11/2023] [Accepted: 08/12/2023] [Indexed: 10/03/2023] Open
Abstract
A two-step trial was used to optimize the culture condition of naturally lacto-fermented cucumbers. In the first trial, changes in pH values and total biogenic amines were measured to optimize the pickling juice formula. A 15% crystal sugar solution with low-salt brine at 4 °C was proved to be the best formula. In the second trial, pH values, organic acids, total phenolics, flavonoids, saponins and free amino acids, as well as biogenic amines and nitrites under the optimal pickling formula were measured. The optimal fermentation day was suggested at around 8 days. During the cucumber's fermentation process, the pH value was quickly lowered to <4.6. Meanwhile, the functional ingredients increased significantly. In contrast, total biogenic amines and nitrites did not exceed the risk limit, evidencing the safety and functional characteristics for the naturally lacto-fermented cucumbers. The two-step trial has evidenced the possibility to develop desirable lacto-fermented cucumbers.
Collapse
Affiliation(s)
- Chien-Chia Kao
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung City 40227, Taiwan
| | - Jin-Yuarn Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung City 40227, Taiwan
| |
Collapse
|
6
|
Tang T, Zhang M, Lim Law C, Mujumdar AS. Novel strategies for controlling nitrite content in prepared dishes: Current status, potential benefits, limitations and future challenges. Food Res Int 2023; 170:112984. [PMID: 37316019 DOI: 10.1016/j.foodres.2023.112984] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023]
Abstract
Sodium nitrite is commonly used as a multifunctional curing ingredient in the processing of prepared dishes, especially meat products, to impart unique color, flavor and to prolong the shelf life of such products. However, the use of sodium nitrite in the meat industry has been controversial due to potential health risks. Finding suitable substitutes for sodium nitrite and controlling nitrite residue have been a major challenge faced by the meat processing industry. This paper summarizes possible factors affecting the variation of nitrite content in the processing of prepared dishes. New strategies for controlling nitrite residues in meat dishes, including natural pre-converted nitrite, plant extracts, irradiation, non-thermal plasma and high hydrostatic pressure (HHP), are discussed in detail. The advantages and limitations of these strategies are also summarized. Raw materials, cooking techniques, packaging methods, and storage conditions all affect the content of nitrite in the prepared dishes. The use of vegetable pre-conversion nitrite and the addition of plant extracts can help reduce nitrite residues in meat products and meet the consumer demand for clean labeled meat products. Atmospheric pressure plasma, as a non-thermal pasteurization and curing process, is a promising meat processing technology. HHP has good bactericidal effect and is suitable for hurdle technology to limit the amount of sodium nitrite added. This review is intended to provide insights for the control of nitrite in the modern production of prepared dishes.
Collapse
Affiliation(s)
- Tiantian Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Chung Lim Law
- Department of Chemical and Environmental Engineering, Malaysia Campus, University of Nottingham, Semenyih 43500, Selangor, Malaysia
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Quebec, Canada
| |
Collapse
|
7
|
Kao CC, Wang HM, Tsai SJ, Lin JY. Sensory and microbial analyses on naturally lacto-fermented cucumbers. Int J Gastron Food Sci 2023. [DOI: 10.1016/j.ijgfs.2023.100714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
8
|
Regulation of the nitrite, biogenic amine and flavor quality of Cantonese pickle by selected lactic acid bacteria. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
9
|
Zhang L, Zhang M, Adhikari B, Zhang L. Salt reducing and saltiness perception enhancing strategy for shiitake (Lentinus edodes) bud using novel combined treatment of yeast extract and radio frequency. Food Chem 2023; 402:134149. [DOI: 10.1016/j.foodchem.2022.134149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 07/16/2022] [Accepted: 09/04/2022] [Indexed: 11/24/2022]
|
10
|
Zhang C, Zhang J, Xin X, Niu H, Liao X, Liu D. Reduced formation of biogenic amines in low-salt Zhacai via fermentation under CO 2-modified atmosphere. Food Res Int 2023; 163:112256. [PMID: 36596167 DOI: 10.1016/j.foodres.2022.112256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Reducing sodium salt content in traditional fermented vegetables and developing low-salt fermented products have attracted increasing attention.However, low-salt fermented vegetables are prone to accumulate toxic biogenic amines (BAs) caused by the undesirable metabolism of spoilage microorganisms. This study aimed to investigate the impact of a CO2-modified atmosphere (MA) approach to the fermentation of low-salt Zhacai and the accumulation of BAs. The results show CO2-MA effectively suppressed the production of excessive BAs in low-salt Zhacai, as evidenced by a decrease in the total BA content from 63.66 to 161.41 mg/ kg under natural air conditions to 1.88-24.76 mg/ kg under CO2-MA. Overall, the mechanism of hindering BA formation was closely related to the change in the microbial community and the downregulation of BA-producing enzymes. Lactic acid bacteria, including Lactiplantibacillus plantarum, Weissella spp., and Pediococcus spp., were enriched under CO2-MA, whereas amine-producing microorganisms (e.g., Halomonas spp., Psychrobacter spp., Corynebacterium spp., and Levilactobacillus brevis) were greatly inhibited. Moreover, metagenomic analysis revealed that genes encoding amino acid decarboxylase, amine deiminase, and amine synthase were downregulated, which could be the fundamental reason for BA reduction. This study provides an alternative method for reducing BA production in fermented food.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hangzhou 310021, PR China
| | - Jianming Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Xiaoting Xin
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Haiyue Niu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Daqun Liu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hangzhou 310021, PR China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
11
|
LIU X, WANG J, XU Z, SUN J, LIU Y, XI X, MA Y. Quality assessment of fermented soybeans: physicochemical, bioactive compounds and biogenic amines. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.102722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Xu LIU
- Hebei Agricultural University, China
| | - Jun WANG
- Nanyang Institute of Technology, China; Nanyang Institute of Technology, China
| | - Zihan XU
- Nanyang Institute of Technology, China; Nanyang Institute of Technology, China
| | | | | | - Xiaoli XI
- Hebei Agricultural University, China
| | - Yanli MA
- Hebei Agricultural University, China; Nanyang Institute of Technology, China; Nanyang Institute of Technology, China
| |
Collapse
|
12
|
Gao X, Li C, He R, Zhang Y, Wang B, Zhang ZH, Ho CT. Research advances on biogenic amines in traditional fermented foods: Emphasis on formation mechanism, detection and control methods. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Zhao N, Ge L, Lai H, Wang Y, Mei Y, Huang Y, Zeng X, Su Y, Shi Q, Li H, Yuan H, Zhu Y, Zuo Y, Pang F, Guo C, Wang H, Hu T. Unraveling the contribution of pre-salting duration to microbial succession and changes of volatile and non-volatile organic compounds in Suancai (a Chinese traditional fermented vegetable) during fermentation. Food Res Int 2022; 159:111673. [DOI: 10.1016/j.foodres.2022.111673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/21/2022] [Accepted: 07/07/2022] [Indexed: 11/04/2022]
|
14
|
Qin F, Wu Z, Zhang W. Evaluation of six commercial koji on the formation of biogenic amines and higher alcohols in rice wine. JOURNAL OF THE INSTITUTE OF BREWING 2022. [DOI: 10.1002/jib.696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fengyang Qin
- Department of Food Engineering, College of Biomass Science and Engineering Sichuan University Chengdu 610065 China
| | - Zhengyun Wu
- Department of Food Engineering, College of Biomass Science and Engineering Sichuan University Chengdu 610065 China
| | - Wenxue Zhang
- Department of Food Engineering, College of Biomass Science and Engineering Sichuan University Chengdu 610065 China
| |
Collapse
|
15
|
Feng LU, Li Y, Ma C, Tuo Y. Bacterial Diversity of Sun-Dried Spanish Mackerel in Dalian and Application of Lactobacillus plantarum X23 as a Biopreservative. J Food Prot 2021; 84:2133-2142. [PMID: 33984135 DOI: 10.4315/jfp-21-057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/07/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Sun-dried Spanish mackerel is a common food in Dalian and made by adding salt and sun drying, which has special physical, chemical, and microbiological properties. In this study, the physicochemical properties and microbial composition of commercially available sun-dried Spanish mackerel in Dalian were assessed, and some Lactobacillus strains were screened as a biopreservative for sun-dried Spanish mackerel preparation. The results showed that the total volatile base nitrogen content in the traditional sun-dried Spanish mackerel samples from Dalian was within 30 mg/100 g, the histamine content was 7 to 17 mg/kg, and the dominant bacteria at the genus level were Lactobacillus, Psychrobacter, and Ralstonia. A strain with biopreservative potential was isolated from a sun-dried Spanish mackerel sample, identified as L. plantarum species by 16S rDNA sequencing, and assigned as L. plantarum X23. Fresh Spanish mackerel flesh was treated with 16% brine and L. plantarum X23 at a dose of 107 CFU/mL and then dried in the sun. The sun-dried Spanish mackerel flesh treated with 16% brine and L. plantarum X23 showed a decreased histamine and acid value, increased free amino acid content, and a higher sensory score compared with the sun-dried Spanish mackerel without L. plantarum X23 treatment (P < 0.05). In conclusion, the sun-dried Spanish mackerel purchased from the supermarkets in Dalian were safely edible, and L. plantarum X23 can significantly reduce the content of histamine and putrescine in self-made, low-salt, sun-dried Spanish mackerel and has potential as a biopreservative for sun-dried Spanish mackerel preparation. HIGHLIGHTS
Collapse
Affiliation(s)
- L U Feng
- 1School of Food Science and Technology and Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Ying Li
- 1School of Food Science and Technology and Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Changlu Ma
- Department of Food and Biological Engineering, Beijing Vocational College of Agriculture, Beijing 102442, People's Republic of China
| | - Yanfeng Tuo
- 1School of Food Science and Technology and Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| |
Collapse
|
16
|
Determination of 6 biogenic amines in food using high-performance liquid chromatography-tandem mass spectrometry without derivatization. J Chromatogr A 2021; 1653:462415. [PMID: 34333170 DOI: 10.1016/j.chroma.2021.462415] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 11/22/2022]
Abstract
A rapid and simple method for the determination of 6 biogenic amines (BAs) in food was established on HPLC-MS /MS without derivatization. Samples were extracted with 5% perchloric acid and cleaned with n-hexane for lipid removal. The analytes were separated on Waters XBridge® HILIC (150 mm × 2.1 mm, 3.5 µm) and analyzed with multiple-reaction monitoring (MRM) mode after positive electrospray ionization on HPLC-MS/MS. Good linearity with high correlation coefficient was obtained between 10-1000 µg/L for cadaverine (CAD), putrescine (PUT), tyramine (TYR) and 2-phenylethylamine (2-PHE) and between 1-100 µg/L for histamine (HIS) and tryptamine (TRY), with the detection limits of the method ranging from 0.1 mg/kg for HIS and TRY, and 1.0 mg/kg for CAD, PUT, TYR and 2-PHE, which are under the residue limit of Chinese regulation. Spiking experiments demonstrated good recoveries between 70.2-114.6%, with relative standard deviations (RSDs) between 0.44-13.01%. This method was validated for BAs determination in liquor, fermented meat products, vegetable products, soybean products, dairy products, seafood and its derived products. These results promise high feasibility for BAs monitoring in various food with easy-to-operate and fast sample preparation process, stable analysis on HPLC-MS/MS without derivatization.
Collapse
|
17
|
Zhao N, Lai H, Wang Y, Huang Y, Shi Q, He W, Zhu S, Li Y, Zhu Y, Li H, Ge L. Assessment of biogenic amine and nitrite production in low-salt Paocai during fermentation as affected by reused brine and fresh brine. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
18
|
Zhang X, Fang C, Huang D, Yang G, Tang Y, Shi Y, Kong C, Cao P, Cai Y. Determination of 8 biogenic amines in aquatic products and their derived products by high-performance liquid chromatography-tandem mass spectrometry without derivatization. Food Chem 2021; 361:130044. [PMID: 34049048 DOI: 10.1016/j.foodchem.2021.130044] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/09/2021] [Accepted: 05/05/2021] [Indexed: 11/24/2022]
Abstract
A method for the determination of 8 biogenic amines in aquatic products and their derived products was established by HPLC-MS/MS without derivatization. The samples were extracted by 5% perchloric acid solution. N-hexane was used to clean the extract. The analytes were separated by a column of ACQUITY UPLC HSS T3 (100 mm × 2.1 mm, 1.8 µm), and gradient eluted with a mixed solution of (0.5% formic acid) and acetonitrile. Good linearity was obtained with correlation coefficients (R2) >0.99. This method achieved higher sensitivity (from 0.1 mg/kg for tyramine, 2-phenylethylamine and tryptamine to 1.0 mg/kg for spermidine, spermine, cadaverin, histamine and putrescine). The average recoveries were demonstrated in the range of 70.9%-113.1%, with relative standard deviations (RSDs) from 0.33% to 10.81%. This method was suitable for the detection of BAs in aquatic products and their products.
Collapse
Affiliation(s)
- Xuan Zhang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Changling Fang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Dongmei Huang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Guangxin Yang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Yunyu Tang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Yongfu Shi
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Cong Kong
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Pei Cao
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China.
| | - Youqiong Cai
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China.
| |
Collapse
|