1
|
Lin Q, Diao S, Chen X, Du J, Wu J, Zhang X, Liu X, Li J, Zhang Z. Evaluation of the Breed Composition of Pork via Population Structure Analysis in Pigs. Animals (Basel) 2024; 14:3489. [PMID: 39682456 DOI: 10.3390/ani14233489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/10/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
The quality of pork meat directly influences the price and consumption. The genetic improvement of pigs has mainly focused on high productive efficiency, which has resulted in poor meat quality. Crossbreeds containing commercial and indigenous breeds could improve the meat quality, but identifying breed composition was difficult because of the lack of an ancestry reference panel. Therefore, we first constructed an abundant reference panel and convenient pipeline to identify ancestry/breed composition. The ancestry reference panel consisted of 517 reliable individuals, including three commercial breeds (Duroc, Landrace, and Yorkshire) and 38 indigenous Chinese breeds. The nature of the reference panel showed that the European domestic breed (EUD) and Asian domestic breed (ASD) were distinctly divided into two clusters. The evaluation of ancestry identification revealed that the reference panel performed well in identifying EUD and ASD ancestry proportions for commercial breeds, indigenous breeds, and crossbreeds. In addition, the ancestry reference panel also performed excellently in identifying breed composition for 3 commercial and 38 indigenous breeds. Specifically, the reference panel showed the outstanding identification of breed composition for crossbred individuals. These results suggested that the ancestry reference panel and convenient pipeline played a good role in identifying breed composition for pigs.
Collapse
Affiliation(s)
- Qing Lin
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shuqi Diao
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xinyou Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jinshi Du
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiaxuan Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xinshuo Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jiaqi Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhe Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Kumar H, Panigrahi M, Seo D, Cho S, Bhushan B, Dutt T. Machine Learning-Aided Ultra-Low-Density Single Nucleotide Polymorphism Panel Helps to Identify the Tharparkar Cattle Breed: Lessons for Digital Transformation in Livestock Genomics. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:514-525. [PMID: 39302202 DOI: 10.1089/omi.2024.0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Cattle breed identification is crucial for livestock research and sustainable food systems, and advances in genomics and artificial intelligence present new opportunities to address these challenges. This study investigates the identification of the Tharparkar cattle breed using genomics tools combined with machine learning (ML) techniques. By leveraging data from the Bovine SNP 50K chip, we developed a breed-specific panel of single nucleotide polymorphisms (SNPs) for Tharparkar cattle and integrated data from seven other Indian cattle populations to enhance panel robustness. Genome-wide association studies (GWAS) and principal component analysis were employed to identify 500 SNPs, which were then refined using ML models-AdaBoost, bagging tree, gradient boosting machines, and random forest-to determine the minimal number of SNPs needed for accurate breed identification. Panels of 23 and 48 SNPs achieved accuracy rates of 95.2-98.4%. Importantly, the identified SNPs were associated with key productive and adaptive traits, thus attesting to the value and potentials of digital transformation in livestock genomics. The ML-aided ultra-low-density SNP panel approach reported here not only facilitates breed identification but also contributes to preserving genetic diversity and guiding future breeding programs.
Collapse
Affiliation(s)
- Harshit Kumar
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, India
- ICAR-National Research Centre on Mithun, Medziphema, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, India
| | - Dongwon Seo
- Research and Development Center, TNT research Co., Jeonju-si, South Korea
| | - Sunghyun Cho
- Research and Development Center, Insilicogen Inc., Yongin-si, South Korea
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, India
| | - Triveni Dutt
- Animal Genetics & Breeding Section, Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
3
|
Zhao CH, Wang D, Yang C, Chen Y, Teng J, Zhang XY, Cao Z, Wei XM, Ning C, Yang QE, Lv WF, Zhang Q. Population structure and breed identification of Chinese indigenous sheep breeds using whole genome SNPs and InDels. Genet Sel Evol 2024; 56:60. [PMID: 39227836 PMCID: PMC11370120 DOI: 10.1186/s12711-024-00927-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Accurate breed identification is essential for the conservation and sustainable use of indigenous farm animal genetic resources. In this study, we evaluated the phylogenetic relationships and genomic breed compositions of 13 sheep breeds using SNP and InDel data from whole genome sequencing. The breeds included 11 Chinese indigenous and 2 foreign commercial breeds. We compared different strategies for breed identification with respect to different marker types, i.e. SNPs, InDels, and a combination of SNPs and InDels (named SIs), different breed-informative marker detection methods, and different machine learning classification methods. RESULTS Using WGS-based SNPs and InDels, we revealed the phylogenetic relationships between 11 Chinese indigenous and two foreign sheep breeds and quantified their purities through estimated genomic breed compositions. We found that the optimal strategy for identifying these breeds was the combination of DFI_union for breed-informative marker detection, which integrated the methods of Delta, Pairwise Wright's FST, and Informativeness for Assignment (namely DFI) by merging the breed-informative markers derived from the three methods, and KSR for breed assignment, which integrated the methods of K-Nearest Neighbor, Support Vector Machine, and Random Forest (namely KSR) by intersecting their results. Using SI markers improved the identification accuracy compared to using SNPs or InDels alone. We achieved accuracies over 97.5% when using at least the 1000 most breed-informative (MBI) SI markers and even 100% when using 5000 SI markers. CONCLUSIONS Our results provide not only an important foundation for conservation of these Chinese local sheep breeds, but also general approaches for breed identification of indigenous farm animal breeds.
Collapse
Affiliation(s)
- Chang-Heng Zhao
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Tai'an, 271018, China
| | - Dan Wang
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Tai'an, 271018, China
| | - Cheng Yang
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan Chen
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Tai'an, 271018, China
| | - Jun Teng
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Tai'an, 271018, China
| | - Xin-Yi Zhang
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Tai'an, 271018, China
| | - Zhi Cao
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Tai'an, 271018, China
| | - Xian-Ming Wei
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Tai'an, 271018, China
| | - Chao Ning
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Tai'an, 271018, China
| | - Qi-En Yang
- CAS Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China.
| | - Wen-Fa Lv
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Qin Zhang
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
4
|
Kuraz Abebe B, Wang J, Guo J, Wang H, Li A, Zan L. A review of the role of epigenetic studies for intramuscular fat deposition in beef cattle. Gene 2024; 908:148295. [PMID: 38387707 DOI: 10.1016/j.gene.2024.148295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/23/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Intramuscular fat (IMF) deposition profoundly influences meat quality and economic value in beef cattle production. Meanwhile, contemporary developments in epigenetics have opened new outlooks for understanding the molecular basics of IMF regulation, and it has become a key area of research for world scholars. Therefore, the aim of this paper was to provide insight and synthesis into the intricate relationship between epigenetic mechanisms and IMF deposition in beef cattle. The methodology involves a thorough analysis of existing literature, including pertinent books, academic journals, and online resources, to provide a comprehensive overview of the role of epigenetic studies in IMF deposition in beef cattle. This review summarizes the contemporary studies in epigenetic mechanisms in IMF regulation, high-resolution epigenomic mapping, single-cell epigenomics, multi-omics integration, epigenome editing approaches, longitudinal studies in cattle growth, environmental epigenetics, machine learning in epigenetics, ethical and regulatory considerations, and translation to industry practices from perspectives of IMF deposition in beef cattle. Moreover, this paper highlights DNA methylation, histone modifications, acetylation, phosphorylation, ubiquitylation, non-coding RNAs, DNA hydroxymethylation, epigenetic readers, writers, and erasers, chromatin immunoprecipitation followed by sequencing, whole genome bisulfite sequencing, epigenome-wide association studies, and their profound impact on the expression of crucial genes governing adipogenesis and lipid metabolism. Nutrition and stress also have significant influences on epigenetic modifications and IMF deposition. The key findings underscore the pivotal role of epigenetic studies in understanding and enhancing IMF deposition in beef cattle, with implications for precision livestock farming and ethical livestock management. In conclusion, this review highlights the crucial significance of epigenetic pathways and environmental factors in affecting IMF deposition in beef cattle, providing insightful information for improving the economics and meat quality of cattle production.
Collapse
Affiliation(s)
- Belete Kuraz Abebe
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China; Department of Animal Science, Werabe University, P.O. Box 46, Werabe, Ethiopia
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Juntao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China; National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|
5
|
Zhao C, Wang D, Teng J, Yang C, Zhang X, Wei X, Zhang Q. Breed identification using breed-informative SNPs and machine learning based on whole genome sequence data and SNP chip data. J Anim Sci Biotechnol 2023; 14:85. [PMID: 37259083 DOI: 10.1186/s40104-023-00880-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/05/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Breed identification is useful in a variety of biological contexts. Breed identification usually involves two stages, i.e., detection of breed-informative SNPs and breed assignment. For both stages, there are several methods proposed. However, what is the optimal combination of these methods remain unclear. In this study, using the whole genome sequence data available for 13 cattle breeds from Run 8 of the 1,000 Bull Genomes Project, we compared the combinations of three methods (Delta, FST, and In) for breed-informative SNP detection and five machine learning methods (KNN, SVM, RF, NB, and ANN) for breed assignment with respect to different reference population sizes and difference numbers of most breed-informative SNPs. In addition, we evaluated the accuracy of breed identification using SNP chip data of different densities. RESULTS We found that all combinations performed quite well with identification accuracies over 95% in all scenarios. However, there was no combination which performed the best and robust across all scenarios. We proposed to integrate the three breed-informative detection methods, named DFI, and integrate the three machine learning methods, KNN, SVM, and RF, named KSR. We found that the combination of these two integrated methods outperformed the other combinations with accuracies over 99% in most cases and was very robust in all scenarios. The accuracies from using SNP chip data were only slightly lower than that from using sequence data in most cases. CONCLUSIONS The current study showed that the combination of DFI and KSR was the optimal strategy. Using sequence data resulted in higher accuracies than using chip data in most cases. However, the differences were generally small. In view of the cost of genotyping, using chip data is also a good option for breed identification.
Collapse
Affiliation(s)
- Changheng Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Dan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Jun Teng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Cheng Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Xinyi Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Xianming Wei
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Qin Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
6
|
Miao J, Chen Z, Zhang Z, Wang Z, Wang Q, Zhang Z, Pan Y. A web tool for the global identification of pig breeds. Genet Sel Evol 2023; 55:18. [PMID: 36944938 PMCID: PMC10029154 DOI: 10.1186/s12711-023-00788-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 02/14/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Natural and artificial selection for more than 9000 years have led to a variety of domestic pig breeds. Accurate identification of pig breeds is important for breed conservation, sustainable breeding, pork traceability, and local resource registration. RESULTS We evaluated the performance of four selectors and six classifiers for breed identification using a wide range of pig breeds (N = 91). The internal cross-validation and external independent testing showed that partial least squares regression (PLSR) was the most effective selector and partial least squares-discriminant analysis (PLS-DA) was the most powerful classifier for breed identification among many breeds. Five-fold cross-validation indicated that using PLSR as the selector and PLS-DA as the classifier to discriminate 91 pig breeds yielded 98.4% accuracy with only 3K single nucleotide polymorphisms (SNPs). We also constructed a reference dataset with 124 pig breeds and used it to develop the web tool iDIGs ( http://alphaindex.zju.edu.cn/iDIGs_en/ ) as a comprehensive application for global pig breed identification. iDIGs allows users to (1) identify pig breeds without a reference population and (2) design small panels to discriminate several specific pig breeds. CONCLUSIONS In this study, we proved that breed identification among a wide range of pig breeds is feasible and we developed a web tool for such pig breed identification.
Collapse
Affiliation(s)
- Jian Miao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Zitao Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Zhenyang Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Zhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Qishan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Hainan Institute of Zhejiang University, Building 11, Yongyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, Hainan, China
| | - Zhe Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Yuchun Pan
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
- Hainan Institute of Zhejiang University, Building 11, Yongyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, Hainan, China.
| |
Collapse
|
7
|
Classification of cattle breeds based on the random forest approach. Livest Sci 2023. [DOI: 10.1016/j.livsci.2022.105143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Cho E, Cho S, Kim M, Ediriweera TK, Seo D, Lee SS, Cha J, Jin D, Kim YK, Lee JH. Single nucleotide polymorphism marker combinations for classifying Yeonsan Ogye chicken using a machine learning approach. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:830-841. [PMID: 36287747 PMCID: PMC9574617 DOI: 10.5187/jast.2022.e64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 11/27/2022]
Abstract
Genetic analysis has great potential as a tool to differentiate between different species and breeds of livestock. In this study, the optimal combinations of single nucleotide polymorphism (SNP) markers for discriminating the Yeonsan Ogye chicken (Gallus gallus domesticus) breed were identified using high-density 600K SNP array data. In 3,904 individuals from 198 chicken breeds, SNP markers specific to the target population were discovered through a case-control genome-wide association study (GWAS) and filtered out based on the linkage disequilibrium blocks. Significant SNP markers were selected by feature selection applying two machine learning algorithms: Random Forest (RF) and AdaBoost (AB). Using a machine learning approach, the 38 (RF) and 43 (AB) optimal SNP marker combinations for the Yeonsan Ogye chicken population demonstrated 100% accuracy. Hence, the GWAS and machine learning models used in this study can be efficiently utilized to identify the optimal combination of markers for discriminating target populations using multiple SNP markers.
Collapse
Affiliation(s)
- Eunjin Cho
- Department of Bio-AI Convergence, Chungnam
National University, Daejeon 34134, Korea
| | - Sunghyun Cho
- Research and Development Center,
Insilicogen Inc., Yongin 19654, Korea
| | - Minjun Kim
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
| | | | - Dongwon Seo
- Department of Bio-AI Convergence, Chungnam
National University, Daejeon 34134, Korea,Research Institute TNT Research
Company, Jeonju 54810, Korea
| | | | - Jihye Cha
- Animal Genome & Bioinformatics,
National Institute of Animal Science, Rural Development
Administration, Wanju 55365, Korea
| | - Daehyeok Jin
- Animal Genetic Resources Research Center,
National Institute of Animal Science, Rural Development
Administration, Hamyang 50000, Korea
| | - Young-Kuk Kim
- Department of Bio-AI Convergence, Chungnam
National University, Daejeon 34134, Korea
| | - Jun Heon Lee
- Department of Bio-AI Convergence, Chungnam
National University, Daejeon 34134, Korea,Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea,Corresponding author: Jun Heon Lee,
Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134,
Korea. Tel: +82-42-821-5779, E-mail:
| |
Collapse
|
9
|
Pewan SB, Otto JR, Huerlimann R, Budd AM, Mwangi FW, Edmunds RC, Holman BWB, Henry MLE, Kinobe RT, Adegboye OA, Malau-Aduli AEO. Next Generation Sequencing of Single Nucleotide Polymorphic DNA-Markers in Selecting for Intramuscular Fat, Fat Melting Point, Omega-3 Long-Chain Polyunsaturated Fatty Acids and Meat Eating Quality in Tattykeel Australian White MARGRA Lamb. Foods 2021; 10:foods10102288. [PMID: 34681337 PMCID: PMC8535056 DOI: 10.3390/foods10102288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 01/14/2023] Open
Abstract
Meat quality data can only be obtained after slaughter when selection decisions about the live animal are already too late. Carcass estimated breeding values present major precision problems due to low accuracy, and by the time an informed decision on the genetic merit for meat quality is made, the animal is already dead. We report for the first time, a targeted next-generation sequencing (NGS) of single nucleotide polymorphisms (SNP) of lipid metabolism genes in Tattykeel Australian White (TAW) sheep of the MARGRA lamb brand, utilizing an innovative and minimally invasive muscle biopsy sampling technique for directly quantifying the genetic worth of live lambs for health-beneficial omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA), intramuscular fat (IMF), and fat melting point (FMP). NGS of stearoyl-CoA desaturase (SCD), fatty acid binding protein-4 (FABP4), and fatty acid synthase (FASN) genes identified functional SNP with unique DNA marker signatures for TAW genetics. The SCD g.23881050T>C locus was significantly associated with IMF, C22:6n-3, and C22:5n-3; FASN g.12323864A>G locus with FMP, C18:3n-3, C18:1n-9, C18:0, C16:0, MUFA, and FABP4 g.62829478A>T locus with IMF. These add new knowledge, precision, and reliability in directly making early and informed decisions on live sheep selection and breeding for health-beneficial n-3 LC-PUFA, FMP, IMF and superior meat-eating quality at the farmgate level. The findings provide evidence that significant associations exist between SNP of lipid metabolism genes and n-3 LC-PUFA, IMF, and FMP, thus underpinning potential marker-assisted selection for meat-eating quality traits in TAW lambs.
Collapse
Affiliation(s)
- Shedrach Benjamin Pewan
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
- National Veterinary Research Institute, Private Mail Bag 01 Vom, Plateau State, Nigeria
| | - John Roger Otto
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| | - Roger Huerlimann
- Marine Climate Change Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan;
- Centre for Sustainable Tropical Fisheries and Aquaculture and Centre for Tropical Bioinformatics and Molecular Biology, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia;
| | - Alyssa Maree Budd
- Centre for Sustainable Tropical Fisheries and Aquaculture and Centre for Tropical Bioinformatics and Molecular Biology, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia;
| | - Felista Waithira Mwangi
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| | - Richard Crawford Edmunds
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| | | | - Michelle Lauren Elizabeth Henry
- Gundagai Meat Processors, 2916 Gocup Road, South Gundagai, NSW 2722, Australia;
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Robert Tumwesigye Kinobe
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| | - Oyelola Abdulwasiu Adegboye
- Public Health and Tropical Medicine Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia;
| | - Aduli Enoch Othniel Malau-Aduli
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
- Correspondence: ; Tel.: +61-747-815-339
| |
Collapse
|