1
|
Ji S, Hao S, Yuan J, Xuan H. Fluorescence spectroscopy combined with multilayer perceptron deep learning to identify the authenticity of monofloral honey-Rape honey. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125418. [PMID: 39547148 DOI: 10.1016/j.saa.2024.125418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/14/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Honey authenticity is critical to honey quality. The development of a quick, easy, and non-destructive technique for determining the authenticity of honey encourages an improvement in honey quality. Here, the authenticity of monofloral honey-rape honey was determined using fluorescence spectroscopy combined with multilayer perceptron (MLP) deep learning, without the need for any prior feature extraction or pre-processing. A total of 91 raw fluorescence intensity data of the real and adulterated honey samples at a fixed excitation wavelength of 280 nm were first matrixed, and all data were then categorized into a training set, a validation set, and a test set with numbers of 64, 16, and 11, respectively. The connection with dropout was selected to build and link the MLP internal network. The activation function, learning rate, optimizer, and number of epochs were among the hyperparameters of the MLP neural network that were tuned. A good MLP deep learning network model for determining the authenticity of monofloral honey, rape honey, was developed after constant validation and debugging. According to the accuracy curve of the MLP model, the accuracy of the training set increased with the number of epochs and eventually converged to 100 %, while the accuracy of the validation set could be well stabilized at about 100 % after 5000 epochs. Finally, the accuracy of the MLP model on the test set was close to 100 %. According to our findings, the MLP neural network and fluorescence intensity have great potential applications in identifying the authenticity of honey.
Collapse
Affiliation(s)
- Shengkang Ji
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Shengyu Hao
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China.
| | - Jie Yuan
- School of Life Sciences, Liaocheng University, Liaocheng 252059, China
| | - Hongzhuan Xuan
- School of Life Sciences, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|
2
|
Li W, Wang L, Qian Y, Wang M, Li F, Zeng M. True-solution-scale utilization of natural chlorophyll a in aqueous media through cooperative aggregation with phycocyanin. Food Chem 2024; 460:140678. [PMID: 39098190 DOI: 10.1016/j.foodchem.2024.140678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/13/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
The challenge of applying chlorophyll(Chl) in aqueous media has been a significant obstacle to the diversified development of Chl a-related industries. This study presents the first report on the true-solution-scale utilization of Chl in aqueous media through the construction of chlorophyll a-phycocyanin (Chls-PC) composite nanoparticles. This study determined the optimal conditions for Chls-PC preparation: a composite ratio of 1:25, a solvent ratio of 1:4, and a stirring time of 1 h. Fluorescence spectroscopy, transmission electron microscope, and confocal microscopy confirmed Chl a and PC aggregation. Surface hydrophobicity and contact angle measurements showed that Chls-PC water solubility was similar to PC and much higher than Chl. Infrared spectroscopy, quantum chemical calculations, X-ray photoelectron spectroscopy, and molecular dynamics simulations elucidated the water solubilization mechanism of Chls-PC both experimentally and theoretically. This research provides theoretical guidance for the development and production of water-based products using Chl as a raw material.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266400, People's Republic of China; Sanya Institute of Oceanography, Ocean University of China, Sanya 572000, People's Republic of China
| | - Lijuan Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266400, People's Republic of China; Sanya Institute of Oceanography, Ocean University of China, Sanya 572000, People's Republic of China
| | - Yuemiao Qian
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266400, People's Republic of China; Sanya Institute of Oceanography, Ocean University of China, Sanya 572000, People's Republic of China
| | - Mengwei Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266400, People's Republic of China
| | - Fangwei Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266400, People's Republic of China; Sanya Institute of Oceanography, Ocean University of China, Sanya 572000, People's Republic of China.
| | - Mingyong Zeng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266400, People's Republic of China; Sanya Institute of Oceanography, Ocean University of China, Sanya 572000, People's Republic of China.
| |
Collapse
|
3
|
Suhandy D, Al Riza DF, Yulia M, Kusumiyati K, Telaumbanua M, Naito H. Rapid Authentication of Intact Stingless Bee Honey (SBH) by Portable LED-Based Fluorescence Spectroscopy and Chemometrics. Foods 2024; 13:3648. [PMID: 39594063 PMCID: PMC11593938 DOI: 10.3390/foods13223648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Indonesian stingless bee honey (SBH) of Geniotrigona thoracica is popular and traded at an expensive price. Brown rice syrup (RS) is frequently used as a cheap adulterant for an economically motivated adulteration (EMA) in SBH. In this study, authentic Indonesian Geniotrigona thoracica SBH of Acacia mangium (n = 100), adulterated SBH (n = 120), fake SBH (n = 100), and RS (n = 200) were prepared. In short, 2 mL of each sample was dropped directly into an innovative sample holder without any sample preparation including no dilution. Fluorescence intensity was acquired using a fluorescence spectrometer. This portable instrument is equipped with a 365 nm LED lamp as the fixed excitation source. Principal component analysis (PCA) was calculated for the smoothed spectral data. The results showed that the authentic SBH and non-SBH (adulterated SBH, fake SBH, and RS) samples could be well separated using the smoothed spectral data. The cumulative percentage variance of the first two PCs, 98.4749% and 98.4425%, was obtained for calibration and validation, respectively. The highest prediction accuracy was 99.5% and was obtained using principal component analysis-linear discriminant analysis (PCA-LDA). The best partial least square (PLS) calibration was obtained using the combined interval with R2cal = 0.898 and R2val = 0.874 for calibration and validation, respectively. In the prediction, the developed model could predict the adulteration level in the adulterated honey samples with an acceptable ratio of prediction to deviation (RPD) = 2.282, and range error ratio (RER) = 6.612.
Collapse
Affiliation(s)
- Diding Suhandy
- Department of Agricultural Engineering, Faculty of Agriculture, The University of Lampung, Jl. Soemantri Brojonegoro No.1, Bandar Lampung 35145, Indonesia;
| | - Dimas Firmanda Al Riza
- Department of Biosystems Engineering, Faculty of Agricultural Technology, University of Brawijaya, Jl. Veteran, Malang 65145, Indonesia;
| | - Meinilwita Yulia
- Department of Agricultural Technology, Lampung State Polytechnic, Jl. Soekarno Hatta No. 10, Rajabasa, Bandar Lampung 35141, Indonesia;
| | - Kusumiyati Kusumiyati
- Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Mareli Telaumbanua
- Department of Agricultural Engineering, Faculty of Agriculture, The University of Lampung, Jl. Soemantri Brojonegoro No.1, Bandar Lampung 35145, Indonesia;
| | - Hirotaka Naito
- Graduate School of Bioresources, Department of Environmental Science and Technology, Mie University, 1577 Kurima-machiya-cho, Tsu 514-8507, Mie, Japan;
| |
Collapse
|
4
|
Wilczyńska A, Żak N. The Use of Fluorescence Spectrometry Combined with Statistical Tools to Determine the Botanical Origin of Honeys. Foods 2024; 13:3303. [PMID: 39456365 PMCID: PMC11507640 DOI: 10.3390/foods13203303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
At a time when the botanical origin of honey is being increasingly falsified, there is a need to find a quick, cheap and simple method of identifying its origin. Therefore, the aim of our work was to show that fluorescence spectrometry, together with statistical analysis, can be such a method. In total, 108 representative samples with 10 different botanic origins (9 unifloral and 1 multifloral), obtained in 2020-2022 from local apiaries, were analyzed. The fluorescence spectra of those samples were determined using a F-7000 Hitachi fluorescence spectrophotometer, Tokyo, Japan. It is shown that each honey variety produces a unique emission spectrum, which allows for the determination of its botanical origin. Taking into account the difficulties in analyzing these spectra, it was found that the most information regarding botanical differences and their identification is provided by synchronous cross-sections of these spectra obtained at Δλ = 100 nm. In addition, this analysis was supported by discriminant and canonical analysis, which allowed for the creation of mathematical models, allowing for the correct classification of each type of honey (except dandelion) with an accuracy of over 80%. The application of the method is universal (in accordance with the methodology described in this paper), but its use requires the creation of fluorescence spectral matrices (EEG) characteristic of a given geographical and botanical origin.
Collapse
Affiliation(s)
- Aleksandra Wilczyńska
- Department of Quality Management, Gdynia Maritime University, ul. Morska 81-87, 81-225 Gdynia, Poland;
| | | |
Collapse
|
5
|
Cheng H, Liu T, Tian J, An R, Shen Y, Liu M, Yao Z. A General Strategy for Food Traceability and Authentication Based on Assembly-Tunable Fluorescence Sensor Arrays. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309259. [PMID: 38760900 PMCID: PMC11267353 DOI: 10.1002/advs.202309259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/28/2024] [Indexed: 05/20/2024]
Abstract
Food traceability and authentication systems play an important role in ensuring food quality and safety. Current techniques mainly rely on direct measurement by instrumental analysis, which is usually designed for one or a group of specific foods, not available for various food categories. To develop a general strategy for food identification and discrimination, a novel method based on fluorescence sensor arrays is proposed, composed of supramolecular assemblies regulated by non-covalent interactions as an information conversion system. The stimuli-responsiveness and tunability of supramolecular assemblies provided an excellent platform for interacting with various molecules in different foods. In this work, five sensor arrays constructed by supramolecular assemblies composed of pyrene derivatives and perylene derivatives are designed and prepared. Assembly behavior and sensing mechanisms are investigated systematically by spectroscopy techniques. The traceability and authentication effects on several kinds of food from different origins or grades are evaluated and verified by linear discriminant analysis (LDA). It is confirmed that the cross-reactive signals from different sensor units encompassing all molecular interactions can generate a unique fingerprint pattern for each food and can be used for traceability and authentication toward universal food categories with 100% accuracy.
Collapse
Affiliation(s)
- He Cheng
- Beijing Laboratory of Food Quality and SafetyCollege of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijing100083China
| | - Tianyue Liu
- Beijing Laboratory of Food Quality and SafetyCollege of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijing100083China
| | - Jingsheng Tian
- Beijing Laboratory of Food Quality and SafetyCollege of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijing100083China
| | - Ruixuan An
- Beijing Laboratory of Food Quality and SafetyCollege of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijing100083China
| | - Yao Shen
- Beijing Laboratory of Food Quality and SafetyCollege of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijing100083China
| | - Mingxi Liu
- Beijing Laboratory of Food Quality and SafetyCollege of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijing100083China
| | - Zhiyi Yao
- Beijing Laboratory of Food Quality and SafetyCollege of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijing100083China
| |
Collapse
|
6
|
Zhong D, Kang L, Liu J, Li X, Zhou L, Huang L, Qiu Z. Development of sequential online extraction electrospray ionization mass spectrometry for accurate authentication of highly-similar Atractylodis Macrocephalae. Food Res Int 2024; 175:113681. [PMID: 38129026 DOI: 10.1016/j.foodres.2023.113681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023]
Abstract
The accurate and rapid authentication techniques and strategies for highly-similar foods are still lacking. Herein, a novel sequential online extraction electrospray ionization mass spectrometry (S-oEESI-MS) was developed to achieve spatio-temporally resolved ionization and comprehensive characterization of complex foods with multi-components (high, medium, and low polarity substances). Meanwhile, a characteristic marker screening method and an integrated research strategy based on MS fingerprinting, characteristic marker and chemometrics modeling were established, which are especially suitable for the accurate and rapid authentication of highly-similar foods that are difficult to be authenticated by traditional techniques (e.g., LC-MS). Thirty-two batches of highly-similar Atractylodis macrocephalae rhizome from four different origins were used as model samples. As a result, S-oEESI-MS enabled a more comprehensive MS characterization of substance profiles in complex plant samples in 1.0 min. Further, 22 characteristic markers of Atractylodis macrocephalae were ingeniously screened out and combined with multivariate statistical analysis model, the accurate authentication of highly-similar Atractylodis macrocephalae was realized. This study presents a comprehensive strategy for accurate authentication and origin analysis of highly-similar foods, which has potentially significant applications for ensuring food quality and safety.
Collapse
Affiliation(s)
- Dacai Zhong
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China; Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, College of Chemistry, Biology and Material Sciences, East China Institute of Technology, Nanchang 330013, PR China
| | - Liping Kang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Juan Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Xiang Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Li Zhou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China.
| | - Zidong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China.
| |
Collapse
|
7
|
Zhang XH, Gu HW, Liu RJ, Qing XD, Nie JF. A comprehensive review of the current trends and recent advancements on the authenticity of honey. Food Chem X 2023; 19:100850. [PMID: 37780275 PMCID: PMC10534224 DOI: 10.1016/j.fochx.2023.100850] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/15/2023] [Accepted: 08/26/2023] [Indexed: 10/03/2023] Open
Abstract
The authenticity of honey currently poses challenges to food quality control, thus requiring continuous modernization and improvement of related analytical methodologies. This review provides a comprehensively overview of honey authenticity challenges and related analytical methods. Firstly, direct and indirect methods of honey adulteration were described in detail, commenting the existing challenges in current detection methods and market supervision approaches. As an important part, the integrated metabolomic workflow involving sample processing procedures, instrumental analysis techniques, and chemometric tools in honey authenticity studies were discussed, with a focus on their advantages, disadvantages, and scopes. Among them, various improved microscale extraction methods, combined with hyphenated instrumental analysis techniques and chemometric data processing tools, have broad application potential in honey authenticity research. The future of honey authenticity determination will involve the use of simplified and portable methods, which will enable on-site rapid detection and transfer detection technologies from the laboratory to the industry.
Collapse
Affiliation(s)
- Xiao-Hua Zhang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, China
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang, China
| | - Hui-Wen Gu
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, China
| | - Ren-Jun Liu
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Xiang-Dong Qing
- Hunan Provincial Key Laboratory of Dark Tea and Jin-hua, College of Materials and Chemical Engineering, Hunan City University, Yiyang, China
| | - Jin-Fang Nie
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| |
Collapse
|
8
|
Hao S, Yuan J, Wu Q, Liu X, Cui J, Xuan H. Rapid Identification of Corn Sugar Syrup Adulteration in Wolfberry Honey Based on Fluorescence Spectroscopy Coupled with Chemometrics. Foods 2023; 12:2309. [PMID: 37372520 DOI: 10.3390/foods12122309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Honey adulteration has become a prominent issue in the honey market. Herein, we used the fluorescence spectroscopy combined with chemometrics to explore a simple, fast, and non-destructive method to detect wolfberry honey adulteration. The main parameters such as the maximum fluorescence intensity, peak positions, and fluorescence lifetime were analyzed and depicted with a principal component analysis (PCA). We demonstrated that the peak position of the wolfberry honey was relatively fixed at 342 nm compared with those of the multifloral honey. The fluorescence intensity decreased and the peak position redshifted with an increase in the syrup concentration (10-100%). The three-dimensional (3D) spectra and fluorescence lifetime fitting plots could obviously distinguish the honey from syrups. It was difficult to distinguish the wolfberry honey from another monofloral honey, acacia honey, using fluorescence spectra, but it could easily be distinguished when the fluorescence data were combined with a PCA. In all, fluorescence spectroscopy coupled with a PCA could easily distinguish wolfberry honey adulteration with syrups or other monofloral honeys. The method was simple, fast, and non-destructive, with a significant potential for the detection of honey adulteration.
Collapse
Affiliation(s)
- Shengyu Hao
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Jie Yuan
- School of Life Sciences, Liaocheng University, Liaocheng 252059, China
| | - Qian Wu
- School of Life Sciences, Liaocheng University, Liaocheng 252059, China
| | - Xinying Liu
- Animal Product Quality and Safety Center of Shandong Province, Jinan 250010, China
| | - Jichun Cui
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Hongzhuan Xuan
- School of Life Sciences, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
9
|
Ropciuc S, Dranca F, Pauliuc D, Oroian M. Honey authentication and adulteration detection using emission - excitation spectra combined with chemometrics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122459. [PMID: 36812751 DOI: 10.1016/j.saa.2023.122459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
The aim of this study was to evaluate the usefulness of emission-excitation matrices for honey authentication and adulteration detection. For this purpose, 4 types of authentic honeys (tilia, sunflower, acacia and rape) and samples adulterated with different adulteration agents (agave, maple, inverted sugar, corn and rice in different percentages - 5%, 10% and 20%) were analysed. Each honey type and each adulteration agent exhibit unique emission-excitation spectra that can be used for the classification according to the botanical origin and for the detection of adulteration. The principal component analysis clearly separated the rape, sunflower and acacia honeys. The partial least squares - discriminant analysis (PLS-DA) and support vector machines (SVM) were used in a binary mode to separate the authentic honeys from the adulterated ones, and the SVM proved to separate much better than PLS-DA.
Collapse
Affiliation(s)
- Sorina Ropciuc
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, Romania
| | - Florina Dranca
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, Romania
| | - Daniela Pauliuc
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, Romania
| | - Mircea Oroian
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, Romania.
| |
Collapse
|
10
|
García-Seval V, Saurina J, Sentellas S, Núñez O. Characterization and Classification of Spanish Honey by Non-Targeted LC-HRMS (Orbitrap) Fingerprinting and Multivariate Chemometric Methods. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238357. [PMID: 36500447 PMCID: PMC9740000 DOI: 10.3390/molecules27238357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022]
Abstract
A non-targeted LC-HRMS fingerprinting methodology based on a C18 reversed-phase mode under universal gradient elution using an Orbitrap mass analyzer was developed to characterize and classify Spanish honey samples. A simple sample treatment consisting of honey dissolution with water and a 1:1 dilution with methanol was proposed. A total of 136 honey samples belonging to different blossom and honeydew honeys from different botanical varieties produced in different Spanish geographical regions were analyzed. The obtained LC-HRMS fingerprints were employed as sample chemical descriptors for honey pattern recognition by principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA). The results demonstrated a superior honey classification and discrimination capability with respect to previous non-targeted HPLC-UV fingerprinting approaches, with them being able to discriminate and authenticate the honey samples according to their botanical origins. Overall, noteworthy cross-validation multiclass predictions were accomplished with sensitivity and specificity values higher than 96.2%, except for orange/lemon blossom (BL) and rosemary (RO) blossom-honeys. The proposed methodology was also able to classify and authenticate the climatic geographical production region of the analyzed honey samples, with cross-validation sensitivity and specificity values higher than 87.1% and classification errors below 10.5%.
Collapse
Affiliation(s)
- Víctor García-Seval
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain
- Research Institute in Food Nutrition and Food Safety, University of Barcelona, Recinte Torribera, Av. Prat de la Riba 171, Edifici de Recerca (Gaudí), Santa Coloma de Gramenet, E08921 Barcelona, Spain
| | - Sònia Sentellas
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain
- Research Institute in Food Nutrition and Food Safety, University of Barcelona, Recinte Torribera, Av. Prat de la Riba 171, Edifici de Recerca (Gaudí), Santa Coloma de Gramenet, E08921 Barcelona, Spain
- Serra Húnter Fellow, Generalitat de Catalunya, Via Laietana 2, E-08003 Barcelona, Spain
| | - Oscar Núñez
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain
- Research Institute in Food Nutrition and Food Safety, University of Barcelona, Recinte Torribera, Av. Prat de la Riba 171, Edifici de Recerca (Gaudí), Santa Coloma de Gramenet, E08921 Barcelona, Spain
- Serra Húnter Fellow, Generalitat de Catalunya, Via Laietana 2, E-08003 Barcelona, Spain
- Correspondence:
| |
Collapse
|
11
|
LC-HRMS-Based Non-Targeted Metabolomics for the Assessment of Honey Adulteration with Sugar Syrups: A Preliminary Study. Metabolites 2022; 12:metabo12100985. [PMID: 36295887 PMCID: PMC9607529 DOI: 10.3390/metabo12100985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/17/2022] Open
Abstract
Honey is a natural product that is in great demand and has a relatively high price, thus making it one of the most common targets of economically motivated adulteration. Its adulteration can be obtained by adding cheaper honey or sugar syrups or by overfeeding honeybees with sugar syrups. Adulteration techniques are constantly evolving and advanced techniques and instruments are required for its detection. We used non-targeted metabolomics to underscore potential markers of honey adulteration with sugar syrups. The metabolomic profiles of unadulterated honeys and sugar beet, corn and wheat syrups were obtained using hydrophilic interaction liquid chromatography high-resolution mass spectrometry (LC-HRMS). The potential markers have been selected after data processing. Fortified honey (5%, 10% and 20%), honey obtained from overfeeding, and 58 commercial honeys were analyzed. One potential marker appeared with a specific signal for syrups and not for honey. This targeted analysis showed a linear trend in fortified honeys with a calculated limit of quantification around 5% of fortification.
Collapse
|
12
|
Yan S, Sun M, Wang X, Shan J, Xue X. A Novel, Rapid Screening Technique for Sugar Syrup Adulteration in Honey Using Fluorescence Spectroscopy. Foods 2022; 11:foods11152316. [PMID: 35954081 PMCID: PMC9368237 DOI: 10.3390/foods11152316] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022] Open
Abstract
The adulteration of honey with different sugar syrups is common and difficult to detect. To ensure fair trade and protect the interests of apiarists, a rapid, simple and cost-effective detection method for adulterants in honey is needed. In this work, fluorescence emission spectra were obtained for honey and sugar syrups between 385 and 800 nm with excitation at 370 nm. We found substantial differences in the emission spectra between five types of honey and five sugar syrups and also found differences in their frequency doubled peak (FDP) intensity at 740 nm. The intensity of the FDP significantly declined (p < 0.01) when spiking honey with ≥10% sugar syrup. To validate this method, we tested 20 adulterant-positive honey samples and successfully identified 15 that were above the limit of detection. We propose that fluorescence spectroscopy could be broadly adopted as a cost-effective, rapid screening tool for sugar syrup adulteration of honey through characterization of emission spectra and the intensity of the FDP.
Collapse
Affiliation(s)
- Sha Yan
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China;
- Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (M.S.); (X.W.)
| | - Minghui Sun
- Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (M.S.); (X.W.)
| | - Xuan Wang
- Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (M.S.); (X.W.)
| | - Jihao Shan
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Xiaofeng Xue
- Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (M.S.); (X.W.)
- Correspondence:
| |
Collapse
|
13
|
The rapid detection of acacia honey adulteration by alternating current impedance spectroscopy combined with 1H NMR profile. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Lelis CA, Galvan D, Tessaro L, de Andrade JC, Mutz YS, Conte-Junior CA. Fluorescence spectroscopy in tandem with chemometric tools applied to milk quality control. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
15
|
Mekkaoui M, Assaggaf H, Qasem A, El-Shemi A, Abdallah EM, Bouidida EH, Naceiri Mrabti H, Cherrah Y, Alaoui K. Ethnopharmacological Survey and Comparative Study of the Healing Activity of Moroccan Thyme Honey and Its Mixture with Selected Essential Oils on Two Types of Wounds on Albino Rabbits. Foods 2021; 11:foods11010028. [PMID: 35010154 PMCID: PMC8750595 DOI: 10.3390/foods11010028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 01/18/2023] Open
Abstract
Wound healing consists of several continuous phases involving various cells and chemical intermediates. As a rich source of nutrition elements, honey has proved to have potential benefits in the treatment of various diseases. The present study was designed to investigate the healing effect of a honey mixture with selected essential oils on chemical and thermal wound models in rabbits. Dressing mixtures of Thymus vulgaris honey with three essential oils (Origanum vulgare, Rosmarinus officinalis, and Thymus vulgaris) were prepared and applied daily in the treatment groups. These essential oils were rich in phytochemicals and had significant antibacterial activity against four selected ATCC bacterial strains. Madecasol ointment was used as a standard control. The healing effect of the mixtures was evaluated by measuring wound surface area and comparing healing time. The results showed that the healing rate in the treatment groups was significantly higher than that of the untreated group and standard group. The best healing effect for burns was seen in the mixture of honey and Thymus vulgaris essential oil, which had wound closure rates of 85.21% and 82.14% in thermal- and chemical-induced burns, respectively, and showed the shortest healing time (14 days) in comparison to other groups. Therefore, it can be concluded that honey mixtures have significant beneficial effects on skin wound healing and, thus, they may be used as a healing agent in different types of wounds in humans after specific clinical trials.
Collapse
Affiliation(s)
- Mouna Mekkaoui
- Pharmacodynamics Research Team ERP, Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat BP 6203, Morocco;
- Correspondence: ; Tel.: +21-26-2202-3704
| | - Hamza Assaggaf
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (H.A.); (A.Q.); (A.E.-S.)
| | - Ahmed Qasem
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (H.A.); (A.Q.); (A.E.-S.)
| | - Adel El-Shemi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (H.A.); (A.Q.); (A.E.-S.)
| | - Emad M. Abdallah
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia;
| | | | - Hanae Naceiri Mrabti
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat BP 6203, Morocco;
| | - Yahya Cherrah
- Biopharmaceutical and Toxicological Analysis Research Team, Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat BP 6203, Morocco;
| | - Katim Alaoui
- Pharmacodynamics Research Team ERP, Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat BP 6203, Morocco;
| |
Collapse
|