1
|
Ye Z, Wang J, Gan S, Dong G, Yang F. Combination of fingerprint and chemometric analytical approaches to identify the geographical origin of Qinghai-Tibet plateau rapeseed oil. Heliyon 2024; 10:e27167. [PMID: 38444496 PMCID: PMC10912685 DOI: 10.1016/j.heliyon.2024.e27167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/13/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Verification of the geographical origin of rapeseed oil is essential to protect consumers from fraudulent products. A prospective study was conducted on 45 samples from three rapeseed oil-producing areas in Qinghai Province, which were analyzed by GC-FID and GC-MS. To assess the accuracy of the prediction of origin, classification models were developed using PCA, OPLS-DA, and LDA. It was found that multivariate analysis combined with PCA separate 96% of the samples, and the correct sample discrimination rate based on the OPLS-DA model was over 98%. The predictive index of the model was Q2 = 0.841, indicating that the model had good predictive ability. The LDA results showed highly accurate classification (100%) and cross-validation (100%) rates for the rapeseed oil samples, demonstrating that the model had strong predictive capacity. These findings will serve as a foundation for the implementation and advancement of origin traceability using the combination of fatty acid, phytosterol and tocopherol fingerprints.
Collapse
Affiliation(s)
- Ziqin Ye
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, PR China
| | - Jinying Wang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, PR China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, PR China
| | - Shengrui Gan
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, PR China
| | - Guoxin Dong
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, PR China
| | - Furong Yang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, PR China
| |
Collapse
|
2
|
Botella-Martínez C, Pérez-Álvarez JÁ, Sayas-Barberá E, Navarro Rodríguez de Vera C, Fernández-López J, Viuda-Martos M. Healthier Oils: A New Scope in the Development of Functional Meat and Dairy Products: A Review. Biomolecules 2023; 13:biom13050778. [PMID: 37238648 DOI: 10.3390/biom13050778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
In the present day, it has been widely established that a high intake of animal fat that contains a high content of saturated fatty acids may cause several life-threatening diseases, including obesity, diabetes-type 2, cardiovascular diseases, as well as several types of cancer. In this context, a great number of health organizations and government agencies have launched campaigns to reduce the saturated fat content in foods, which has prompted the food industry, which is no stranger to this problem, to start working to develop foods with a lower fat content or with a different fatty acid profile. Nevertheless, this is not an easy task due to the fact that saturated fat plays a very important role in food processing and in the sensorial perception of foods. Actually, the best way to replace saturated fat is with the use of structured vegetable or marine oils. The main strategies for structuring oils include pre-emulsification, microencapsulation, the development of gelled emulsions, and the development of oleogels. This review will examine the current literature on the different (i) healthier oils and (ii) strategies that will be potentially used by the food industry to reduce or replace the fat content in several food products.
Collapse
Affiliation(s)
- Carmen Botella-Martínez
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Spain
| | - José Ángel Pérez-Álvarez
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Spain
| | - Estrella Sayas-Barberá
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Spain
| | - Casilda Navarro Rodríguez de Vera
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Spain
| | - Juana Fernández-López
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Spain
| | - Manuel Viuda-Martos
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Spain
| |
Collapse
|
3
|
Hu Q, Zhang J, He L, Xing R, Yu N, Chen Y. New insight into the evolution of volatile profiles in four vegetable oils with different saturations during thermal processing by integrated volatolomics and lipidomics analysis. Food Chem 2023; 403:134342. [DOI: 10.1016/j.foodchem.2022.134342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/05/2022] [Accepted: 09/16/2022] [Indexed: 10/14/2022]
|
4
|
Effect of Different Extraction Methods on Quality Characteristics of Rapeseed and Flaxseed Oils. J FOOD QUALITY 2022. [DOI: 10.1155/2022/8296212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
This study reports the effect of roasted pretreatment combined with screw press, hydraulic press, and Soxhlet extraction methods on various quality indexes of rapeseed and flaxseed oils, including the oil yield, sensory indexes (color, smell, clarity, viscosity, and colligation score), physicochemical properties (acid value, peroxide value, saponification value, moisture and volatiles), major components (fatty acid composition and triglyceride composition), and minor components (volatile compounds, total phenols, and vitamin E contents). The results indicated that the oil yield, sensory indexes, physicochemical properties, fatty acid composition, volatile compounds, total phenol, and vitamin E contents in vegetable oils have been significantly affected by different extraction methods. The yields of rapeseed and flaxseed oils of Soxhlet extraction method were increased by 30.10%–73.90% and 6.30%–54.40%, respectively, compared with other treatment groups. In addition, roasted pretreatment significantly increased the yields of oils by 4.10%–25.00% and 6.70%–23.15%, respectively, compared with the untreated group. The contents of linolenic acid and vitamin E in rapeseed and flaxseed oils extracted from screw press method were higher. In particular, the linolenic acid content of cold-pressed rapeseed oil extracted by screw press increased by 1.50%–23.80% compared with other treatment groups. In addition, the contents of vitamin E in cold-pressed rapeseed oil and flaxseed oil obtained by screw press increased by 1.22%–78.91% and 3.00%–18.80%, respectively. The Soxhlet extraction could improve oil yield and total phenol content, but the quality of the oil was inferior due to high acid values (0.93–3.36 mg KOH/g) and peroxide values (0.70–5.23 meq O2/kg). Furthermore, the hydraulic press method could extract vegetable oils with excellent sensory scores. The roasted pretreatment gives the rapeseed and flaxseed oils a good smell. The major volatile compounds in rapeseed and flaxseed oils were aldehydes, acids, alcohols, heterocycles, and ketones. Different extraction methods and pretreatment had no significant effect on the compositions and contents of triglycerides. This study provides a basic understanding on the selection of appropriate oil extraction techniques for oil extraction at a large scale.
Collapse
|
5
|
Pan F, Yang E, Chen X, Li P, Wu X, Zhang M. Identification of Adulterated Evening Primrose Oil Based on GC‐MS and FT‐IR Combined with Chemometrics. EUR J LIPID SCI TECH 2022. [DOI: 10.1002/ejlt.202200066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fengguang Pan
- College of Food Science and Engineering Jilin University Changchun 130062 China
| | - Enqi Yang
- College of Food Science and Engineering Jilin University Changchun 130062 China
| | - Xianmao Chen
- College of Food Science and Engineering Jilin University Changchun 130062 China
| | - Peizhi Li
- College of Food Science and Engineering Jilin University Changchun 130062 China
| | - Xinling Wu
- College of Food Science and Engineering Jilin University Changchun 130062 China
| | - Mingdi Zhang
- College of Food Science and Engineering Jilin University Changchun 130062 China
| |
Collapse
|
6
|
Zhang C, Li N, Wang Z, Wang S, Wang Z, Fan X, Xu X, Zhou Y, Wang Y. Unsaturated fatty-acid based HPLC fingerprints in combination with quantitative analysis of multi-components by single-marker for the classification of Rana chensinensis ovum. NEW J CHEM 2022. [DOI: 10.1039/d2nj00379a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Comprehensive quality evaluation strategy was established for Rana chensinensis ovum based on analytical chemistry and chemometrics.
Collapse
Affiliation(s)
- Changli Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Nan Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Zhongyao Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Shihan Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Zhihan Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Xuanrui Fan
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Xinxin Xu
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yue Zhou
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yongsheng Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|