1
|
Tian Y, Chen Y, Huang R, Wang T, Wang S. Synergistic inhibition of Pseudomonas aeruginosa by EGCG and I3A: preliminary mechanisms and application in fish meat preservation. Int J Food Microbiol 2025; 436:111193. [PMID: 40239291 DOI: 10.1016/j.ijfoodmicro.2025.111193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/25/2025] [Accepted: 04/06/2025] [Indexed: 04/18/2025]
Abstract
Synergistic bacteriostatic action represents a potent strategy for combating microbial contamination in the food industry. This study investigated the synergistic bacteriostatic effect of epigallocatechin gallate (EGCG) and indole-3-carboxaldehyde (I3A). Results showed a pronounced synergistic action of EGCG and I3A against diverse food spoilage microorganisms, most notably Pseudomonas aeruginosa (P. aeruginosa), with a fractional inhibitory concentration index (FICI) of 0.25. Further research revealed that EGCG disrupted the cell wall and cell membrane of P. aeruginosa, while supplementing I3A significantly boosted the concentration of intracellular reactive oxygen species, thereby inflicting cellular damage. Moreover, the EGCG-I3A treatment inhibited the biofilm formation of P. aeruginosa in a dose-dependent manner, with the effectiveness increasing with the quantity of I3A added. Metabolomic study revealed a perturbation in glutathione and taurine metabolic pathways post synergistic treatment, compromising redox homeostasis. This synergistic treatment also downregulated uracil, proline, and glutamate metabolites, thereby suppressing Quorum Sensing (QS) and biofilm-associated expression within P. aeruginosa. Additionally, the combination significantly inhibited P. aeruginosa growth in fish meat. In essence, this study underscored the synergistic bacteriostatic efficacy of EGCG and I3A, highlighting its potential application in food preservation.
Collapse
Affiliation(s)
- Yongqi Tian
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China.
| | - Yuanyuan Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Ruyang Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Tao Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China.
| |
Collapse
|
2
|
Chen Y, Xie X, Zhou J, Dai L, Chu X, Liu P. An AHL-lactonase mutant featuring a unique "tri-His" motif exhibits enhanced activity, stability and effectively controls plant soft rot. Int J Biol Macromol 2025; 308:142543. [PMID: 40157672 DOI: 10.1016/j.ijbiomac.2025.142543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Quorum quenching through AHL-lactonase has been established as a critical approach for managing quorum sensing-mediated bacterial infections. While numerous studies have concentrated on enhancing the activity of AHL lactonases, concurrent improvements in both activity and stability have remained elusive. In this study, we adopted a hybrid strategy involving rational and semirational design to concurrently increase the activity and stability of the marine AHL-lactonase AhlX. The mutant M41 (E77I/D157G/T243Y/H255L) exhibited a significant increase in catalytic efficiency, with an 11-fold increase in kcat/Km, as well as a substantial increase in thermal stability, with a 12 °C increase in the melting temperature and a 0.6-fold longer half-life at 70 °C relative to those of wild-type AhlX. Structural insights from crystallographic analysis revealed a unique "tri-His" motif within the homohexamer that is pivotal for its stability. Removal of the "tri-His" motif from the homohexamer rendered the H158A mutant prone to thermal oligomer disassembly. Incorporation of the D157G mutation disrupted the D157-R122 salt bridge, stabilizing this motif. The T243Y and H255L mutations modify the active site conformation by reshaping surface interactions, enhancing both enzymatic activity and stability. Biocontrol experiments revealed that M41 was highly effective at suppressing potato soft rot caused by Pectobacterium carotovorum, primarily by inhibiting the swimming motility of the bacterium. This work not only deepens our understanding of the structure-activity relationships of AHL-lactonases but also lays a solid theoretical foundation for the engineering of these enzymes for biocontrol applications.
Collapse
Affiliation(s)
- Yan Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014; PR China
| | - Xingyi Xie
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014; PR China
| | - Junfei Zhou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014; PR China
| | - Lehao Dai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014; PR China
| | - Xiaohe Chu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014; PR China
| | - Pengfu Liu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014; PR China.
| |
Collapse
|
3
|
Chen X, Lan W, Xie J. Natural phenolic compounds: Antimicrobial properties, antimicrobial mechanisms, and potential utilization in the preservation of aquatic products. Food Chem 2024; 440:138198. [PMID: 38128429 DOI: 10.1016/j.foodchem.2023.138198] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/23/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Natural antibacterials have stood out in the last decade due to the growing demand for reducing chemical preservatives in food. In particular, natural phenolic compounds are secondary metabolites produced by plants for numerous functions including antimicrobial defence. Polyphenol has significant antimicrobial activity, but its antimicrobial properties are affected by the cell structure difference of bacteria, the concentration, type, and extraction method of polyphenol, and the treatment time of bacteria exposed to polyphenol. Therefore, this paper analyzed the antibacterial activity and mechanism of polyphenol as an antimicrobial agent. However, there remained significant considerations, including the interaction of polyphenols and food matrix, environmental temperature, and the effect of color and odor of some polyphenols on sensory properties of aquatic products, and the additive amount of polyphenols. On this basis, the application strategies of polyphenols as the antimicrobial agent in aquatic products preservation were reviewed.
Collapse
Affiliation(s)
- Xuening Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| |
Collapse
|
4
|
Omran BA, Tseng BS, Baek KH. Nanocomposites against Pseudomonas aeruginosa biofilms: Recent advances, challenges, and future prospects. Microbiol Res 2024; 282:127656. [PMID: 38432017 DOI: 10.1016/j.micres.2024.127656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/10/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that causes life-threatening and persistent infections in immunocompromised patients. It is the culprit behind a variety of hospital-acquired infections owing to its multiple tolerance mechanisms against antibiotics and disinfectants. Biofilms are sessile microbial aggregates that are formed as a result of the cooperation and competition between microbial cells encased in a self-produced matrix comprised of extracellular polymeric constituents that trigger surface adhesion and microbial aggregation. Bacteria in biofilms exhibit unique features that are quite different from planktonic bacteria, such as high resistance to antibacterial agents and host immunity. Biofilms of P. aeruginosa are difficult to eradicate due to intrinsic, acquired, and adaptive resistance mechanisms. Consequently, innovative approaches to combat biofilms are the focus of the current research. Nanocomposites, composed of two or more different types of nanoparticles, have diverse therapeutic applications owing to their unique physicochemical properties. They are emerging multifunctional nanoformulations that combine the desired features of the different elements to obtain the highest functionality. This review assesses the recent advances of nanocomposites, including metal-, metal oxide-, polymer-, carbon-, hydrogel/cryogel-, and metal organic framework-based nanocomposites for the eradication of P. aeruginosa biofilms. The characteristics and virulence mechanisms of P. aeruginosa biofilms, as well as their devastating impact and economic burden are discussed. Future research addressing the potential use of nanocomposites as innovative anti-biofilm agents is emphasized. Utilization of nanocomposites safely and effectively should be further strengthened to confirm the safety aspects of their application.
Collapse
Affiliation(s)
- Basma A Omran
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan 38541, Republic of Korea; Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), PO 11727, Nasr City, Cairo, Egypt
| | - Boo Shan Tseng
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA.
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
5
|
Xie LY, Xu YB, Ding XQ, Liang S, Li DL, Fu AK, Zhan XA. Itaconic acid and dimethyl itaconate exert antibacterial activity in carbon-enriched environments through the TCA cycle. Biomed Pharmacother 2023; 167:115487. [PMID: 37713987 DOI: 10.1016/j.biopha.2023.115487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
Itaconic acid (IA), a metabolite generated by the tricarboxylic acid (TCA) cycle in eukaryotic immune cells, and its derivative dimethyl itaconate (DI) exert antibacterial functions in intracellular environments. Previous studies suggested that IA and DI only inhibit bacterial growth in carbon-limited environments; however, whether IA and DI maintain antibacterial activity in carbon-enriched environments remains unknown. Here, IA and DI inhibited the bacteria with minimum inhibitory concentrations of 24.02 mM and 39.52 mM, respectively, in a carbon-enriched environment. The reduced bacterial pathogenicity was reflected in cell membrane integrity, motility, biofilm formation, AI-2/luxS, and virulence. Mechanistically, succinate dehydrogenase (SDH) activity and fumaric acid levels decreased in the IA and DI treatments, while isocitrate lyase (ICL) activity was upregulated. Inhibited TCA circulation was also observed through untargeted metabolomics. In addition, energy-related aspartate metabolism and lysine degradation were suppressed. In summary, these results indicated that IA and DI reduced bacterial pathogenicity while exerting antibacterial functions by inhibiting TCA circulation. This study enriches knowledge on the inhibition of bacteria by IA and DI in a carbon-mixed environment, suggesting an alternative method for treating bacterial infections by immune metabolites.
Collapse
Affiliation(s)
- L Y Xie
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Y B Xu
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - X Q Ding
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - S Liang
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - D L Li
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - A K Fu
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - X A Zhan
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Cui F, Wang Q, Liu J, Wang D, Li J, Li T. Effects of deletion of siderophore biosynthesis gene in Pseudomonas fragi on quorum sensing and spoilage ability. Int J Food Microbiol 2023; 396:110196. [PMID: 37031669 DOI: 10.1016/j.ijfoodmicro.2023.110196] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
Siderophores are important factors in the spoilage process of Pseudomonas fragi, considered to be one of the main spoilage bacterium of tuna, and the secretion of siderophores is regulated by quorum sensing (QS). This study aimed to construct a mutant with the deletion of the siderophore synthetase gene of P. fragi (MS-10), and to explore its effects on the growth, QS, and spoilage potential of P. fragi. The results showed that the deletion of the siderophore biosynthesis gene slowed down the growth rate of the strain. The apoptosis rate increased by 27.7 % compared with that of the wild-type strain at 4 °C for 48 h. Biofilm formation, extracellular protease expression, and signal molecule production were all significantly lower in the mutant strain compared with the wild-type strain. The total viable count and the histamine content showed that the tuna sterile fish block inoculated with the wild-type strain exceeded the acceptable standards by 5 days and was completely spoiled by 7 days, whereas the mutant strain exceeded the acceptable standards by 6 days and was completely spoiled by 9 days. The pH, texture, and other indicators showed that the variation range of the mutant strain was lower than that of the wild-type strain. The deletion of the siderophore biosynthesis gene reduced the spoilage ability of P. fragi. Based on the results, the development of novel preservation agents targeting the control of the siderophore biosynthesis gene could be a new idea for the preservation of aquatic products.
Collapse
|
7
|
Qian M, Ismail BB, He Q, Zhang X, Yang Z, Ding T, Ye X, Liu D, Guo M. Inhibitory mechanisms of promising antimicrobials from plant byproducts: A review. Compr Rev Food Sci Food Saf 2023; 22:2523-2590. [PMID: 37070214 DOI: 10.1111/1541-4337.13152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 04/19/2023]
Abstract
Plant byproducts and waste present enormous environmental challenges and an opportunity for valorization and industrial application. Due to consumer demands for natural compounds, the evident paucity of novel antimicrobial agents against foodborne pathogens, and the urgent need to improve the arsenal against infectious diseases and antimicrobial resistance (AMR), plant byproduct compounds have attracted significant research interest. Emerging research highlighted their promising antimicrobial activity, yet the inhibitory mechanisms remain largely unexplored. Therefore, this review summarizes the overall research on the antimicrobial activity and inhibitory mechanisms of plant byproduct compounds. A total of 315 natural antimicrobials from plant byproducts, totaling 1338 minimum inhibitory concentrations (MIC) (in μg/mL) against a broad spectrum of bacteria, were identified, and a particular emphasis was given to compounds with high or good antimicrobial activity (typically <100 μg/mL MIC). Moreover, the antimicrobial mechanisms, particularly against bacterial pathogens, were discussed in-depth, summarizing the latest research on using natural compounds to combat pathogenic microorganisms and AMR. Furthermore, safety concerns, relevant legislation, consumer perspective, and current gaps in the valorization of plant byproducts-derived compounds were comprehensively discussed. This comprehensive review covering up-to-date information on antimicrobial activity and mechanisms represents a powerful tool for screening and selecting the most promising plant byproduct compounds and sources for developing novel antimicrobial agents.
Collapse
Affiliation(s)
- Mengyan Qian
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Balarabe B Ismail
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Department of Food Science and Technology, Bayero University Kano, Kano, Nigeria
| | - Qiao He
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Xinhui Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Zhehao Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
8
|
Zammuto V, Spanò A, Agostino E, Macrì A, De Pasquale C, Ferlazzo G, Rizzo MG, Nicolò MS, Guglielmino S, Gugliandolo C. Anti-Bacterial Adhesion on Abiotic and Biotic Surfaces of the Exopolysaccharide from the Marine Bacillus licheniformis B3-15. Mar Drugs 2023; 21:md21050313. [PMID: 37233507 DOI: 10.3390/md21050313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/05/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
The eradication of bacterial biofilm represents a crucial strategy to prevent a clinical problem associated with microbial persistent infection. In this study we evaluated the ability of the exopolysaccharide (EPS) B3-15, produced by the marine Bacillus licheniformis B3-15, to prevent the adhesion and biofilm formation of Pseudomonas aeruginosa ATCC 27853 and Staphylococcus aureus ATCC 29213 on polystyrene and polyvinyl chloride surfaces. The EPS was added at different times (0, 2, 4 and 8 h), corresponding to the initial, reversible and irreversible attachment, and after the biofilm development (24 or 48 h). The EPS (300 µg/mL) impaired the initial phase, preventing bacterial adhesion even when added after 2 h of incubation, but had no effects on mature biofilms. Without exerting any antibiotic activity, the antibiofilm mechanisms of the EPS were related to the modification of the (i) abiotic surface properties, (ii) cell-surface charges and hydrophobicity, and iii) cell-to-cell aggregation. The addition of EPS downregulated the expression of genes (lecA and pslA of P. aeruginosa and clfA of S. aureus) involved in the bacterial adhesion. Moreover, the EPS reduced the adhesion of P. aeruginosa (five logs-scale) and S. aureus (one log) on human nasal epithelial cells. The EPS could represent a promising tool for the prevention of biofilm-related infections.
Collapse
Affiliation(s)
- Vincenzo Zammuto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
- Research Centre for Extreme Environments and Extremophiles, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Antonio Spanò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
- Research Centre for Extreme Environments and Extremophiles, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Eleonora Agostino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Angela Macrì
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Claudia De Pasquale
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy
| | - Guido Ferlazzo
- Department of Experimental Medicine (DIMES), University of Genoa and IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Maria Giovanna Rizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
- Research Centre for Extreme Environments and Extremophiles, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Marco Sebastiano Nicolò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
- Research Centre for Extreme Environments and Extremophiles, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Salvatore Guglielmino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
- Research Centre for Extreme Environments and Extremophiles, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Concetta Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
- Research Centre for Extreme Environments and Extremophiles, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
9
|
Zhang C, Xie Y, Qiu W, Mei J, Xie J. Antibacterial and Antibiofilm Efficacy and Mechanism of Ginger ( Zingiber officinale) Essential Oil against Shewanella putrefaciens. PLANTS (BASEL, SWITZERLAND) 2023; 12:1720. [PMID: 37111943 PMCID: PMC10140911 DOI: 10.3390/plants12081720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
Ginger (Zingiber officinale) has unique medicinal value and can be used to treat colds and cold-related diseases. The chemical composition and antibacterial activity of ginger essential oil (GEO) against Shewanella putrefaciens were determined in the present study. Zingiberene, α-curcumene, and zingerone were the main active compounds of GEO. GEO displayed significant antibacterial activity against S. putrefaciens, with a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 2.0 and 4.0 μL/mL, respectively. Changes in intracellular ATP content, nucleic acid and protein structure, exopolysaccharides (EPS) content, and extracellular protease production indicated that GEO disrupted the membrane integrity of S. putrescens. At the same time, changes in biofilm metabolic activity content and the growth curve of biofilm showed that GEO could destroy the biofilm. Both scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) observations confirmed that GEO destroyed the cell membrane and lead to the leakage of the constituents. The above results indicate that GEO entered the cells via contact with bacterial membranes, and then inhibited the growth of S. putrefaciens and its biofilms by increasing membrane permeability and inhibiting various virulence factors such as EPS. The findings showed that GEO could destroy the structure of cell membrane and biofilm of tested S. putrefaciens, indicating its potential as a natural food preservative.
Collapse
Affiliation(s)
- Chi Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yao Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Weiqiang Qiu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Aquatic Products High Quality Utilization, Storage and Transportation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Aquatic Products High Quality Utilization, Storage and Transportation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Aquatic Products High Quality Utilization, Storage and Transportation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| |
Collapse
|
10
|
Wang Z, Li X, Azi F, Dai Y, Xu Z, Yu L, Zhou J, Dong M, Xia X. Biosynthesis of ( S)-Equol from Soy Whey by Metabolically Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37038970 DOI: 10.1021/acs.jafc.3c00439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
(S)-Equol is one of the most bioactive metabolites of the isoflavones with immense nutritional and pharmaceutical value. Soy whey is the major liquid byproduct of the soy product processing industries that is rich in nutrients and (S)-equol biosynthetic precursor daidzin. However, it is usually disposed into the sewage, causing high environmental contamination. Herein, we constructed a recombinant Escherichia coli for the biosynthesis of (S)-equol from soy whey. First, we evaluated daidzin-specific transporters and optimized the anaerobically induced Pnar in the (S)-equol biosynthesis cassette to produce (S)-equol from daidzin. Then, sucrase and α-galactosidase were co-expressed to confer sucrose, stachyose, and raffinose utilization capacity on E. coli. Meanwhile, EIIBCAglc was inactivated to eliminate the daidzin transport inhibition induced by glucose. Finally, combining these strategies and optimizing the fermentation conditions, the optimal strain produced 91.5 mg/L of (S)-equol with a yield of 0.96 mol/mol substrates in concentrated soy whey. Overall, this new strategy is an attractive route to broaden the applications of soy whey and achieve the eco-friendly production of (S)-equol.
Collapse
Affiliation(s)
- Zhe Wang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaonan Li
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fidelis Azi
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Yiqiang Dai
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhuang Xu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lijun Yu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jianzhong Zhou
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiudong Xia
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| |
Collapse
|
11
|
Li J, Li Z, Xie J, Xia Y, Gong W, Tian J, Zhang K, Yu E, Wang G. Quorum-quenching potential of recombinant PvdQ-engineered bacteria for biofilm formation. INTERNATIONAL MICROBIOLOGY : THE OFFICIAL JOURNAL OF THE SPANISH SOCIETY FOR MICROBIOLOGY 2023:10.1007/s10123-023-00329-1. [PMID: 36773196 DOI: 10.1007/s10123-023-00329-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 02/12/2023]
Abstract
Quorum sensing (QS) is a core mechanism for bacteria to regulate biofilm formation, and therefore, QS inhibition or quorum quenching (QQ) is used as an effective and economically feasible strategy against biofilms. In this study, the PvdQ gene encoding AHL acylase was introduced into Escherichia coli (DE3), and a PvdQ-engineered bacterium with highly efficient QQ activity was obtained and used to inhibit biofilm formation. Gene sequencing and western blot analysis showed that the recombinant pET-PvdQ strain was successfully constructed. The color reaction of Agrobacterium tumefaciens A136 indicated that PvdQ engineering bacteria had shown strong AHL signal molecule quenching activity and significantly inhibited the adhesion (motility) of Pseudomonas aeruginosa and biofilm formation of activated sludge bacteria in Membrane Bio-Reactor (MBR; inhibition rate 51-85%, p < 0.05). In addition, qRT-PCR testing revealed that recombinant PvdQ acylase significantly reduced the transcription level of QS biofilm formation-related genes (cdrA, pqsA, and lasR; p < 0.05). In this study, QQ genetically engineered bacteria enhanced by genetic engineering could effectively inhibit the QS signal transduction mechanism and have the potential to control biofilm formation of pathogenic bacteria in the aquaculture environment, providing an environmentally friendly and alternative antibiotic strategy to suppress biofilm contamination.
Collapse
Affiliation(s)
- Junlin Li
- College of Fisheries and Life Science, Shanghai Ocean University, Nanhui New City, No.999, Huchenghuan Rd, Shanghai, People's Republic of China
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), No.1 Xingyu Road, Xilang, Guangzhou, Liwan District, 510380, People's Republic of China
- Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, 510380, China
| | - Zhifei Li
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), No.1 Xingyu Road, Xilang, Guangzhou, Liwan District, 510380, People's Republic of China
- Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, 510380, China
| | - Jun Xie
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), No.1 Xingyu Road, Xilang, Guangzhou, Liwan District, 510380, People's Republic of China.
- Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, 510380, China.
| | - Yun Xia
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), No.1 Xingyu Road, Xilang, Guangzhou, Liwan District, 510380, People's Republic of China
- Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, 510380, China
| | - Wangbao Gong
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), No.1 Xingyu Road, Xilang, Guangzhou, Liwan District, 510380, People's Republic of China
- Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, 510380, China
| | - Jingjing Tian
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), No.1 Xingyu Road, Xilang, Guangzhou, Liwan District, 510380, People's Republic of China
- Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, 510380, China
| | - Kai Zhang
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), No.1 Xingyu Road, Xilang, Guangzhou, Liwan District, 510380, People's Republic of China
- Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, 510380, China
| | - Ermeng Yu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), No.1 Xingyu Road, Xilang, Guangzhou, Liwan District, 510380, People's Republic of China
- Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, 510380, China
| | - Guangjun Wang
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), No.1 Xingyu Road, Xilang, Guangzhou, Liwan District, 510380, People's Republic of China
- Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, 510380, China
| |
Collapse
|
12
|
Song L, Yang H, Meng X, Su R, Cheng S, Wang H, Bai X, Guo D, Lü X, Xia X, Shi C. Inhibitory Effects of Trans-Cinnamaldehyde Against Pseudomonas aeruginosa Biofilm Formation. Foodborne Pathog Dis 2023; 20:47-58. [PMID: 36779942 DOI: 10.1089/fpd.2022.0073] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Pseudomonas aeruginosa biofilm formation has been considered to be an important determinant of its pathogenicity in most infections. The antibiofilm activity of trans-cinnamaldehyde (TC) against P. aeruginosa was investigated in this study. Results demonstrated that the minimum inhibitory concentration (MIC) of TC against P. aeruginosa was 0.8 mg/mL, and subinhibitory concentrations (SICs) was 0.2 mg/mL and below. Crystal violet staining showed that TC at 0.05-0.2 mg/mL reduced biofilm biomass in 48 h in a concentration-dependent mode. The formation area of TC-treated biofilms was significantly declined (p < 0.01) on the glass slides observed by light microscopy. Field-emission scanning electron microscopy further demonstrated that TC destroyed the biofilm morphology and structure. Confocal laser scanning microscopic observed the dispersion of biofilms and the reduction of exopolysaccharides after TC treatment stained with concanavalin A (Con-A)-fluorescein isothiocyanate conjugate and Hoechst 33258. Meanwhile, TC caused a significant decrease (p < 0.01) in the component of polysaccharides, proteins, and DNA in extracellular polymeric substance. The swimming and swarming motility and quorum sensing of P. aeruginosa was also found to be significantly inhibited (p < 0.01) by TC at SICs. Furthermore, SICs of TC repressed the several genes transcription associated with biofilm formation as determined by real-time quantitative polymerase chain reaction. Overall, our findings suggest that TC could be applied as natural and safe antibiofilm agent to inhibit the biofilm formation of P. aeruginosa.
Collapse
Affiliation(s)
- Luyi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Hui Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xinru Meng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Shuai Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Haoran Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiangyang Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaodong Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
13
|
Anti-virulence activity of dihydrocuminyl aldehyde and nisin against spoilage bacterium Pseudomonas aeruginosa XZ01. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
14
|
Chen H, Ji PC, Qi YH, Chen SJ, Wang CY, Yang YJ, Zhao XY, Zhou JW. Inactivation of Pseudomonas aeruginosa biofilms by thymoquinone in combination with nisin. Front Microbiol 2023; 13:1029412. [PMID: 36741886 PMCID: PMC9893119 DOI: 10.3389/fmicb.2022.1029412] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 12/14/2022] [Indexed: 01/20/2023] Open
Abstract
Pseudomonas aeruginosa is one of the most important foodborne pathogens that can persist in leafy green vegetables and subsequently produce biofilms. In this study, the synergistic effect of thymoquinone and nisin in reducing biofilm formation of P. aeruginosa on lettuce was evaluated, and their anti-virulence and anti-biofilm mechanisms were also investigated. At concentrations ranging from 0.5 to 2 mg/ml, thymoquinone inhibited the production of autoinducers and virulence factors, and enhanced the susceptibility of P. aeruginosa biofilms to nisin as evidenced by the scanning electron microscopy and confocal laser scanning microscopy. Integrated transcriptomics, metabolomics, and docking analyses indicated that thymoquinone treatment disrupted the quorum sensing (QS) system, altered cell membrane component, and down-regulated the expressions of genes related to virulence, efflux pump, and antioxidation. The changed membrane component and repressed efflux pump system enhanced membrane permeability and facilitated the entrance of nisin into cells, thus improving the susceptibility of biofilms to nisin. The dysfunctional QS and repressed antioxidant enzymes lead to the enhancement of oxidative stress. The enhanced oxidative stress disrupted energy metabolism and protein metabolism and ultimately attenuated the virulence and pathogenicity of P. aeruginosa PAO1. Our study indicated that thymoquinone has the potential to function as a QS-based agent to defend against foodborne pathogens in combination with nisin.
Collapse
Affiliation(s)
- Hong Chen
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, China
| | - Peng-Cheng Ji
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou, China
| | - Yue-Heng Qi
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, China
| | - Shi-Jin Chen
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, China
| | - Chang-Yao Wang
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou, China
| | - Yu-Jie Yang
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou, China
| | - Xin-Yu Zhao
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou, China
| | - Jin-Wei Zhou
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou, China,*Correspondence: Jin-Wei Zhou, ✉
| |
Collapse
|
15
|
Addo KA, Li L, Li H, Yu Y, Xiao X. Osmotic stress relief antibiotic tolerance of 1,8-cineole in biofilm persister cells of Escherichia coli O157:H7 and expression of toxin-antitoxin system genes. Microb Pathog 2022; 173:105883. [DOI: 10.1016/j.micpath.2022.105883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
|
16
|
Soy Isoflavones Protect Neuronal PC12 Cells against Hypoxic Damage through Nrf2 Activation and Suppression of p38 MAPK and AKT-mTOR Pathways. Antioxidants (Basel) 2022; 11:antiox11102037. [PMID: 36290760 PMCID: PMC9598610 DOI: 10.3390/antiox11102037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/02/2022] [Accepted: 10/12/2022] [Indexed: 11/25/2022] Open
Abstract
Isoflavones are a class of major phenolic compounds, derived from soybeans, that possess unique therapeutic and biological properties. The possible mechanisms of isoflavone-mediated protection of neuronal PC12 cells against hypoxic damage was investigated in this study. Isoflavones showed potential neuroprotective effects by increasing cell viability, decreasing the level of reactive oxygen species (ROS), and inhibiting apoptosis and cell cycle arrest in cobalt chloride (CoCl2)-induced hypoxic damage. A Western blot analysis indicated that isoflavones decreased apoptosis by up-regulating the Bcl-xL protein and down-regulating the Bax protein. They further reduced the S-phase fraction of the cell cycle by down-regulating the p21 protein and up-regulating the cyclin A protein levels. Additionally, isoflavones activated Nrf2 protein translocation and inhibited the p38 MAPK and AKT–mTOR pathways. A molecular docking analysis further revealed that isoflavones displayed a potential competitive interaction with the Nrf2 protein for Keap1. Our findings suggest that isoflavones could be a potent neuroprotective phytochemical in soybeans and their products.
Collapse
|
17
|
Uddin Mahamud AGMS, Nahar S, Ashrafudoulla M, Park SH, Ha SD. Insights into antibiofilm mechanisms of phytochemicals: Prospects in the food industry. Crit Rev Food Sci Nutr 2022; 64:1736-1763. [PMID: 36066482 DOI: 10.1080/10408398.2022.2119201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The recalcitrance of microbial aggregation or biofilm in the food industry underpins the emerging antimicrobial resistance among foodborne pathogens, exacerbating the phenomena of food spoilage, processing and safety management failure, and the prevalence of foodborne illnesses. The challenges of growing tolerance to current chemical and disinfectant-based antibiofilm strategies have driven the urgency in finding a less vulnerable to bacterial resistance, effective alternative antibiofilm agent. To address these issues, various novel strategies are suggested in current days to combat bacterial biofilm. Among the innovative approaches, phytochemicals have already demonstrated their excellent performance in preventing biofilm formation and bactericidal actions against resident bacteria within biofilms. However, the diverse group of phytochemicals and their different modes of action become a barrier to applying them against specific pathogenic biofilm-formers. This phenomenon mandates the need to elucidate the multi-mechanistic actions of phytochemicals to design an effective novel antibiofilm strategy. Therefore, this review critically illustrates the structure - activity relationship, functional sites of actions, and target molecules of diverse phytochemicals regarding multiple major antibiofilm mechanisms and reversal mechanisms of antimicrobial resistance. The implementation of the in-depth knowledge will hopefully aid future studies for developing phytochemical-based next-generation antimicrobials.
Collapse
Affiliation(s)
- A G M Sofi Uddin Mahamud
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Shamsun Nahar
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Md Ashrafudoulla
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Sang-Do Ha
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
18
|
The Molecular Architecture of Pseudomonas aeruginosa Quorum-Sensing Inhibitors. Mar Drugs 2022; 20:md20080488. [PMID: 36005489 PMCID: PMC9409833 DOI: 10.3390/md20080488] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
The survival selection pressure caused by antibiotic-mediated bactericidal and bacteriostatic activity is one of the important inducements for bacteria to develop drug resistance. Bacteria gain drug resistance through spontaneous mutation so as to achieve the goals of survival and reproduction. Quorum sensing (QS) is an intercellular communication system based on cell density that can regulate bacterial virulence and biofilm formation. The secretion of more than 30 virulence factors of P. aeruginosa is controlled by QS, and the formation and diffusion of biofilm is an important mechanism causing the multidrug resistance of P. aeruginosa, which is also closely related to the QS system. There are three main QS systems in P. aeruginosa: las system, rhl system, and pqs system. Quorum-sensing inhibitors (QSIs) can reduce the toxicity of bacteria without affecting the growth and enhance the sensitivity of bacterial biofilms to antibiotic treatment. These characteristics make QSIs a popular topic for research and development in the field of anti-infection. This paper reviews the research progress of the P. aeruginosa quorum-sensing system and QSIs, targeting three QS systems, which will provide help for the future research and development of novel quorum-sensing inhibitors.
Collapse
|
19
|
Yufang L, Shijun L, Kun Y, Rongxiang G, Xin Z, Yanan S, Aixiang H. Antibiofilm mechanism of a novel milk-derived antimicrobial peptide against Staphylococcus aureus by down regulating agr quorum sensing system. J Appl Microbiol 2022; 133:2198-2209. [PMID: 35661493 DOI: 10.1111/jam.15653] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/12/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
AIMS Staphylococcus aureus has emerged as a serious threat to food safety owing to biofilm formation. The study aimed to examine antibiofilm mechanism of a novel milk-derived antimicrobial peptide BCp12 against it. METHODS AND RESULTS Anti-biofilm activity of BCp12 was studied by crystal violet staining, MTT assay, motility, SEM and CLSM. TMT proteome, real-time PCR, and molecular docking in silico were conducted to evaluate the mechanism of BCp12 against S. aureus biofilm. The results showed that BCp12 had significant anti-biofilm activity at 1×MIC and sub-MIC. BCp12 induced the dispersion of structure of S. aureus biofilm BCp12 inhibited the movement of S. aureus. A total of 703 proteins were down-regulated and 334 proteins were up-regulated after BCp12 treatment. The proteins (agrA, agrB, agrC, and psmβ) of the QS systems were down-regulated. Additionally, the expression of the agr-related genes, agrA, agrB, agrC, and psmβ were down-regulated. BCp12 was bound to the receptor proteins agrA and agrC through hydrogen bonds and π-π bonds. CONCLUSIONS The results indicated the antibiofilm activity of BCp12 and it inhibiting biofilm formation by interfering agr QS system. SIGNIFICANCE AND IMPACT OF STUDY BCp12 has the potential to be a novel anti-biofilm agent against S. aureus biofilm and used in the food industry.
Collapse
Affiliation(s)
- Li Yufang
- College of Food Science and Technology, Yunnan Agricultural University, Yunnan 650201, P. R. China
| | - Li Shijun
- College of Food Science and Technology, Yunnan Agricultural University, Yunnan 650201, P. R. China
| | - Yang Kun
- College of Food Science and Technology, Yunnan Agricultural University, Yunnan 650201, P. R. China
| | - Guo Rongxiang
- College of Food Science and Technology, Yunnan Agricultural University, Yunnan 650201, P. R. China
| | - Zhu Xin
- College of Food Science and Technology, Yunnan Agricultural University, Yunnan 650201, P. R. China
| | - Shi Yanan
- College of Food Science and Technology, Yunnan Agricultural University, Yunnan 650201, P. R. China
| | - Huang Aixiang
- College of Food Science and Technology, Yunnan Agricultural University, Yunnan 650201, P. R. China
| |
Collapse
|