1
|
Nwankwo JA, Liu W, Guo X, Lin Y, Hussain M, Khan I, Joshua M, Ibrahim AN, Ngozi OJ, Ali A, Zou X. Microemulsion gel systems: Formulation, stability studies, biopolymer interactions, and functionality in food product development. Compr Rev Food Sci Food Saf 2025; 24:e70110. [PMID: 39898912 DOI: 10.1111/1541-4337.70110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/15/2024] [Accepted: 12/27/2024] [Indexed: 02/04/2025]
Abstract
Microemulsion gels (MGs) are nanostructured systems created by the addition of thickening agents/biopolymers to a microemulsion's aqueous or oily phases, offering benefits like improved solubilization, enhanced stability, high encapsulation efficiency, and sustained release with versatile applications in food, pharmaceuticals, and cosmetology. MGs are intricate systems with thermodynamic robustness and controllable rheological characteristics crucial for obtaining high structural integrity and achieving innovative results regarding food product development in diverse areas of food, including colloidal carriers, food packaging, active compound delivery, antimicrobial vectors, and production of biopolymer nanoparticles. Therefore, a comprehensive analysis, hence understanding about MG systems, is needed to identify trends and gaps, helping researchers to identify promising areas for innovation and providing direction for future research. This review offers a comprehensive analysis of MG systems, their characteristics, formulation, formation mechanisms, design approaches, digestion dynamics, and rheological properties. MGs excel in solubilizing hydrophilic and lipophilic bioactives due to their enhanced viscosity and interconnected droplet network within the gel matrix. Despite their advantages, challenges, such as formulation complexity, require further understanding. This article also explores innovative biopolymers, characterization, and extensive applications, while addressing case studies, and emerging trends leveraging the potential of MG systems for enhancing food stability, functionality, and nutritional value.
Collapse
Affiliation(s)
- Janice Adaeze Nwankwo
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenxue Liu
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiusheng Guo
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yunzhuoya Lin
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Mudassar Hussain
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Imad Khan
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Magezi Joshua
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microbiology and Metabolic Engineering, Jiangnan University, Wuxi, Jiangsu, China
| | - Ajibola Nihmot Ibrahim
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Okafor Jennifer Ngozi
- Faculty of Agriculture and Biotechnology, Department of Food Science and Technology, Nnamdi Azikiwe University, Awka, Nigeria
| | - Ahmad Ali
- School of Biological Engineering, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Xiaoqiang Zou
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
3
|
Merlin JPJ, Li X. Role of Nanotechnology and Their Perspectives in the Treatment of Kidney Diseases. Front Genet 2022; 12:817974. [PMID: 35069707 PMCID: PMC8766413 DOI: 10.3389/fgene.2021.817974] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles (NPs) are differing in particle size, charge, shape, and compatibility of targeting ligands, which are linked to improved pharmacologic characteristics, targetability, and bioavailability. Researchers are now tasked with developing a solution for enhanced renal treatment that is free of side effects and delivers the medicine to the active spot. A growing number of nano-based medication delivery devices are being used to treat renal disorders. Kidney disease management and treatment are currently causing a substantial global burden. Renal problems are multistep processes involving the accumulation of a wide range of molecular and genetic alterations that have been related to a variety of kidney diseases. Renal filtration is a key channel for drug elimination in the kidney, as well as a burgeoning topic of nanomedicine. Although the use of nanotechnology in the treatment of renal illnesses is still in its early phases, it offers a lot of potentials. In this review, we summarized the properties of the kidney and characteristics of drug delivery systems, which affect a drug’s ability should focus on the kidney and highlight the possibilities, problems, and opportunities.
Collapse
Affiliation(s)
- J P Jose Merlin
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
4
|
Tan Y, Li R, Liu C, Muriel Mundo J, Zhou H, Liu J, McClements DJ. Chitosan reduces vitamin D bioaccessibility in food emulsions by binding to mixed micelles. Food Funct 2020; 11:187-199. [PMID: 31833516 DOI: 10.1039/c9fo02164g] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Consumption of sufficiently high quantities of dietary fibers has been linked to a range of health benefits. Recent research, however, has shown that some dietary fibers interfere with lipid digestion, which may reduce the bioavailability of oil-soluble vitamins and nutraceuticals. For this reason, we examined the impact of a cationic polysaccharide (chitosan) on the bioaccessibility of vitamin D using the standardized INFOGEST in vitro digestion model. The vitamin D was encapsulated within an emulsion-based delivery system that contained whey protein-coated corn oil droplets. Our results showed that chitosan promoted severe droplet flocculation in the small intestine and reduced the amount of free fatty acids detected using a pH-stat method. However, a back-titration of the digested sample showed that the lipids were fully digested at all chitosan levels used (0.1-0.5%), suggesting that chitosan may have bound some of the free fatty acids released during lipid digestion. The presence of the chitosan decreased the bioaccessibility of vitamin D by about 37%, but this effect did not depend strongly on chitosan concentration (0.1-0.5%). It was hypothesized that chitosan bound to the vitamin-loaded mixed micelles and promoted their precipitation. The knowledge gained in this study might provide useful insights in designing emulsion-based delivery systems with high vitamin bioaccessibility.
Collapse
Affiliation(s)
- Yunbing Tan
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | | | | | | | | | | | | |
Collapse
|
5
|
Tan Y, Li R, Zhou H, Liu J, Muriel Mundo J, Zhang R, McClements DJ. Impact of calcium levels on lipid digestion and nutraceutical bioaccessibility in nanoemulsion delivery systems studied using standardized INFOGEST digestion protocol. Food Funct 2020; 11:174-186. [DOI: 10.1039/c9fo01669d] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The bioaccessibility of hydrophobic bioactives may be greatly reduced in the presence of calcium.
Collapse
Affiliation(s)
- Yunbing Tan
- Department of Food Science
- University of Massachusetts Amherst
- Amherst
- USA
| | - Ruyi Li
- State Key Laboratory of Food Science and Technology
- Nanchang University
- 8 Nanchang
- PR China
| | - Hualu Zhou
- Department of Food Science
- University of Massachusetts Amherst
- Amherst
- USA
| | - Jinning Liu
- Department of Food Science
- University of Massachusetts Amherst
- Amherst
- USA
| | | | - Ruojie Zhang
- Department of Food Science
- University of Massachusetts Amherst
- Amherst
- USA
| | | |
Collapse
|
8
|
Gharibzahedi SMT, George S, Greiner R, Estevinho BN, Frutos Fernández MJ, McClements DJ, Roohinejad S. New Trends in the Microencapsulation of Functional Fatty Acid-Rich Oils Using Transglutaminase Catalyzed Crosslinking. Compr Rev Food Sci Food Saf 2018; 17:274-289. [DOI: 10.1111/1541-4337.12324] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/31/2022]
Affiliation(s)
| | - Saji George
- Dept. of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, Macdonald Campus; McGill Univ.; Ste-Anne de Bellevue Quebec Canada
| | - Ralf Greiner
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Inst.; Federal Research Inst. of Nutrition and Food; Haid-und-Neu-Straße 9 76131 Karlsruhe Germany
| | - Berta N. Estevinho
- LEPABE, Dept. de Engenharia Química; Faculdade de Engenharia da Univ. do Porto; Rua Dr. Roberto Frias 4200-465 Porto Portugal
| | | | | | - Shahin Roohinejad
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Inst.; Federal Research Inst. of Nutrition and Food; Haid-und-Neu-Straße 9 76131 Karlsruhe Germany
- Burn and Wound Healing Research Center, Div. of Food and Nutrition; Shiraz Univ. of Medical Sciences; Shiraz Iran
| |
Collapse
|
9
|
McClements DJ. Designing biopolymer microgels to encapsulate, protect and deliver bioactive components: Physicochemical aspects. Adv Colloid Interface Sci 2017; 240:31-59. [PMID: 28034309 DOI: 10.1016/j.cis.2016.12.005] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 12/12/2022]
Abstract
Biopolymer microgels have considerable potential for their ability to encapsulate, protect, and release bioactive components. Biopolymer microgels are small particles (typically 100nm to 1000μm) whose interior consists of a three-dimensional network of cross-linked biopolymer molecules that traps a considerable amount of solvent. This type of particle is also sometimes referred to as a nanogel, hydrogel bead, biopolymer particles, or microsphere. Biopolymer microgels are typically prepared using a two-step process involving particle formation and particle gelation. This article reviews the major constituents and fabrication methods that can be used to prepare microgels, highlighting their advantages and disadvantages. It then provides an overview of the most important characteristics of microgel particles (such as size, shape, structure, composition, and electrical properties), and describes how these parameters can be manipulated to control the physicochemical properties and functional attributes of microgel suspensions (such as appearance, stability, rheology, and release profiles). Finally, recent examples of the utilization of biopolymer microgels to encapsulate, protect, or release bioactive agents, such as pharmaceuticals, nutraceuticals, enzymes, flavors, and probiotics is given.
Collapse
|