1
|
Zheng L, Chang Q, Chen X, Ding X, Xi C. Phase behavior and interaction of strong polyelectrolyte dextran sulfate and whey protein isolation: Effects of pH, protein/polysaccharide ratio, and salt addition. Food Chem 2025; 464:141815. [PMID: 39481152 DOI: 10.1016/j.foodchem.2024.141815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
The strong polyelectrolyte dextran sulfate (DS) is an anionic polysaccharide with a high negative charge, characterized by high stability and pH independence. DS and whey protein isolate (WPI) were selected to study the specific effects of highly negatively charged polysaccharides on the phase behavior and interaction of WPI/DS complexes (1 % w/v) under varying external conditions (pH, WPI:DS ratio, and salt addition). The phase diagrams, zeta potential, and laser confocal scanning microscopy measurements indicated that the WPI/DS complexes did not dissociate even at pH 1 due to the pH independence of DS. The exclusion volume effect of DS promoted WPI self-aggregation at high salt concentrations, which inhibited acidification-induced dissociation. Isothermal titration calorimetry indicated that the WPI/DS interaction is a spontaneous exothermic reaction driven by both enthalpy and entropy changes due to electrostatic interactions. This study provides valuable information on the interactions between highly negatively charged polysaccharides and proteins.
Collapse
Affiliation(s)
- Liyuan Zheng
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Qiushuo Chang
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Xing Chen
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Xuan Ding
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Chunyu Xi
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
2
|
Zhang D, Chen D, Campanella OH. The Effect of CaCl 2 on the Gelling Properties of Pea Protein-Pectin Dispersions. Gels 2024; 11:18. [PMID: 39851989 PMCID: PMC11765083 DOI: 10.3390/gels11010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025] Open
Abstract
The effects of CaCl2 addition before (PreCa) or after (PostCa) heating pea protein-pectin dispersions on the formed gel's rheological and microstructural properties were investigated. Isothermal titration calorimetry (ITC) revealed that CaCl2 bound both pea proteins and pectins through a spontaneous exothermic reaction and pectin exhibited a stronger binding affinity to CaCl2. In PreCa gels, low levels of CaCl2 (5 and 10 mM) increased the gel elasticity (increase in the storage modulus, G') and their microstructural compactness. However, higher CaCl2 levels (15 and 25 mM) decreased gels' elasticity, likely due to diminished hydrogen bonds formed in the cooling stage, resulting in gels with larger voids and fewer interconnections between the protein and pectin phases. In PostCa gels, their elasticity increased with the CaCl2 content, a rheological change associated with the formation of denser microstructures. The addition of 25 mM CaCl2 decreased β-sheet and increased α-helix and random coil structures. Hydrogen bonding and electrostatic and hydrophobic interactions contributed to gel formation and stability in both PreCa and PostCa gels, whereas disulfide bonds had negligible effects. This study highlights the role of CaCl2 in modulating pea protein-pectin gels' properties and microstructures for the development of gel-like foods with diverse textures and mouthfeels.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Rd., Columbus, OH 43210, USA;
| | - Da Chen
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA;
| | - Osvaldo H. Campanella
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Rd., Columbus, OH 43210, USA;
| |
Collapse
|
3
|
Pan F, Wu X, Gong L, Xu H, Yuan Y, Lu J, Zhang T, Liu J, Shang X. Dextran sulfate acting as a chaperone-like component on inhibition of amorphous aggregation and enhancing thermal stability of ovotransferrin. Food Chem 2024; 445:138720. [PMID: 38359570 DOI: 10.1016/j.foodchem.2024.138720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
The tendency of ovotransferrin (OVT) to unfold and aggregate under 60 °C severely restricted sterilization temperature during egg processing. Searching for efficient strategies to improve OVT thermal stability is essential for improving egg product quality and processing suitability. Here, we investigated the effect of sulfate polysaccharide (dextran sulfate, DS) on heat-induced aggregation of OVT. We found that DS can effectively suppress amorphous aggregation of OVT at pH 7.0 after heating. Strikingly, the addition of 5 µM DS fully suppressed insoluble aggregates formation of 0.5 mg/mL OVT. Structure analysis confirmed that DS preserves nearly the entire secondary and tertiary structure of OVT during heating. The steric hindrance effect arising from strong electrostatic interactions between OVT and DS, coupled with reduced OVT hydrophobicity, is the underlying mechanism in suppressing protein-protein interactions, thus enhancing thermal stability. These findings suggest DS could act as protein stabilizers and chaperones, enhancing the thermostability of heat-sensitive proteins.
Collapse
Affiliation(s)
- Fengguang Pan
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, PR China; College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Xinling Wu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, PR China; College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Lingling Gong
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, PR China; College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Haojie Xu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, PR China; College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Yixin Yuan
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, PR China; College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Jinming Lu
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, PR China; College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, PR China; College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, PR China; College of Food Science and Engineering, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
4
|
Roy PS. Complex Coacervate-Based Materials for Biomedicine: Recent Advancements and Future Prospects. Ind Eng Chem Res 2024; 63:5414-5487. [DOI: 10.1021/acs.iecr.3c03830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Partha Sarathi Roy
- Division of Pharmaceutical Sciences, Health Sciences Building, University of Missouri─Kansas City, 2464 Charlotte St., Kansas City, Missouri 64108-2718, United States
- Department of Pharmaceutics/Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, 751 Brookside Rd., Stockton, California 95211, United States
| |
Collapse
|
5
|
Liu F, McClements DJ, Ma C, Liu X. Novel Colloidal Food Ingredients: Protein Complexes and Conjugates. Annu Rev Food Sci Technol 2023; 14:35-61. [PMID: 36972160 DOI: 10.1146/annurev-food-060721-023522] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Food proteins, polysaccharides, and polyphenols are natural ingredients with different functional attributes. For instance, many proteins are good emulsifiers and gelling agents, many polysaccharides are good thickening and stabilizing agents, and many polyphenols are good antioxidants and antimicrobials. These three kinds of ingredients can be combined into protein, polysaccharide, and/or polyphenol conjugates or complexes using covalent or noncovalent interactions to create novel multifunctional colloidal ingredients with new or improved properties. In this review, the formation, functionality, and potential applications of protein conjugates and complexes are discussed. In particular, the utilization of these colloidal ingredients to stabilize emulsions, control lipid digestion, encapsulate bioactive ingredients, modify textures, and form films is highlighted. Finally, future research needs in this area are briefly proposed. The rational design of protein complexes and conjugates may lead to the development of new functional ingredients that can be used to create more nutritious, sustainable, and healthy foods.
Collapse
Affiliation(s)
- Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China; ,
| | | | - Cuicui Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China; ,
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China; ,
| |
Collapse
|
6
|
Soy Protein Isolate/Sodium Alginate Microparticles under Different pH Conditions: Formation Mechanism and Physicochemical Properties. Foods 2022; 11:foods11060790. [PMID: 35327213 PMCID: PMC8947744 DOI: 10.3390/foods11060790] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/26/2022] [Accepted: 03/07/2022] [Indexed: 12/04/2022] Open
Abstract
The effects of sodium alginate (SA) and pH value on the formation, structural properties, microscopic morphology, and physicochemical properties of soybean protein isolate (SPI)/SA microparticles were investigated. The results of ζ-potential and free sulfhydryl (SH) content showed electrostatic interactions between SPI and SA, which promoted the conversion of free SH into disulfide bonds within the protein. The surface hydrophobicity, fluorescence spectra, and Fourier transform infrared spectroscopy data suggested that the secondary structure and microenvironment of the internal hydrophobic groups of the protein in the SPI/SA microparticles were changed. Compared with SPI microparticles, the surface of SPI/SA microparticles was smoother, the degree of collapse was reduced, and the thermal stability was improved. In addition, under the condition of pH 9.0, the average particle size of SPI/SA microparticles was only 15.92 ± 0.66 μm, and the distribution was uniform. Rheological tests indicated that SA significantly increased the apparent viscosity of SPI/SA microparticles at pH 9.0. The maximum protein solubility (67.32%), foaming ability (91.53 ± 1.12%), and emulsion activity (200.29 ± 3.38 m2/g) of SPI/SA microparticles occurred at pH 9.0. The application of SPI/SA microparticles as ingredients in high-protein foods is expected to be of great significance in the food industry.
Collapse
|
7
|
Effect of sodium chloride on formation and structure of whey protein isolate/hyaluronic acid complex and its ability to loading curcumin. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Liu J, Chai J, Zhang T, Yuan Y, Saini RK, Xu M, Li S, Shang X. Phase behavior, thermodynamic and rheological properties of ovalbumin/dextran sulfate: Effect of biopolymer ratio and salt concentration. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106777] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
9
|
|
10
|
Li M, McClements DJ, Liu X, Liu F. Design principles of oil‐in‐water emulsions with functionalized interfaces: Mixed, multilayer, and covalent complex structures. Compr Rev Food Sci Food Saf 2020; 19:3159-3190. [DOI: 10.1111/1541-4337.12622] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Moting Li
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi China
| | | | - Xuebo Liu
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi China
| | - Fuguo Liu
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi China
| |
Collapse
|
11
|
Characterizations of a pectin extracted from Premna microphylla turcz and its cold gelation with whey protein concentrate at different pHs. Int J Biol Macromol 2019; 139:818-826. [DOI: 10.1016/j.ijbiomac.2019.08.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/31/2019] [Accepted: 08/07/2019] [Indexed: 12/16/2022]
|
12
|
Wei X, Li J, Li B. Multiple steps and critical behaviors of the binding of tannic acid to wheat starch: Effect of the concentration of wheat starch and the mass ratio of tannic acid to wheat starch. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Recovery of lysozyme from aqueous solution by polyelectrolyte precipitation with sodium alginate. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Trypsin decorated self-emulsifying drug delivery systems (SEDDS): Key to enhanced mucus permeation. J Colloid Interface Sci 2018; 531:253-260. [DOI: 10.1016/j.jcis.2018.07.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/12/2018] [Accepted: 07/14/2018] [Indexed: 12/18/2022]
|
15
|
Duhoranimana E, Yu J, Mukeshimana O, Habinshuti I, Karangwa E, Xu X, Muhoza B, Xia S, Zhang X. Thermodynamic characterization of Gelatin–Sodium carboxymethyl cellulose complex coacervation encapsulating Conjugated Linoleic Acid (CLA). Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.02.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Li X, Long J, Hua Y, Chen Y, Kong X, Zhang C. Protein Separation Coacervation with Carboxymethyl Cellulose of Different Substitution Degree: Noninteracting Behavior of Bowman-Birk Chymotrypsin Inhibitor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4439-4448. [PMID: 29565587 DOI: 10.1021/acs.jafc.8b00091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We first observed that protein/polysaccharide interaction exhibited noninteracting behavior which makes Bowman-Birk chymotrypsin inhibitor (BBI) always free of complexation, being separated from another protein with similar isoelectric points, Kunitz trypsin inhibitor (KTI). Turbidity titrations showed that the electrostatic attractions were much stronger between KTI/BBI (KBi) and carboxymethyl cellulose of higher substitution degree. Unchanged chymotrypsin inhibitory activity (CIA) indicated that BBI had negligible contribution to protein recovery and trypsin inhibitory activity (TIA). Tricine-SDS-PAGE revealed that, at r = 20:1-2:1, unbound BBI was left in the supernatant when bound KTI transferred into precipitates, even if there was excess negative charge. Thus, purified KTI or BBI was achieved easily at the given conditions. The noninteracting behavior of BBI was further confirmed by ITC, where the binding enthalpy of BBI to CMC was negligible compared with the high binding affinity ( Kb) of KTI. This work will be beneficial to protein purification based on protein-polysaccharide coacervation.
Collapse
Affiliation(s)
- Xingfei Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu Province 214122 , People's Republic of China
| | - Jie Long
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu Province 214122 , People's Republic of China
| | - Yufei Hua
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu Province 214122 , People's Republic of China
| | - Yeming Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu Province 214122 , People's Republic of China
| | - Xiangzhen Kong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu Province 214122 , People's Republic of China
| | - Caimeng Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu Province 214122 , People's Republic of China
| |
Collapse
|