1
|
Guo Y, Qiao D, Zhao S, Pi X, Li B, Zhang K, Zhang B. Understanding the application-related features of sweet potato starch varying in multi-scale supramolecular structure. Carbohydr Polym 2025; 350:122997. [PMID: 39647936 DOI: 10.1016/j.carbpol.2024.122997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/26/2024] [Accepted: 11/13/2024] [Indexed: 12/10/2024]
Abstract
Understanding the application-related features of sweet potato starch (SPS) is necessary for its utilization, which remains limited. Here, seven starches isolated from different sweet potato varieties (HA, SS, YSA, YSB, YSC, YSD, and YSE) were used. It was confirmed that the multi-scale structure possesses significant effects upon the application-related features of SPS. Relatively thinner crystalline lamellae contributed to less resistance to hydrothermal effects and thus increased peak viscosity (ηp) value, while thicker crystalline lamellae and smaller granule size resulted in elevated paste stability under shearing. The synergism of amylose content and molecular orders on digestion rate (k) was also observed, and a higher proportion of stable molecular orders and high thermal stability resulted in an attenuated k. Consequently, the YSA starch with the highest proportion (ca. 0.63) of stable long-range molecular orders (indicated by the high melting temperature: ca. 63 °C) within the starch granule could restrict enzymes' diffusion and permeation towards the starch matrices, and thus elevated resistant starch (79.66 %), possessing huge potential for designing low glycaemic index foods. Additionally, the higher amylose content of the HA starch (15.14 %) and the YSB starch (15.31 %) may contribute to the amylose aggregation and the amylopectin recrystallization, and thus increased gel strength.
Collapse
Affiliation(s)
- Yabin Guo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Dongling Qiao
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Siming Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaowen Pi
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Bowen Li
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Kai Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China.
| | - Binjia Zhang
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Huo J, Wang L, Ma J, Yue X, Wang K, Ma X, Yu X, Xiao Z. Different effects of polyphenols on hydration, pasting and rheological properties of rice starch under extrusion condition: From the alterations in starch structure. Food Chem 2025; 465:142002. [PMID: 39566311 DOI: 10.1016/j.foodchem.2024.142002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/25/2024] [Accepted: 11/09/2024] [Indexed: 11/22/2024]
Abstract
Effects of polyphenols including caffeic acid (CA), ferulic acid (FA), epigallocatechin gallate (EG), tannic acid (TA) and resveratrol (R) on physicochemical and structural properties of rice starch (RS) under the extrusion condition were investigated. Extrusion altered the hydration, pasting and rheological properties of rice starch. Adding FA exhibited the best improvement effect on hydration properties of extruded rice starch (E-RS). All polyphenols possessed different inhibitory effects on short-term retrogradation of E-RS following the order of TA > EG > CA > FA > R. The FA and CA enhanced the viscoelasticity of E-RS, whereas the other polyphenols had opposite influences. Polyphenols mainly interacted with starch via hydrogen bonds, which transformed the crystalline structure to V-type and increased the molecular weight of E-RS. Above different effects were due to polyphenols exhibited varied microstructure and phenolic hydroxyl group content. These findings provided valuable information for preparing extruded starchy foods rich in polyphenols.
Collapse
Affiliation(s)
- Jinjie Huo
- College of Food, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Lishuang Wang
- College of Liaoning agricultural vocational and technical, Yingkou, 115009, PR China
| | - Jinming Ma
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, PR China
| | - Xiqing Yue
- College of Food, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Kexin Wang
- College of Food, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Xiaoqi Ma
- College of Food, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Xiaoshuai Yu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China.
| | - Zhigang Xiao
- College of Food, Shenyang Agricultural University, Shenyang 110866, PR China; College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China.
| |
Collapse
|
3
|
Hao Z, Li Z, Zhou Q, Ma Z, Wang Y, Lv J, Xu H, Li D, Xie Z, Yu Z, Du Y. Exploring the effect of L-theanine synergised with EGCG on starch digestibility in ultrasonic field from different perspectives. Food Res Int 2025; 202:115805. [PMID: 39967081 DOI: 10.1016/j.foodres.2025.115805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/13/2025] [Accepted: 01/18/2025] [Indexed: 02/20/2025]
Abstract
With the increasing prevalence of diabetes, the search for natural compounds with potential anti-hyperglycemic effects has become a key focus in food and nutrition research. L-theanine (THE) and epigallocatechin gallate (EGCG) from tea are gaining attention due to their antioxidant and metabolic regulation properties. Although they have been shown to have an effect on glucose metabolism, their synergistic effect on starch digestive properties and the mechanism remain unclear. Here, we explored that THE and EGCG synergistically regulated starch digestive properties in ultrasound treatment through two different perspectives. At specific THE/EGCG ratios (THE/EGCG1:1), maize starch granules exhibited significant aggregation and densification. THE promoted the ordered arrangement of starch molecular chains through hydrogen bonding, and the polyphenolic structure of EGCG further stabilised this ordered structure, thus enhancing the crystallinity and short-range ordering of starch. It meant that THE and EGCG further reduced starch digestibility by synergistically modulating the multi-scale structure of starch. In addition, THE and EGCG exhibited significant synergistic inhibition of α-amylase activity (1.6 mM THE and 0.05 mg/mL EGCG). The multi-spectral results showed that the addition of THE and EGCG enhanced the conformational change of the enzyme, leading to the change of the secondary structure, and the synergistic effect might originate from the multiple interactions of THE and EGCG with different amino acid residues in the digestive enzyme (e.g., THR-163, GLN-63, ASP-197, etc), which strengthened the inhibition, and the molecular dynamics simulations further supported the findings. This work promotes the further development and utilisation of endogenous substances in tea and provides some references for the development of food ingredients with potential hypoglycaemic functions.
Collapse
Affiliation(s)
- Zongwei Hao
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Provincial Joint Construction Key Laboratory of Industrial New-Style Tea Beverage Green Manufacturing, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036 China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036 China
| | - Zhaofeng Li
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Provincial Joint Construction Key Laboratory of Industrial New-Style Tea Beverage Green Manufacturing, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036 China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036 China
| | - Qianxin Zhou
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Provincial Joint Construction Key Laboratory of Industrial New-Style Tea Beverage Green Manufacturing, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036 China
| | - Zhenni Ma
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Provincial Joint Construction Key Laboratory of Industrial New-Style Tea Beverage Green Manufacturing, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036 China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036 China
| | - Yanrui Wang
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Provincial Joint Construction Key Laboratory of Industrial New-Style Tea Beverage Green Manufacturing, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036 China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036 China
| | - Jiali Lv
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Provincial Joint Construction Key Laboratory of Industrial New-Style Tea Beverage Green Manufacturing, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036 China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036 China
| | - Hui Xu
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Provincial Joint Construction Key Laboratory of Industrial New-Style Tea Beverage Green Manufacturing, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036 China
| | - Daxiang Li
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Provincial Joint Construction Key Laboratory of Industrial New-Style Tea Beverage Green Manufacturing, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036 China
| | - Zhongwen Xie
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Provincial Joint Construction Key Laboratory of Industrial New-Style Tea Beverage Green Manufacturing, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036 China.
| | - Zhenyu Yu
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Provincial Joint Construction Key Laboratory of Industrial New-Style Tea Beverage Green Manufacturing, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036 China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036 China.
| | - Yiqun Du
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Provincial Joint Construction Key Laboratory of Industrial New-Style Tea Beverage Green Manufacturing, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036 China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036 China.
| |
Collapse
|
4
|
Sun C, Du K, He Z, Zhu Z, Hu Y, Wang C, Mei L, Xie Q, Chen Y, Liu Y, Luo G, Mustafa S, Chen X, Du X. Liquid nitrogen ball-milled mechanochemical modification of starches with typically selected A, B and C crystal types on multiscale structure and physicochemical properties. Food Chem 2025; 463:141148. [PMID: 39243611 DOI: 10.1016/j.foodchem.2024.141148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
This study investigated the effect of liquid nitrogen ball-milled mechanochemical treatment on multiscale structure and physicochemical properties of starches with typically selected A (rice starch, ReS), B (potato starch, PtS) and C (pea starch, PeS) crystal types. The morphology of starch samples changed from integral granules to irregular fragments, and the interaction between the exposure OH bonds led to a serious agglomeration. As the treatment times extended, the crystalline structure of starch samples was gradually destroyed, and the excessive treatment approached amorphization. Moreover, the thermal stability of starch samples showed the downward tendency; and with amorphization increased, the swelling power (SP), solubility (S), water absorption capacity (WAC), oil absorption capacity (OAC) and hydrolysis rate of starch samples gradually increased. The obtained results provided a theoretical foundation for broadening the application range of ball-milled starches with different crystal types.
Collapse
Affiliation(s)
- Chengyi Sun
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Kai Du
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, No. 193 Tunxi Road, Hefei University of Technology, Hefei 230009, China
| | - Zhaoxian He
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhijie Zhu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yuqing Hu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Caihong Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Liping Mei
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qingling Xie
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yajie Chen
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yanyan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Guangli Luo
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Saddam Mustafa
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xu Chen
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Xianfeng Du
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
5
|
Yao C, Yang X, Zhang Y, Sun Y, Niu D, Wang S, Zhao Y, Tan L, Huang C, Li B. Insights into Dual Self-Assembly Mechanisms in Various Artocarpus altilis (Parkinson) Fosberg Starch-Endogenous Lipid-Endogenous Protein Complexes: Interactions between Digestibility Kinetics and Multiscale Structure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27389-27416. [PMID: 39621556 DOI: 10.1021/acs.jafc.4c05847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Chinese seedless breadfruit is rich in starch, lipids, and protein. To explore the interactions among these macromolecules during food processing, the seedless breadfruit starch-endogenous lipid-endogenous protein complex was investigated. Native seedless breadfruit starches are categorized as low-resistant-content starch [low-resistant starch (LRS)] or high-resistant starch (HRS). After complexation, dual self-assembly mechanisms occur after complexation. Initially, for the LRS group, long chains of amylopectin and amylose participate in complexation due to the migration from the short side chain of amylopectin, leading to an increase in RS content compared to the native starch. In contrast, amylose participated in complexation in the HRS group, which showed higher digestibility than that of raw starch. According to chemometric analysis, the HRS group complex possesses a more compact external and internal nanomicrostructure, leading to its weaker digestibility kinetics compared to the LRS group complex. This study provides a fundamental basis for the comprehensive application of novel multicomponent foods.
Collapse
Affiliation(s)
- Chunguang Yao
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530003, China
| | - Xin Yang
- School of Medicine and Health, Harbin Institute of Technology, Harbin, Heilongjiang 150006, China
| | - Yanjun Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan 571533, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan 571533, China
| | - Yuqing Sun
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530003, China
| | - Debao Niu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530003, China
| | - Shuangfei Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530003, China
| | - Yuan Zhao
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530003, China
| | - Lehe Tan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan 571533, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan 571533, China
| | - Chongxing Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530003, China
| | - Bo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530003, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin, Heilongjiang 150006, China
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan 571533, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan 571533, China
| |
Collapse
|
6
|
Zhang S, Wang Z, Wang L, Tian H, Zhang D, Li M, Mei S, Huang J, Zhang X. Mechanism of multiscale structural reassembly controlled by molecular chains during amylase digestion of wheat starch. Int J Biol Macromol 2024; 285:138172. [PMID: 39626814 DOI: 10.1016/j.ijbiomac.2024.138172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/04/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
The digestive characteristics of wheat starch (WS) are closely related to its structure. However, the mechanisms underlying the multiscale structural evolution and reassembly controlled by molecular chains during digestion are poorly understood. To address this issue, amylopectin of wheat starch (APWS) and amylose of wheat starch (AMWS) were separated and digested in vitro. After digestion, chains in WS with a degree of polymerization (DP) < 12 or DP > 37 were degraded, the double-helix content decreased from 58.65 % to 48.77 %, and many particles were degraded. For APWS, the DP > 36 chains increased, the B-type crystallinity increased to 9.55 %, and the particles were transformed into new aggregated structures. For AMWS, the number of 18 < DP < 270 chains was increased, the double-helix content increased from 19.78 % to 37.92 %, the B-type crystallinity increased from 6.65 % to 19.40 %, and a dense granular structure was formed. Overall, our study confirmed that WS, APWS, and AMWS had distinct multiscale structural reassembly mechanisms during in vitro digestion. The DP > 36 chains in APWS and 18 < DP < 270 chains in AMWS were the primary contributors to the formation of enzyme-resistant multiscale structures. This study can serve as a theoretical basis for designing the WS multiscale structure using molecular chains to improve its nutritional value.
Collapse
Affiliation(s)
- Sijie Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Zhen Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Luyang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Hailong Tian
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Dale Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China
| | - Meijuan Li
- Henan Guode Standard Testing Technology Co., LTD, Zhengzhou 451100, China
| | - Shenlin Mei
- Lotus Holdings Co., LTD, Xiangcheng 466200, China
| | - Jihong Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China; Collaborative Innovation Center of Functional Food Green Manufacturing Henan Province, School of Food and Pharmacy, Xuchang University, Xuchang 461000, China.
| | - Xinrui Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China.
| |
Collapse
|
7
|
Li B, Chen X, Zhang Y, Xu F, Tan L, Wu G, Zhu K, Zhang Y. The multi-scale structure and in vitro digestive kinetics of underutilized Chinese seedless breadfruit starch. Int J Biol Macromol 2024; 281:136134. [PMID: 39419687 DOI: 10.1016/j.ijbiomac.2024.136134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/15/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024]
Abstract
In our previous research, the significant difference of physiochemistry properties for underutilized starches was showed between Chinese seedless breadfruit species and the other species. Based on this, the multiscale structure and digestion kinetics of Chinese seedless breadfruit of Spice and Beverage Research Institute species (SBS) and Xinglong species (XBS) was further researched. The SBS exhibited higher α-1,6 glycosylic bond content, free side-chain groups content, double-helix content, homogeneity, molecular weight, and V-type polymorphism, and fewer amorphous content, blocklet sizes, and a smaller semi-crystalline lamella thickness than XBS. Additionally, SBS showed higher final viscosity, pasting temperature, and gelatinization enthalpy than those of XBS. Consequently, SBS display lower rate constant (0.73 h-1) and glycemic index (65.17) than those of XBS (0.86 h-1 and 73.95). The anti-digestibility mechanism was revealed by the structure-digestibility relationship. It was found that resistant starch of SBS and XBS were significantly higher than those of starch from American and African species. This indicated that Chinese breadfruit starch could be considered as a good source of resistant starch, regulating glycemic index. In summary, XBS and XBS could be considered as a well source of resistant starch to make foods for preventing or improving type II diabetes or hyperlipemia.
Collapse
Affiliation(s)
- Bo Li
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China; School of Medicine and Health, Harbin Institute of Technology, Herbin, Heilongjiang, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, China; National Tropical Plant Germplasm Resource Bank Sub-bank of Woody Grain Germplasm Resources, Hainan 571533, China
| | - Xiaoai Chen
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, China; National Tropical Plant Germplasm Resource Bank Sub-bank of Woody Grain Germplasm Resources, Hainan 571533, China
| | - Yutong Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, China; National Tropical Plant Germplasm Resource Bank Sub-bank of Woody Grain Germplasm Resources, Hainan 571533, China; Sanya Research Institute, Chinese Academy of Tropical Agriculture Science, Sanya 572025, China
| | - Fei Xu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, China; National Tropical Plant Germplasm Resource Bank Sub-bank of Woody Grain Germplasm Resources, Hainan 571533, China
| | - Lehe Tan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, China; National Tropical Plant Germplasm Resource Bank Sub-bank of Woody Grain Germplasm Resources, Hainan 571533, China
| | - Gang Wu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, China; National Tropical Plant Germplasm Resource Bank Sub-bank of Woody Grain Germplasm Resources, Hainan 571533, China
| | - Kexue Zhu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, China; National Tropical Plant Germplasm Resource Bank Sub-bank of Woody Grain Germplasm Resources, Hainan 571533, China
| | - Yanjun Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, China; National Tropical Plant Germplasm Resource Bank Sub-bank of Woody Grain Germplasm Resources, Hainan 571533, China.
| |
Collapse
|
8
|
Chen S, Qiu Z, Yang Y, Wu J, Jiao W, Chen Y, Jin C. Revisiting the Evolution of Multi-Scale Structures of Starches with Different Crystalline Structures During Enzymatic Digestion. Foods 2024; 13:3291. [PMID: 39456353 PMCID: PMC11507109 DOI: 10.3390/foods13203291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/12/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Porous starch has been created through hydrolysis by amyloglucosidase and α-amylase. However, little information is known about the precise evolution of multi-scale structures of starch during digestion. In this study, rice starch and potato starch, containing different crystalline structures, were hydrolyzed by amyloglucosidase and α-amylase for 20 and 60 min, respectively, and their resulting structural changes were examined. The digestion process caused significant degradation of the molecular structures of rice and potato starches. In addition, the alterations in the ordered structures varied between the two starches. Rice starch exhibited porous structures, thicker crystalline lamellae as determined by small-angle X-ray scattering, and enhanced thermostability after digestion using differential scanning calorimetry. For rice starch, the extent of crystalline structures was analyzed with an X-ray diffractometer; it was found to first increase after 20 min of digestion and then decrease after 60 min of digestion. In contrast, potato starch did not display porous structures but exhibited thicker crystalline lamellae and a reduction in ordered structures after digestion. These findings suggest that it is possible to intentionally modulate the multi-scale structures of starch by controlling the digestion time, thereby providing valuable insights for the manipulation of starch functionalities.
Collapse
Affiliation(s)
- Simin Chen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, National Medical Products Administration, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China;
| | - Zihui Qiu
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (Z.Q.); (Y.Y.)
| | - Ying Yang
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (Z.Q.); (Y.Y.)
| | - Jianfeng Wu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China;
| | - Wenjuan Jiao
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China;
| | - Ying Chen
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Chengzhi Jin
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, National Medical Products Administration, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China;
| |
Collapse
|
9
|
Chen L, Huang G, Zhang Z, Zhang R, McClements DJ, Wang Y, Xu Z, Long J, Jin Z. Effects of frying on the surface oil absorption of wheat, potato, and pea starches. Int J Biol Macromol 2024; 264:130559. [PMID: 38431016 DOI: 10.1016/j.ijbiomac.2024.130559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/17/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
The effects of structural changes on surface oil absorption characteristics of wheat starch, pea starch and potato starch during frying under different water content (20%, 30%, 40%, 50%) were studied. Fried potato starch with a 40% water content exhibited the highest surface oil content. When the initial moisture content reached 30%, the scattering intensity of the crystal layer structure decreased for wheat and pea starches, while the scattering peak for potato starch completely disappeared. At 40% moisture content, the amorphous phase ratio values for fried potato, wheat and pea starches were 13.50%, 11.78% and 11.24%, respectively, and the nitrogen adsorption capacity of fried starch decreased in turn. These findings that the structure of potato starch was more susceptible to degradation compared to pea starch and wheat starch, resulting in higher surface oil absorbed by potato starch during frying process.
Collapse
Affiliation(s)
- Long Chen
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, South China Agricultural University, Guangzhou 510642, China.
| | - Guifang Huang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zipei Zhang
- Food Science Program, University of Missouri, Columbia, MO 65211, USA
| | - Ruojie Zhang
- Food Science Program, University of Missouri, Columbia, MO 65211, USA
| | | | - Yi Wang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhenlin Xu
- School of Food Science and Technology, South China Agricultural University, Guangzhou 510642, China
| | - Jie Long
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
10
|
Wang K, Tan C, Tao H, Yuan F, Guo L, Cui B. Effect of different screw speeds on the structure and properties of starch straws. Carbohydr Polym 2024; 328:121701. [PMID: 38220338 DOI: 10.1016/j.carbpol.2023.121701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
To illustrate the action mechanism of screw speed on the performance of starch-based straws during the extrusion process, starch-based straws at different screw speeds were prepared using a twin-screw extruder and the structures and characteristics were compared. The results indicated that as screw speeds improved from 3 Hz to 13 Hz, the A chain of amylopectin increased from 25.47 % to 28.87 %, and the B3 chain decreased from 6.34 % to 3.47 %. The absorption peak of hydroxyl group shifted from 3296 cm-1 to 3280 cm-1. The relative crystallinity reduced from 13.49 % to 9.89 % and the gelatinization enthalpy decreased from 3.5 J/g to 0.2 J/g. The performance of starch straws did not increase linearly with increasing screw speeds. The starch straw produced at screw speed of 7 Hz had the largest amylose content, the highest gelatinization temperature, the minimum bending strength, and the lowest water absorption rate in hot water (80 °C). Screw speed had a remarkable impact on the mechanical strength, toughness and hydrophobicity of starch-based straws. This study revealed the mechanism of screw speed on the mechanical strength and water resistance of starch straws in the thermoplastic extrusion process and created the theoretical basis for the industrial production of starch-based straws.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Congping Tan
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Haiteng Tao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Fang Yuan
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| |
Collapse
|
11
|
Zhang J, Zhao F, Li C, Ban X, Gu Z, Li Z. Acceleration mechanism of the rehydration process of dried rice noodles by the porous structure. Food Chem 2024; 431:137050. [PMID: 37573750 DOI: 10.1016/j.foodchem.2023.137050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023]
Abstract
Rehydration of dried rice noodles (DRNs) is a time-consuming process, which is dominated by the compactness of noodle structure. Therefore, DRNs with differentiated porous structures were prepared, and their effect on the rehydration process was investigated. Porous structure can shorten rehydration time by reducing the time needed for water to migrate into the noodle core, or the water amount required for rehydration. Magnetic resonance imaging showed that although larger pores facilitate absorbing more water, the time for water to migrate into the noodle center is longer than that of medium size pores, as water needs to fill the periphery large hole before inward migration. SAXS analysis demonstrated that the presence of flexible starch molecular chains reduce the water required to achieve the maximum tensile strain of samples, thus shortening the rehydration time. Understanding the acceleration mechanism of porous structure on rehydration contributes to designing improved process of instant noodle products.
Collapse
Affiliation(s)
- Jiayan Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Department of Food and Chemical Engineering, Liuzhou Institute of Technology, Liuzhou 545616, China
| | - Fangfang Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China.
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
12
|
Li S, Shang L, Chen Y, Song R, Li J, Li B. Preparation of a novel expandable konjac fiber at different freezing temperatures and exploration of its digestion regulation functions. Food Funct 2024; 15:125-138. [PMID: 38047712 DOI: 10.1039/d3fo03814a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
A new form of konjac fiber was successfully prepared, and it could instantaneously expand when in contact with the digestive fluid. The expanded konjac fiber could inhibit the digestion of the ingested food by competing with the substrate for digestive enzymes and space. The konjac fiber with desirable physical properties was obtained at 4 different freezing temperatures (-20 °C, -40 °C, -80 °C, and -196 °C), and the digestion regulation mechanisms of these fibers were systematically explored. The results showed that the konjac fiber prepared at -20 °C displayed an outstanding performance in delaying gastric emptying and preventing intestinal starch hydrolysis, while the fiber prepared under liquid nitrogen conditions (-196 °C) showed the weakest digestion regulation ability. However, the digestion regulation ability of this novel fiber was highly related to the food rheological property, and it exhibited a stronger interference effect on high-viscosity food. Our novel konjac fibers exhibited a great digestion regulation potential. Our findings provide valuable references for the development of dietary fiber-based satiety-enhancing functional foods.
Collapse
Affiliation(s)
- Sha Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Longchen Shang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China
| | - Yuanyuan Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Rong Song
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
13
|
Yu X, Wang P, Wang L, Wang K, Duan Y, Huo J, Ma X, Dong S, Xin G, Xiao Z. Inhibition mechanism of rice glutelin on extruded starch digestion: From the structural properties of starch and enzyme activity. Food Res Int 2024; 175:113790. [PMID: 38129010 DOI: 10.1016/j.foodres.2023.113790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
To increase the anti-digestion ability of extruded rice starch (ERS), the influence of rice glutelin (RG) on digestive and structural characteristics of ERS were investigated. The resistant starch content increased from 4.49 % to 18.08 % as the RG content increased, while the digestion rate and digestion velocity constant were reduced by the incorporation of RG. Morphological observations showed that ERS was adhered and encapsulated by RG, and the specific area of starch granules were decreased after the addition of RG. The results of XRD and FTIR suggested that the long-range and short-range orders of ERS were improved due to the complexation with RG. The thickness of crystalline of ERS was increased while its amorphous region thickness was reduced by the supplementation with RG. The 1H NMR and 13C NMR data revealed that the branching degree and double helix content of ERS was increased by 46.24 % and 52.67 % when RG content reached to 12 %. Additionally, the addition of RG altered the molecular weight and chain length distribution of ERS. The α-amylase activity and glucoamylase activity was inhibited by RG. These results could provide a valuable basis for the application of RG in extruded rice starchy foods with lower glycemic index.
Collapse
Affiliation(s)
- Xiaoshuai Yu
- College of Food, Shenyang Agricultural University, Shenyang 110866, PR China; College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, PR China
| | - Peng Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China
| | - Lishuang Wang
- College of Food, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Kexin Wang
- College of Food, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Yumin Duan
- Experimental Center, Shenyang Normal University, Shenyang 110034, PR China
| | - Jinjie Huo
- College of Food, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Xiaoqi Ma
- College of Food, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Shengzhong Dong
- Experimental Center, Shenyang Normal University, Shenyang 110034, PR China
| | - Guang Xin
- College of Food, Shenyang Agricultural University, Shenyang 110866, PR China.
| | - Zhigang Xiao
- College of Food, Shenyang Agricultural University, Shenyang 110866, PR China; College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, PR China.
| |
Collapse
|
14
|
Zhang C, Xu Z, Liu X, Ma M, Hua W, Khalid S, Sui Z, Corke H. Heat-moisture treated waxy highland barley starch: Roles of starch granule-associated surface lipids, temperature and moisture. Int J Biol Macromol 2024; 254:127991. [PMID: 37949270 DOI: 10.1016/j.ijbiomac.2023.127991] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Roles of temperature, moisture and starch granule-associated surface lipids (SGASL) during heat-moisture treatment (HMT) of waxy highland barley starch were elucidated. Starch without SGASL showed a higher increase in ratio (1016/993 cm-1) (0.095-0.121), lamellar peak area (88), radius of gyration (Rg1, 0.9-1.8 nm) and power-law exponents (0.19-0.42) than native starch (0.038-0.047, 46, 0.1-0.6 nm, 0.04-0.14), upon the same increase in moisture or temperature. Thus, removing SGASL promoted HMT. However, after HMT (30 % moisture, 120 °C), native starch showed lower relative crystallinity (RC, 11.67 %) and lamellar peak area (165.0), longer lamellar long period (L, 14.99 nm), and higher increase in peak gelatinization temperature (9.2-13.3 °C) than starch without SGASL (12.04 %, 399.2, 14.52 nm, 4.7-6.1 °C). This suggested that the resulting SGASL-amylopectin interaction further destroyed starch structure. Starch with and without SGASL showed similar trends in RC, lamellar peak area, L and Rg1 with increasing temperature, but different trends with increasing moisture, suggesting that removing SGASL led to more responsiveness to the effects of increasing moisture. Removing SGASL resulted in similar trends (RC and lamellar peak area) with increasing moisture and temperature, suggesting that the presence of SGASL induced different effects on moisture and temperature.
Collapse
Affiliation(s)
- Chuangchuang Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zekun Xu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xingxun Liu
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Mengting Ma
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weifeng Hua
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sumbal Khalid
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhongquan Sui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China; Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
15
|
Wang N, Wu L, Yang J, You Y, Zhang F, Kan J, Zheng J. Lotus starch/bamboo shoot polysaccharide composite system treated via ultrasound: Pasting, gelling properties and multiscale structure. Food Res Int 2023; 174:113605. [PMID: 37986532 DOI: 10.1016/j.foodres.2023.113605] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/22/2023]
Abstract
This study investigated the effects of ultrasound treatment on the physicochemical properties, digestion properties, and multiscale structure of a lotus root starch (LS) and bamboo shoot polysaccharide (BSP) composite system. It also preliminarily revealed the mechanism underlying the modification effect of ultrasound treatment. After 180-360 W ultrasound treatment, the viscosity, thixotropy, and gel viscoelasticity of the LS/BSP paste increased. However, treatment with the ultrasound power of 540 and 720 W decreased viscoelasticity. After 14 days of retrogradation, the hardness and cohesiveness of the LS/BSP gel increased under 180 and 360 W ultrasound treatment but decreased under 540 and 720 W ultrasound treatment. After 540 W ultrasound treatment, RDS content decreased by 17.2 % and resistant starch content increased by 32.5 %. After 180 min of in vitro digestion, the hydrolysis rate of LS/BSP decreased from 97.82 % to 93.13 % as the ultrasound power increased to 540 W. Ultrasound promoted the uniform dispersion of BSP in the starch paste and the movement, orientation, rearrangement, and aggregation of starch and BSP molecular chains. These effects further enhanced the interaction between BSP and starch, resulting in the formation of a dense paste structure with strong resistance to digestive enzymes. This work revealed the mechanism of the effects of ultrasound treatment on LS/BSP and found that 360-540 W ultrasound treatment could improve the physicochemical properties and digestion properties of LS/BSP.
Collapse
Affiliation(s)
- Nan Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Liangru Wu
- Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, China National Bamboo Research Center, Hangzhou 310012, Zhejiang, China
| | - Jinlai Yang
- Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, China National Bamboo Research Center, Hangzhou 310012, Zhejiang, China
| | - Yuming You
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 400715, China
| | - Fusheng Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Chongqing 400715, China
| | - Jianquan Kan
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Chongqing 400715, China.
| | - Jiong Zheng
- College of Food Science, Southwest University, Chongqing 400715, China; Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, China National Bamboo Research Center, Hangzhou 310012, Zhejiang, China; Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
16
|
Zheng F, Xu Q, Zeng S, Zhao Z, Xing Y, Chen J, Zhang P. Multi-scale structural characteristics of black Tartary buckwheat resistant starch by autoclaving combined with debranching modification. Int J Biol Macromol 2023; 249:126102. [PMID: 37541464 DOI: 10.1016/j.ijbiomac.2023.126102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/08/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
The impact of autoclaving or autoclave-debranching treatments on the multi-scale structure of resistant starch (RS) and the relationship with starch digestion remains unclear, despite their widespread use in its preparation. This work investigated the relationship between RS structure in black Tartary buckwheat and its digestibility by analyzing the effects of autoclaving and autoclave-debranching combined treatments on the multi-scale structure of RS. The results showed that black Tartary buckwheat RS exhibited a more extensive honeycomb-like network structure and enhanced thermal stability than either black Tartary buckwheat native starch (BTBNS) or common buckwheat native starch (CBNS). Autoclaving and autoclaving-debranching converted A-type native starch to V-type and possibly the formation of flavonoid-starch complexes. Autoclaving treatment significantly increased the proportion of short A chain (DP 6-12) and the amylose (AM) content, reduced the viscosity and the total crystallinity. Notably, the autoclave-debranching co-treatment significantly enhanced the resistance of starch to digestion, promoted the formation of perfect microcrystallines, and increased the AM content, short-range ordered degree, and the proportion of long B2 chain (DP 25-36). This study reveals the relationship between the multi-scale structure and digestibility of black Tartary buckwheat RS by autoclaving combined with debranching modification.
Collapse
Affiliation(s)
- Faying Zheng
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Qinglian Xu
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Shanshan Zeng
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Zixian Zhao
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yage Xing
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| | | | - Ping Zhang
- Huantai Biotechnology Co., Ltd., Chengdu 610225, China
| |
Collapse
|
17
|
Liu G, Zhang R, Huo S, Li J, Wang M, Wang W, Yuan Z, Hu A, Zheng J. Insights into the changes of structure and digestibility of microwave and heat moisture treated quinoa starch. Int J Biol Macromol 2023; 246:125681. [PMID: 37406899 DOI: 10.1016/j.ijbiomac.2023.125681] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/02/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
In this study, quinoa starch was subjected to microwave and heat moisture treatment (MHT) with various moisture content (15 %, 25 %, 35 %) and microwave power (4.8, 9.6, 14.4 W/g), and its structure and digestibility were investigated. SEM and particle size analysis indicated that MHT caused the agglomeration of starch granules and increased the particle size. Moreover, MHT increased the short-range order structure and relative crystallinity, except for MHT with moisture content (35 %). DSC results demonstrated that the gelatinization temperature and gelatinization enthalpy had a slight improvement after MHT. Moreover, MHT increased the amylose content to some extent. It was worth noting that the digestibility of quinoa starch significantly decreased. After MHT, a part of rapidly digestible starch (RDS) was converted into slowly digestible starch (SDS) or resistant starch (RS). Particularly, when moisture content was 25 %, the starch had a highest SDS + RS content. Thus, this study provided a potential approach using MHT to modulate the digestibility of starch.
Collapse
Affiliation(s)
- Guangxin Liu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Rong Zhang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Shuan Huo
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Jing Li
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Mengting Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Wei Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Zhining Yuan
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Aijun Hu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China.
| | - Jie Zheng
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China.
| |
Collapse
|
18
|
Luo D, Xie Q, Chen C, Mu K, Wang Z, Gu S, Xue W. Increasing the pressure during high pressure homogenization regulates the starch digestion of the resulting pea starch-gallic acid complexes. Int J Biol Macromol 2023; 235:123820. [PMID: 36842741 DOI: 10.1016/j.ijbiomac.2023.123820] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/31/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023]
Abstract
The pea starch-gallic acid (PS-GA) complexes were prepared using high pressure homogenization (HPH), then the effect and underlying mechanism of pressure on multi-scale structure and digestibility of complexes were investigated. Results showed that HPH promoted the formation of PS-GA complexes, reaching the maximum complex index of 7.74 % at the pressure of 90 MPa, and the main driving force were hydrophobic interactions and hydrogen bonding. The interaction between PS and GA facilitated the formation of surface reticular structures to encapsulate gallic acid molecules, further entangled into bigger size aggregates. The enhancement of rearrangement and aggregation of starch chains during HPH developed a dense hierarchical structure of PS-GA complexes, including short-range ordered structure, V-type crystal structure, lamellar and fractal structure, thus increasing gelatinization temperature. The digestibility of PS-GA complexes substantially changed in reducing rapidly digestible starch content from 29.67 % to 17.07 %, increasing slowly digestible starch from 53.69 % to 56.25 % and resistant starch from 16.63 % to 26.67 %, respectively. Moreover, the resulting complexes exhibited slower digestion rates compared with native PS. Furthermore, the regulating mechanism of pressure during HPH on starch digestibility was the formation of ordered multi-scale structure and inhibition of GA on digestive enzymes.
Collapse
Affiliation(s)
- Dan Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Qiang Xie
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Chen Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Kaiyu Mu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Zhaomin Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Shimin Gu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Wentong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
19
|
Li B, Wang S, Zhang Y, Huang C, Zhao Y, Wu G, Tan L. Effect of the Amylose Nanoscale Polymerization Index on the Digestion Kinetics and Mechanism of Recombinant Chinese Seedless Breadfruit Starch Triadic Complexes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37024427 DOI: 10.1021/acs.jafc.2c08746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The demand for multicomponent foods to meet human energy and nutritional needs has been increasing; however, few studies have addressed the theoretical basis for their preparation. We investigated the effect of the nanoscale polymerization index (DPw) of amylose on the logarithm of slope plot-based kinetics and the mechanism of digestion of starch-lauric acid-β-lactoglobulin protein complexes. Amylose from each of the five Chinese seedless breadfruit species was mixed with breadfruit amylopectin with the highest resistant starch (RS) content to form starch ternary complexes with various amylose DPws. All five complexes exhibited V-type crystalline diffraction and rod-like molecular configuration. Characteristic X-ray diffraction peaks and Fourier transform-infrared spectra of the ternary complexes revealed similar molecular configurations. As the amylose DPw increased, the complexing index, relative crystallinity, short-range order, weight-average molar mass, molecular density index, gelatinization temperature, decomposition temperature, RS, slowly digestible starch (SDS), and speed rate constants at the second hydrolysis stage (k2) increased, whereas the semicrystalline lamellae thickness, mass fractal structure parameter, average characteristic crystallite unit length, radius of gyration, fractal dimension and cavities of granule surface microstructure, final viscosity, interval speed rate from SDS to RS, equilibrium concentration, and glycemic index decreased. The digestion kinetics exhibited highly significant variation according to the physiochemical properties and multiscale supramolecular structure (r > 0.99 or r < -0.99, p < 0.01). Together, these results identify amylose DPw as an important structural factor that markedly affects the kinetics and mechanism of ternary complex digestion and provide a new theoretical direction for the production of starch-based multicomponent foods.
Collapse
Affiliation(s)
- Bo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530003, China
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan 571533, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan 571533, China
| | - Shuangfei Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530003, China
| | - Yanjun Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan 571533, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan 571533, China
| | - Chongxing Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530003, China
| | - Yuan Zhao
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530003, China
| | - Gang Wu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan 571533, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan 571533, China
| | - Lehe Tan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan 571533, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan 571533, China
| |
Collapse
|
20
|
Li Q, Liu J, Zhai H, Zhang Z, Xie R, Xiao F, Zeng X, Zhang Y, Li Z, Pan Z. Extraction and characterization of waxy and normal barley β-glucans and their effects on waxy and normal barley starch pasting and degradation properties and mash filtration rate. Carbohydr Polym 2023; 302:120405. [PMID: 36604074 DOI: 10.1016/j.carbpol.2022.120405] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Interactions between β-glucan and starch influence the health benefits of barley-based foods and barley brewing performance. Here, we characterized β-glucans from waxy and normal barley varieties and compared the effects of different β-glucans on the pasting and degradation of waxy and normal barley starches as well as the filterability of mashes from unmalted waxy and normal barley. Waxy barley Zangqing18 β-glucan displayed more compact micrographic features, higher molecular weight, larger particle size, higher thermal decomposition temperature and lower rheological viscosity than normal barley Zangqing2000 β-glucan. β-Glucan not only significantly decreased the pasting viscosities of waxy and normal starches but also lowered the pasting temperatures and peak times of normal starch, likely by inhibiting granule swelling and disrupting the integrity of the continuous phase. β-Glucan also decreased in vitro digestion extent of starch and increased the resistant starch. The unmalted waxy barley had a mash filtration rate much faster than normal barley because starch and β-glucan in waxy barley were rapidly and completely digested and formed more open filter passages. The effects of β-glucan on starch properties varied with the types and contents of β-glucans, whilst the types of starches showed more significant effects. CHEMICAL COMPOUNDS STUDIED: β-Glucan (Pubchem CID: 439262); Amylopectin (Pubchem CID: 439207); Starch (Pubchem CID: 156595876).
Collapse
Affiliation(s)
- Qiao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China
| | - Juan Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China
| | - Huisheng Zhai
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China
| | - Zhihui Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China
| | - Rong Xie
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China
| | - Futong Xiao
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China
| | - Xingquan Zeng
- Tibet Academy of Agriculture and Animal Sciences, No. 130 Jinzhu West Road, Lhasa 850032, People's Republic of China
| | - Yuhong Zhang
- Tibet Academy of Agriculture and Animal Sciences, No. 130 Jinzhu West Road, Lhasa 850032, People's Republic of China
| | - Zhongyi Li
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601, Australia
| | - Zhifen Pan
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China.
| |
Collapse
|
21
|
Shang M, Chen L, Liu W, Chen M, Zhong F. To rationalize the substitution priority of octenyl succinic group along amylopectin chain: An analysis from the change of lamellar structure. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
22
|
Kang X, Zhu W, Xu T, Sui J, Gao W, Liu Z, Jing H, Cui B, Qiao X, Abd El-Aty AM. Characterization of starch structures isolated from the grains of waxy, sweet, and hybrid sorghum ( Sorghum bicolor L. Moench). Front Nutr 2022; 9:1052285. [PMID: 36583213 PMCID: PMC9792479 DOI: 10.3389/fnut.2022.1052285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
In this study, starches were isolated from inbred (sweet and waxy) and hybrid (sweet and waxy) sorghum grains. Structural and property differences between (inbred and hybrid) sweet and waxy sorghum starches were evaluated and discussed. The intermediate fraction and amylose content present in hybrid sweet starch were lower than those in inbred sweet starch, while the opposite trend occurred with waxy starch. Furthermore, there was a higher A chain (30.93-35.73% waxy, 13.73-31.81% sweet) and lower B2 + B3 chain (18.04-16.56% waxy, 24.07-17.43% sweet) of amylopectin in hybrid sorghum starch. X-ray diffraction (XRD) and Fourier transform infrared reflection measurements affirm the relative crystalline and ordered structures of both varieties as follows: inbred waxy > hybrid waxy > hybrid sweet > inbred sweet. Small angle X-ray scattering and 13C CP/MAS nuclear magnetic resonance proved that the amylopectin content of waxy starch was positively correlated with lamellar ordering. In contrast, an opposite trend was observed in sweet sorghum starch due to its long B2 + B3 chain content. Furthermore, the relationship between starch granule structure and function was also concluded. These findings could provide a basic theory for the accurate application of existing sorghum varieties precisely.
Collapse
Affiliation(s)
- Xuemin Kang
- Department of Food Science and Engineering, Shandong Agricultural University, Taian, China,State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Wentao Zhu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Tongcheng Xu
- Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Jie Sui
- Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Wei Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Zhiquan Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Haichun Jing
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Bo Cui
- Department of Food Science and Engineering, Shandong Agricultural University, Taian, China,State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China,*Correspondence: Bo Cui,
| | - Xuguang Qiao
- Department of Food Science and Engineering, Shandong Agricultural University, Taian, China,Xuguang Qiao,
| | - A. M. Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China,Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt,Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey,A. M. Abd El-Aty,
| |
Collapse
|
23
|
Fan H, Chen Z, Ma R, Wen Y, Li H, Wang J, Sun B. Effect of alkyl chain length and amylose/amylopectin ratio on the structure and digestibility of starch-alkylresorcinols inclusion complexes. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Zhang S, Li Q, Zhao Y, Qin Z, Zheng M, Liu H, Liu J. Preparation and characterization of low oil absorption corn starch by ultrasonic combined with freeze–thaw treatment. Food Chem X 2022; 15:100410. [PMID: 36211764 PMCID: PMC9532773 DOI: 10.1016/j.fochx.2022.100410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/21/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022] Open
Abstract
Combined ultrasonic and freeze–thaw pretreatment significantly reduced oil absorption of corn starch. The combined treatment increased the density of corn starch granules. The combined treatment increased the short-range order of cornstarch. Modified starch could be used in low-fat fried food processing industry.
This study investigated the effects of ultrasonic, freeze–thaw, and combined pretreatments on corn starch oil absorption. Low-field nuclear magnetic resonance (LF NMR) was used to study the oil absorption changes after frying of corn starch (CS) subjected to different treatments. The structural characteristics of samples were evaluated using various techniques. Scanning electron microscopy, contact angle, and particle size analysis showed that corn starch subjected to combined ultrasonic and freeze–thaw treatment generated larger, coarser particles with a denser structure. Furthermore, X-ray diffraction, Fourier transform infrared spectroscopy, and differential scanning calorimetry showed that combined treatment improved the order and thermal stability of CS molecules, thereby inhibiting oil absorption during frying. The results showed that combined ultrasonic and freeze–thaw pretreatment significantly reduced the oil absorption of corn starch before and after frying.
Collapse
|
25
|
Zhang H, Rui P, Wang T, Feng W, Chen Z, Zhou X, Wang R. Hydrothermal induced B → A allomorphic transition in retrograded starches with side chains elongated by amylosucrase to different lengths. Int J Biol Macromol 2022; 222:1221-1228. [PMID: 36181887 DOI: 10.1016/j.ijbiomac.2022.09.190] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/08/2022] [Accepted: 09/21/2022] [Indexed: 11/05/2022]
Abstract
In this study, chain-elongated starches were modified with hydrothermal treatment to produce hydrothermal-treated starches with different crystalline structures. All chain-elongated starches showed a B-type crystalline structure and the retrogradation of long branch chains accelerated the formation of starch crystallites. The hydrothermal treatment preserved the granular structure of starches but facilitated the rearrangement of starch chains to generate crystallites. Starches with short chain length favored the B → A allomorphic transition during the hydrothermal treatment. A longer chain length of starch led to greater stability of double helices and accordingly inhibited the B → A allomorphic transition, resulting from the hydrogen bonding along with the direction of helix restrained the displacement of the helix. The longer double helices resulted in higher gelatinization temperature of the chain-elongated starches. Moreover, the gelatinization temperature of the starches was further enhanced by the hydrothermal treatment, and both increased crystallinity and B → A allomorphic transition contributed to the improved thermal stability of the hydrothermal-treated starches.
Collapse
Affiliation(s)
- Hao Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Pinxin Rui
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Tao Wang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wei Feng
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zhengxing Chen
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xing Zhou
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Ren Wang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
26
|
Chang D, Hu X, Ma Z. Pea-Resistant Starch with Different Multi-scale Structural Features Attenuates the Obesity-Related Physiological Changes in High-Fat Diet Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11377-11390. [PMID: 36026466 DOI: 10.1021/acs.jafc.2c03289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The present study compared the modulatory effects of different resistant starches (RSs) isolated from native (NP-RS), acid-hydrolyzed (AHP-RS), and pullulanase debranched (PDP-RS) pea starches on the corresponding in vivo metabolic responses in high fat (HF)-diet-induced obese mice. The biochemical studies on serum lipid profile and antioxidant enzyme activities were supported by histological and gene expression analyses, which suggested a potential therapeutic role for RS in regulating obesity, possibly through the production of short-chain fatty acids and the proliferation of some beneficial colonic bacteria, including Allobaculum, Bifidobacterium, Odoribacter, Clostridium, and Prevotella. Particularly, a more pronounced effect of AHP-RS with a higher proportion of the crystalline region and a more ordered double-helical alignment on improving the hyperlipidemic symptoms in obese mice induced by a HF diet was observed. Our analysis revealed that the RS3 samples seemed to be more effective than RS2 in terms of attenuating obesity in mice that were fed a HF diet.
Collapse
Affiliation(s)
- Danni Chang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Zhen Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| |
Collapse
|
27
|
Li B, Zhang Y, Luo W, Liu J, Huang C. Effect of new type extrusion modification technology on supramolecular structure and in vitro glycemic release characteristics of starches with various estimated glycemic indices. Front Nutr 2022; 9:985929. [PMID: 36046133 PMCID: PMC9423736 DOI: 10.3389/fnut.2022.985929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Nowadays, the highly effective modified technology to starch with various digestibility is gaining interest in food science. Here, the interactions between glycemic release characteristics and fine supramolecular structure of cassava (ECS), potato (EPS), jackfruit seed (EJFSS), maize (EMS), wheat (EWS), and rice starches (ERS) prepared with improved extrusion modification technology (IEMS) were investigated. The crystalline structures of all extruded cooking starches changed from the A-type to V-type. IEMS-treated cassava, potato, and rice starches had broken α-1.6-glycosidic amylopectin (long chains). The others sheared α-1.4-glycosidic amylopectin. The molecular weight, medium and long chain counts, and relative crystallinity decreased, whereas the number of amylopectin short chains increased. The glycemic index (GI) and digestive speed rate constant (k) of ECS, EPS, EJFSS, and EWS were improved compared to those of raw starch. Although EMS and ERS had degraded molecular structures, their particle morphology changed from looser polyhedral to more compact with less enzymolysis channels due to the rearrangement of side chain clusters of amylopectin, leading to enzyme resistance. The starch characteristics of IEMS-treated samples significantly differed. EPS had the highest amylose content, medium chains, long chains, and molecular weight but lowest GI, relative crystallinity, and k. ERS showed the opposite results. Thus, IEMS may affect starches with different GIs to varying degrees. In this investigation, we provide a basis for wider applications of conventional crop starch in the food industry corresponding to different nutrition audience.
Collapse
Affiliation(s)
- Bo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China.,Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China.,Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, China
| | - Yanjun Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China.,Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, China
| | - Wanru Luo
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Jin Liu
- Women's and Children's Hospital of Wanning, Wanning, China
| | - Chongxing Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| |
Collapse
|
28
|
Pu H, Chen X, Wang J, Niu W, Li Y, Zhang C, Liu G, Huang J. A comparison of B- and A-type nanoparticles on pressure resistance. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Forestier M, Sopade P. Kinetics of starch digestion in potato (Solanum tuberosum) flours: Innovative modelling and relationships with particle size. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Wu W, Zhang X, Qu J, Xu R, Liu N, Zhu C, Li H, Liu X, Zhong Y, Guo D. The effects of fermentation of Qu on the digestibility and structure of waxy maize starch. FRONTIERS IN PLANT SCIENCE 2022; 13:984795. [PMID: 36051290 PMCID: PMC9424902 DOI: 10.3389/fpls.2022.984795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
The fermentation of Qu (FQ) could efficiently produce enzymatically modified starch at a low cost. However, it is poorly understood that how FQ influences the waxy maize starch (WMS) structure and the digestion behavior. In this study, WMS was fermented by Qu at different time and starches were isolated at each time point, and its physico-chemical properties and structural parameters were determined. Results showed that the resistant starch (RS), amylose content (AC), the average particle size [D(4,3)] the ratio of peaks at 1,022/995 cm-1, and the onset temperature of gelatinization (T o ) were increased significantly after 36 h. Conversely, the crystallinity, the values of peak viscosity (PV), breakdown (BD), gelatinization enthalpy (ΔH), and the phase transition temperature range (ΔT) were declined significantly after 36 h. It is noteworthy that smaller starch granules were appeared at 36 h, with wrinkles on the surface, and the particle size distribution was also changed from one sharp peak to bimodal. We suggested that the formation of smaller rearranged starch granules was the main reason for the pronounced increase of RS during the FQ process.
Collapse
Affiliation(s)
- Wenhao Wu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, China
| | - Xudong Zhang
- Institute of Crop Science, Quality of Plant Products, University of Hohenheim, Stuttgart, Germany
| | - Jianzhou Qu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, China
| | - Renyuan Xu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, China
| | - Na Liu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, China
| | - Chuanhao Zhu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, China
| | - Huanhuan Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, China
| | - Xingxun Liu
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Yuyue Zhong
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Dongwei Guo
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
31
|
Li R, Zhang H, Pan S, Zhu M, Zheng Y. Preparation of Slowly Digested Corn Starch Using Branching Enzyme and Immobilized α-Amylase. ACS OMEGA 2022; 7:17632-17640. [PMID: 35664616 PMCID: PMC9161404 DOI: 10.1021/acsomega.2c00462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study was to modify the digestibility and structure of corn starch by treatment with compound enzymes. Corn starch was treated with two enzymes (α-amylase, which catalyzes hydrolysis, and branching enzyme, a transglycosidase that catalyzes branch formation), and the reaction was monitored by determining the content of slowly digestible starch in the reaction product. The fine structure and physical and chemical properties of enzyme-modified starch samples were analyzed using scanning electron microscopy, gel chromatography, and X-ray diffraction methods; modified starch has a high degree of branching, a high proportion of short-chain branched structures, and greatly improved solubility. The results show that the slow digestion performance of corn starch was significantly improved after hydrolysis by α-amylase for 4 h and treatment with branching enzyme for 6 h. These results show that enzymatic modification of corn starch can improve its slow digestibility properties.
Collapse
Affiliation(s)
- Ruomin Li
- School
of Food Science and Technology, Jiangsu
Agri-animal Husbandry Vocational College, Taizhou 225300, People’s Republic of China
- College
of Food Science and Engineering, Jiangsu
Ocean University, Lianyungang 222005, People’s Republic
of China
| | - Huanxin Zhang
- School
of Food Science and Technology, Jiangsu
Agri-animal Husbandry Vocational College, Taizhou 225300, People’s Republic of China
| | - Saikun Pan
- College
of Food Science and Engineering, Jiangsu
Ocean University, Lianyungang 222005, People’s Republic
of China
| | - Mengwei Zhu
- School
of Food Science and Technology, Jiangsu
Agri-animal Husbandry Vocational College, Taizhou 225300, People’s Republic of China
| | - Yi Zheng
- School
of Food Science and Technology, Jiangsu
Agri-animal Husbandry Vocational College, Taizhou 225300, People’s Republic of China
| |
Collapse
|
32
|
Effect of germination on nutritional properties and quality attributes of glutinous rice flour and dumplings. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Li B, Zhu L, Wang Y, Zhang Y, Huang C, Zhao Y, Xu F, Zhu K, Wu G. Multi-scale supramolecular structure of Pouteria campechiana (Kunth) Baehni seed and pulp starch. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Li M, Wang J, Wang F, Wu M, Wang R, Strappe P, Blanchard C, Zhou Z. Insights into the multi-scale structure of wheat starch following acylation: Physicochemical properties and digestion characteristics. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Wang Y, Bai Y, Ji H, Dong J, Li X, Liu J, Jin Z. Insights into rice starch degradation by maltogenic α–amylase: Effect of starch structure on its rheological properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Increasing the pH value during thermal processing suppresses the starch digestion of the resulting starch-protein-lipid complexes. Carbohydr Polym 2022; 278:118931. [PMID: 34973749 DOI: 10.1016/j.carbpol.2021.118931] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/02/2021] [Accepted: 11/19/2021] [Indexed: 12/24/2022]
Abstract
To date, how the pH conditions of thermal processing tailor the structure and digestibility of resulting starch-based complexes remains largely unclear. Here, indica rice starch (IRS), stearic acid (SA), and a whey protein isolate (WPI) were used as materials. Increasing the pH value from 4 to 8 during thermal processing (pasting) mainly suppressed the starch digestion of starch-WPI-SA complexes rather than starch-SA counterparts. The starch-SA complexes showed moderate structural changes as the pH value rose, and there was less rapidly digestible starch (RDS) only at pH 8. For the starch-WPI-SA complexes, an increased pH value allowed larger nonperiodic structures and more V-type starch crystallites, with almost unchanged short-range orders but apparently collapsed networks at pH 8. Such ternary complexes displayed more resistant starch (RS) as the pH value rose. The ternary sample at pH 8 contained ca. 29.87% of the RS fractions.
Collapse
|
37
|
Zhang Z, Zhang M, Zhang B, Wang Y, Zhao W. Radio frequency energy regulates the multi-scale structure, digestive and physicochemical properties of rice starch. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Qiao D, Shi W, Luo M, Jiang F, Zhang B. Polyvinyl alcohol inclusion can optimize the sol-gel, mechanical and hydrophobic features of agar/konjac glucomannan system. Carbohydr Polym 2022; 277:118879. [PMID: 34893282 DOI: 10.1016/j.carbpol.2021.118879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Abstract
The practical features (e.g., sol-gel, mechanical and hydrophobic) of biopolymer systems are crucial for their materials applications. This work reveals how polyvinyl alcohol (PVA) inclusion affects the practical features of agar/konjac glucomannan (KGM) system. From rheological analysis, incorporating PVA (especially 6%) enhanced the chain entanglements of resulted ternary solution (A70K24P6) with stabilized sol-gel transition point. Such effect not only increased the zero-shear viscosity (ca. 1.5 times that of agar/KGM counterpart) and structural recovery degree of A70K24P6 solution, but also caused reduced crystallites and simultaneously increased tensile strength, elongation at break and hydrophobicity for A70K24P6 film from solution dehydration. This ternary film exhibited a tensile strength of ca. 105 MPa, an elongation at break of ca. 20%, and a water contact angle of ca. 97.6°. Additionally, incorporating PVA almost unaffected the morphology of film fracture surface. These results are valuable for the design of agar/KGM systems with improved practical features.
Collapse
Affiliation(s)
- Dongling Qiao
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Wenjuan Shi
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Man Luo
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Fatang Jiang
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Binjia Zhang
- Group for Cereals and Oils Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
39
|
Insights into the formation and digestive properties of lotus seed starch-glycerin monostearate complexes formed by freeze-thaw pretreatment and microfluidization. Int J Biol Macromol 2022; 204:215-223. [PMID: 35104470 DOI: 10.1016/j.ijbiomac.2022.01.160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/16/2022] [Accepted: 01/26/2022] [Indexed: 11/23/2022]
Abstract
The objective of this paper was to investigate the formation and digestive properties of lotus seed starch-glycerin monostearate complexes (LSG) formed by freeze-thaw pretreatment and microfluidization. The results showed that the preparation of LSG with six freeze-thaw cycles at 60 MPa had the highest complex index (69.92%). The formation of LSG led to the conversion of the crystalline pattern of lotus seed starch from C-type to V-type and increased the proportion of the microcrystalline region. In addition, the digestive results indicated that LSG had a high resistance to digestive enzymes, which was conducive to increasing the content of resistant starch. Based on the above investigation, the formation and digestive properties showed that the appropriate number of freeze-thaw cycles of pretreatment could facilitate the complexation of starch and lipid under low-pressure microfluidization, which made for the directional regulation of helical conformation and anti-digestion.
Collapse
|
40
|
Huang J, Wang Z, Fan L, Ma S. A review of wheat starch analyses: Methods, techniques, structure and function. Int J Biol Macromol 2022; 203:130-142. [PMID: 35093434 DOI: 10.1016/j.ijbiomac.2022.01.149] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/28/2021] [Accepted: 01/23/2022] [Indexed: 01/31/2023]
Abstract
Wheat starch has received much attention as an important source of dietary energy for humans, an interesting carbohydrate and a polymeric material. The understanding of the structure and function of wheat starch has always been accompanied by newer technological tools. On the one hand, the general knowledge of wheat starch is constantly being enriched. On the other hand, an increasing number of studies are trying to add new insights to what is already known from two frontier perspectives, namely, wheat starch supramolecular structures and wheat starch fine structures (CLDs). This review describes the structure and function of wheat starch from the perspective of wheat starch analysis techniques (instruments).
Collapse
Affiliation(s)
- Jihong Huang
- College of Food and Medicine, Xuchang University, Xuchang, Henan 461000, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China.
| | - Zhen Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Ling Fan
- College of Food and Medicine, Xuchang University, Xuchang, Henan 461000, China
| | - Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China.
| |
Collapse
|
41
|
Wang H, Wang Y, Xu K, Zhang Y, Shi M, Liu X, Chi C, Zhang H. Causal relations among starch hierarchical structure and physicochemical characteristics after repeated freezing-thawing. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107121] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Cold-chain cooked rice with different water contents: Retarded starch digestion by refrigeration. Int J Biol Macromol 2021; 199:10-16. [PMID: 34942207 DOI: 10.1016/j.ijbiomac.2021.12.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/10/2021] [Accepted: 12/10/2021] [Indexed: 11/22/2022]
Abstract
Cold-chain cooked rice is a widely-consumed instant food. While the quality of cooked rice as affected by processing has been widely studied, it remains largely unexplored how concurrent cold-chain conditions (e.g., refrigeration time with specific water contents) tailor the structure and starch digestibility of cooked rice. Here, as shown by combined techniques (e.g., scanning electron microscopy and small angle X-ray scattering), the cold storage (1 to 3 days) of cooked rice at 1.1:1 w/w water-to-rice ratio increased the uniformity of the rice matrix, strengthened the nonperiodic structure, and allowed more B-type starch crystallites and short-range orders. This induced an increase in the slowly digestible starch (SDS) content (from ca. 33.7% to 38.5%) as the refrigeration time rose. In contrast, for cooked rice with 1.5:1 w/w water-to-rice ratio, the cold storage (mainly 1 day) strengthened the matrix uniformity and the nonperiodic structure, and eventually increased the resistant starch (RS) content from ca. 10.3% to 17.7%. The present data could facilitate the design of cold-chain cooked rice with tailored starch digestibility.
Collapse
|
43
|
Xu H, Zhou J, Liu X, Yu J, Copeland L, Wang S. Methods for characterizing the structure of starch in relation to its applications: a comprehensive review. Crit Rev Food Sci Nutr 2021:1-18. [PMID: 34847797 DOI: 10.1080/10408398.2021.2007843] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Starch is a major part of the human diet and an important material for industrial utilization. The structure of starch granules is the subject of intensive research because it determines functionality, and hence suitability for specific applications. Starch granules are made up of a hierarchy of complex structural elements, from lamellae and amorphous regions to blocklets, growth rings and granules, which increase in scale from nanometers to microns. The complexity of these native structures changes with the processing of starch-rich ingredients into foods and other products. This review aims to provide a comprehensive review of analytical methods developed to characterize structure of starch granules, and their applications in analyzing the changes in starch structure as a result of processing, with particular consideration of the poorly understood short-range ordered structures in amorphous regions of granules.
Collapse
Affiliation(s)
- Hanbin Xu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China.,College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Jiaping Zhou
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Xia Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China.,College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Jinglin Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Les Copeland
- School of Life and Environmental Sciences, Sydney Institute of Agriculture, The University of Sydney, Sydney, New South Wales, Australia
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China.,College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
44
|
Zheng B, Guo X, Tang Y, Chen L, Xie F. Development changes in multi-scale structure and functional properties of waxy corn starch at different stages of kernel growth. Int J Biol Macromol 2021; 191:335-343. [PMID: 34560147 DOI: 10.1016/j.ijbiomac.2021.09.120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/02/2021] [Accepted: 09/18/2021] [Indexed: 11/29/2022]
Abstract
Waxy corn starch is widely used in food and papermaking industries due to its unique properties. In this work, the structural and functional properties of starch isolated from waxy corn at different stages of kernel growth were investigated and their relationships were clarified. The results showed that with kernel growth, the surface of starch granules became smooth gradually, and the inner growth rings and the porous structure grew and became clear. Meanwhile, the weight-average molecular mass (Mw), root mean square radius (Rg), and average particle size increased while the amylose content decreased, which should account for the decreased pasting temperature (from 71.37 to 67.44 °C) and increased peak viscosity (1574.2 to 1883.1 cp) and breakdown value observed. Besides, the contents of slowly digestible starch (SDS) and resistant starch (RS) in waxy corn starch decreased significantly (from 44.01% to 40.88% and from 16.73% to 9.80%, respectively, p < 0.05) due to decreases in the double helix content, crystallinity, and structural order, and increases in the semi-crystalline lamellae thickness and the amorphous content. This research provides basic data for the rational utilization of waxy corn starch at different stages of kernel growth.
Collapse
Affiliation(s)
- Bo Zheng
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xinbo Guo
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yukuo Tang
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ling Chen
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Fengwei Xie
- International Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick, Coventry CV4 7AL, United Kingdom.
| |
Collapse
|
45
|
Xiao Y, Wu X, Zhang B, Luo F, Lin Q, Ding Y. Understanding the aggregation structure, digestive and rheological properties of corn, potato, and pea starches modified by ultrasonic frequency. Int J Biol Macromol 2021; 189:1008-1019. [PMID: 34455004 DOI: 10.1016/j.ijbiomac.2021.08.163] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/20/2022]
Abstract
Corn starch (CS), potato starch (PtS), and pea starch (PS) were modified by ultrasonic frequency (codes as UFCS, UFPtS and UFPS), and changes in aggregation structure, digestibility and rheology were investigated. For UFCS, the apparent amylose content and gelatinization enthalpy (∆H) decreased, while the R1047/1022 values and relative crystallinity (RC) increased under lower ultrasonic frequencies (20 kHz and 25 kHz). For UFPtS, the apparent amylose content, R1047/1022 values and RC increased, while the ∆H decreased under a higher ultrasonic frequency (28 kHz). For UFPS, the apparent amylose content, R1047/1022 values, RC, ∆H decreased at 20 kHz, 25 kHz and 28 kHz. Cracks were observed on the surface of UFCS, UFPtS and UFPS. These aggregation structure changes increased the resistant starch content to 31.11% (20 kHz) and 26.45% (25 kHz) for UFCS and to 39.68% (28 kHz) for UFPtS, but decreased the resistant starch content to 18.46% (28 kHz) for UFPS. Consistency coefficient, storage modulus, and loss modulus of UFCS, UFPtS and UFPS increased, while the flow behavior index and damping factor decreased. Results indicated that CS, PtS and PS had diverse digestion and rheology behaviors after ultrasonic frequency modification, which fulfilled different demands in starch-based products.
Collapse
Affiliation(s)
- Yiwei Xiao
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaonian Wu
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Biao Zhang
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Feijun Luo
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yongbo Ding
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
46
|
Supermolecular structures of recrystallized starches with amylopectin side chains modified by amylosucrase to different chain lengths. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106830] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
47
|
Zhang B, Xiao Y, Wu X, Luo F, Lin Q, Ding Y. Changes in structural, digestive, and rheological properties of corn, potato, and pea starches as influenced by different ultrasonic treatments. Int J Biol Macromol 2021; 185:206-218. [PMID: 34161820 DOI: 10.1016/j.ijbiomac.2021.06.127] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 11/22/2022]
Abstract
Ultrasound was widely used in starch modification, whereas there was no review focusing on the effects of different ultrasonic treatments on A-, B- and C-type starches. In this study, the effects of ultrasonic power (UP, 100-600 W) and ultrasonic time (UT, 5-35 min) on structural, digestibility and rheology of corn starch (CS), potato starch (PtS), and pea starch (PS) were investigated. As a result, UP and UT decreased the apparent amylose content of CS and PS, while increased the apparent amylose content of PtS. UP and UT enhanced R1047/1022 values of CS, whereas those of PtS and PS were decreased. Moreover, UP and UT decreased the gelatinization enthalpy of CS, PtS and PS. In vitro digestion revealed that UP and UT decreased the resistant starch content of PtS and PS, but increased the resistant starch content of CS. Rheological tests indicated that UP and UT decreased the flow behavior index of CS, PtS and PS pastes, and caused an increase in storage modulus and loss modulus. Results revealed that ultrasonic treatment represented a promising technology to obtain CS, PtS and PS with tailored digestibility and rheology, which allowed the texture and glycemic response of starch-based products to be adjusted.
Collapse
Affiliation(s)
- Biao Zhang
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yiwei Xiao
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaonian Wu
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Feijun Luo
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yongbo Ding
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
48
|
Understanding how starch constituent in frozen dough following freezing-thawing treatment affected quality of steamed bread. Food Chem 2021; 366:130614. [PMID: 34304137 DOI: 10.1016/j.foodchem.2021.130614] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 01/08/2023]
Abstract
Understanding how starch constituent in frozen dough affected bread quality would be valuable for contributing to the frozen products with better quality. To elucidate the underlying mechanism, starch was fractionated from multiple freezing-thawing (F/T) treated dough and reconstituted with gluten. Results showed that F/T treatment destructed the molecular and supramolecular structures of starch, which were more severe as the F/T cycle increasing. These structural disorganizations made water molecules easier to permeate into the interior of starch granules and form hydrogen bonds with starch molecular chains, which elevated the peak, breakdown, setback and final viscosity of starch paste. In addition, F/T treatment resulted in decreased specific volume (from 1.54 to 0.90 × 103 m3/Kg) and increased hardness (from 42.98 to 52.31 N) for steamed bread. We propose the strengthened water absorption ability and accelerated intra- and inter-molecular rearrangement of starch molecules and weak stability of "starch-gluten matrices" would allow interpreting deteriorated bread quality.
Collapse
|
49
|
Li M, Wang F, Wang J, Wang R, Strappe P, Zheng B, Zhou Z, Chen L. Manipulation of the internal structure of starch by propionyl treatment and its diverse influence on digestion and in vitro fermentation characteristics. Carbohydr Polym 2021; 270:118390. [PMID: 34364631 DOI: 10.1016/j.carbpol.2021.118390] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 10/21/2022]
Abstract
High amylose maize starch (HAMS) and waxy maize starch (WMS) were modified by propionylation and their corresponding physicochemical characteristics, digestion and fermentation properties were studied. The results indicated that two new peaks related to methylene (2.20 ppm) and methyl (0.97 ppm) in the NMR spectrum were formed, indicating the occurrence of propionylation, and this was further confirmed by the formation of a characteristic absorption at 1747 cm-1 in the FTIR spectrum. The propionylation led the modified starch having a lower electron density contrast between the crystalline and amorphous flakes, resulting in the formation of a more compact structure following the increased degrees of substitution (DS). The propionylated starch also had a higher thermal stability and hydrophobicity. These structural changes increased the content of resistant starch (RS) and reduced the predicted glycemic index. More importantly, the gut microbiota fermentation properties indicated that the propionylation of the starch can not only increase the yield of propionate, but also increase the concentration of total short-chain fatty acids (SCFAs). This study highlights a new approach to significantly enhance the RS content in starch, together with an increased SCFA generation capacity.
Collapse
Affiliation(s)
- Mei Li
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Fenfen Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jing Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Rui Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Padraig Strappe
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4700, Australia
| | - Bo Zheng
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhongkai Zhou
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; ARC Functional Grains Centre, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| | - Ling Chen
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
50
|
|