1
|
Siatka T, Mát'uš M, Moravcová M, Harčárová P, Lomozová Z, Matoušová K, Suwanvecho C, Krčmová LK, Mladěnka P. Biological, dietetic and pharmacological properties of vitamin B 9. NPJ Sci Food 2025; 9:30. [PMID: 40075081 PMCID: PMC11904035 DOI: 10.1038/s41538-025-00396-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Humans must obtain vitamin B9 (folate) from plant-based diet. The sources as well as the effect of food processing are discussed in detail. Industrial production, fortification and biofortification, kinetics, and physiological role in humans are described. As folate deficiency leads to several pathological states, current opinions toward prevention through fortification are discussed. Claimed risks of increased folate intake are mentioned as well as analytical ways for measurement of folate.
Collapse
Affiliation(s)
- Tomáš Siatka
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Marek Mát'uš
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232, Bratislava, Slovak Republic
| | - Monika Moravcová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Patrícia Harčárová
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Zuzana Lomozová
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05, Hradec Králové, Czech Republic
| | - Chaweewan Suwanvecho
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05, Hradec Králové, Czech Republic
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Lenka Kujovská Krčmová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05, Hradec Králové, Czech Republic
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic.
| |
Collapse
|
2
|
He L, Yan Y, Song D, Li S, Zhao Y, Ding Z, Wang Z. Comparison of Interactions Between Soy Protein Isolate and Three Folate Molecules: Effect on the Stabilization, Degradation, and Oxidization of Folates and Protein. Foods 2024; 13:4033. [PMID: 39766975 PMCID: PMC11727515 DOI: 10.3390/foods13244033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 01/15/2025] Open
Abstract
This study selected three approved folate sources-folic acid (FA), L-5-methyltetrahydrofolate (MTFA), and calcium 5-methyltetrahydrofolate (CMTFA)-to explore their interaction mechanisms with soy protein isolate (SPI) through spectrofluorometric analysis and molecular docking simulations. We investigated how these interactions influence the structural and physicochemical stability of folates and SPI. Three folates spontaneously bound to SPI, forming complexes, resulting in a decrease of approximately 30 kJ·mol-1 in Gibbs free energy and an association constant (Ka) of 105 L·mol-1. The thermodynamic parameters and molecular docking study revealed the unique binding mechanisms of FA and MTFA with SPI. FA's planar pteridine ring and conjugated double bonds facilitate hydrophobic interactions, whereas MTFA's reduced ring structure and additional polar groups strengthen hydrogen bonding. Although the formation of SPI-folate complexes did not result in substantial alterations to the SPI structure, their binding has the potential to enhance both the physical and thermal stability of the protein by stabilizing its conformation. Notably, compared with free FA, the FA-SPI complexes significantly enhanced FA's stability, exhibiting 71.1 ± 1.2% stability under light conditions after 9 days and 63.2 ± 2.6% stability in the dark after 60 days. In contrast, no similar effect was observed for MTFA. This discrepancy can be ascribed to the distinct degradation pathways of the Fa and MTFA molecules. This study offers both theoretical and experimental insights into the development of folate-loaded delivery systems utilizing SPI as a matrix.
Collapse
Affiliation(s)
- Linlin He
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China; (L.H.); (Y.Y.); (D.S.); (Y.Z.); (Z.W.)
| | - Yuqian Yan
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China; (L.H.); (Y.Y.); (D.S.); (Y.Z.); (Z.W.)
| | - Dandan Song
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China; (L.H.); (Y.Y.); (D.S.); (Y.Z.); (Z.W.)
| | - Shuangfeng Li
- School of Pharmaceutical Science and Food Engineering, Liaocheng University, Liaocheng 252059, China;
| | - Yanna Zhao
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China; (L.H.); (Y.Y.); (D.S.); (Y.Z.); (Z.W.)
| | - Zhuang Ding
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China; (L.H.); (Y.Y.); (D.S.); (Y.Z.); (Z.W.)
| | - Zhengping Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China; (L.H.); (Y.Y.); (D.S.); (Y.Z.); (Z.W.)
| |
Collapse
|
3
|
Chen W, Jin W, Ma X, Wen H, Li Y, Xu G, Xu P, Cheng H. A study on the structure-functionality relationship of Solenaia oleivora protein under high-intensity ultrasonication processing. Food Chem 2024; 460:140598. [PMID: 39068791 DOI: 10.1016/j.foodchem.2024.140598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Solenaia oleivora is a valuable freshwater mussel endemic to China with a high content of high-quality proteins, but the lack of structural information and limited functionality of Solenaia oleivora proteins constrained their application in the food industry. This study investigates the changes in structural characteristics and functionality of Solenaia oleivora protein under ultrasound processing at power from 200 to 600 W. The ultrasound treatment caused increased contents of β-turn and α-helix, and the exposure of interior hydrophobic groups, resulting in the increased hydrophobicity by around 3 folds. The ultrasound treatment could significantly decrease particle size and increase surface charges of Solenaia oleivora proteins, facilitating the increase of hydrosolubility from 10.2% to 81.7%. These structural changes and increased hydrosolubility contributed to the enhancement of emulsifying and foaming properties, and in vitro digestibility. The results suggested that the ultrasound-treated Solenaia oleivora proteins possessed the potential as an alternative protein in food applications.
Collapse
Affiliation(s)
- Wanwen Chen
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Wu Jin
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Xueyan Ma
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Haibo Wen
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| | - Yanping Li
- Jinghuai Special Aquatic Products Limited Company, Funan, Anhui, China
| | - Gangchun Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Pao Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Hao Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
4
|
Bustos LF, Vasile FE, Pérez OE. Experimental and in silico approaches for the buffalo whey protein-folic acid complexation elucidation. Molecular changes impacting on protein structure and functionality. Food Res Int 2024; 180:114062. [PMID: 38395554 DOI: 10.1016/j.foodres.2024.114062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Using a buffalo whey proteins concentrate (BWPC) as a nanocarrier of labile bioactive compounds as vitamins constitutes a very innovative approach with potential application in the food and nutraceutical industries. This work aims to deepen the knowledge of the phenomena occurring in the complexation process of vitamin B9 with BWPC, providing valuable information on the molecular and functional properties of complexes and intervening substances. For such purpose, analytical (SEC-FPLC, Fluorescence spectroscopy, FTIR, DLS, UV-vis spectroscopy) and in-silico methods (molecular docking) were performed to get complementary data. Five types of proteins were identified in the BWPC. Folic acid (FA) interacted with BWPC in buffer pH 7 through H-bonds and hydrophobic interactions, inducing conformational changes and modifying the secondary and tertiary protein structure. The resultant BWPC-FA complexes showed a size distribution in the nanoscale (100-150 nm) with no aggregation. Molecular docking showed that lactoferrin had the highest FA binding affinity. Complexation did not reduce the antioxidant activity of intervening substances. Indeed, the radical scavenging capacity of BWPC-FA was 20 % higher than single BWPC. The obtained results provide relevant data enabling the adding value of the main effluent of buffalo dairy industries.
Collapse
Affiliation(s)
- Leandro Fabián Bustos
- Universidad Nacional del Chaco Austral & CONICET - Instituto de investigaciones en procesos tecnológicos avanzados (INIPTA), Comandante Fernández 755, Presidencia Roque Sáenz Peña, 3700 Chaco, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica & CONICET-Universidad de Buenos Aires, Laboratorio Interdisciplinario de Dinámica Celular y Nano-Herramientas, Intendente Güiraldes 2160, CP 1428 Buenos Aires, Argentina.
| | - Franco Emanuel Vasile
- Universidad Nacional del Chaco Austral & CONICET - Instituto de investigaciones en procesos tecnológicos avanzados (INIPTA), Comandante Fernández 755, Presidencia Roque Sáenz Peña, 3700 Chaco, Argentina.
| | - Oscar Edgardo Pérez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica & CONICET-Universidad de Buenos Aires, Laboratorio Interdisciplinario de Dinámica Celular y Nano-Herramientas, Intendente Güiraldes 2160, CP 1428 Buenos Aires, Argentina.
| |
Collapse
|
5
|
Premjit Y, Pandey S, Mitra J. Recent Trends in Folic Acid (Vitamin B9) Encapsulation, Controlled Release, and Mathematical Modelling. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2077361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Yashaswini Premjit
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Sachchidanand Pandey
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Jayeeta Mitra
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
6
|
Resveratrol Stabilization and Loss by Sodium Caseinate, Whey and Soy Protein Isolates: Loading, Antioxidant Activity, Oxidability. Antioxidants (Basel) 2022; 11:antiox11040647. [PMID: 35453332 PMCID: PMC9030250 DOI: 10.3390/antiox11040647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 11/25/2022] Open
Abstract
The interaction of protein carrier and polyphenol is variable due to their environmental sensitivity. In this study, the interaction between resveratrol and whey protein isolate (WPI), sodium caseinate (SC) and soy protein isolate (SPI) during storage were systematically investigated from the aspects of polyphenol loading, antioxidant activity and oxidability. It was revealed that resveratrol loaded more in the SPI core and existed both in the core of SC micelles and on the particle surface, while WPI and resveratrol mainly formed in complexes. The loading capacity of the three proteins ranked in order SC > SPI > WPI. ABTS assay showed that the antioxidant activity of the protein carriers in the initial state was SC > SPI > WPI. The results of sulfhydryl, carbonyl and amino acid analysis showed that protein oxidability was SPI > SC > WPI. WPI, with the least oxidation, improved the storage stability of resveratrol, and the impact of SC on resveratrol stability changed from a protective to a pro-degradation effect. Co-oxidation occurred between SPI and resveratrol during storage, which refers to covalent interactions. The data gathered here suggested that the transition between the antioxidant and pro-oxidative properties of the carrier is the primary factor to investigate its protective effect on the delivered polyphenol.
Collapse
|
7
|
Fu X, Yin X, Ji C, Cheng H, Liang L. Effects of Folic Acid and Caffeic Acid on Indirect Photo-oxidation of Proteins and Their Costabilization under Irradiation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12505-12516. [PMID: 34519206 DOI: 10.1021/acs.jafc.1c02209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Proteins, vitamins, and phenols are often present together in foods, but they are sensitive to environmental factors. Folic acid (FA), a synthetic form of folate, decomposes under light, leading to protein oxidation. Caffeic acid (CA), a phenolic acid, exhibits remarkable activity for scavenging reactive molecules. The exploitation of their interactions offers opportunities for designing the stabilizing system. In this study, FA-photodecomposition-induced protein (β-lactoglobulin, α-lactalbumin, bovine serum albumin, and β-casein) damage and its inhibition by CA were investigated in terms of protein composition and structural change. The results indicated that FA photoproducts oxidized the proteins via the electron transfer pathway, leading to degradation, aggregation, and unfolding. At the same time, photostability of FA, CA, and proteins in the tertiary mixture was better than that of any individual components. The antioxidant activity of the proteins contributed to their protection for FA. CA and its products inhibited FA photodecomposition and the photodecomposition-induced protein oxidation by trapping excited states.
Collapse
Affiliation(s)
- Xiaojun Fu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xin Yin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chuye Ji
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Li Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
8
|
Wusigale, Wang T, Hu Q, Xue J, Khan MA, Liang L, Luo Y. Partition and stability of folic acid and caffeic acid in hollow zein particles coated with chitosan. Int J Biol Macromol 2021; 183:2282-2292. [PMID: 34102238 DOI: 10.1016/j.ijbiomac.2021.05.216] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/21/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022]
Abstract
The carriers for hydrophobic bioactives have been extensively studied, while those for hydrophilic bioactives are still challenging. The partition of bioactives in the particles depends greatly on their solubility, interaction with carrier materials, as well as structure of carriers. In this study, chitosan-coated hollow zein particles using calcium phosphate as a sacrificing template (CS-HZ) were fabricated to co-encapsulate folic acid (FA) and caffeic acid (CA). Partition, photostability, and antioxidant capacity of bioactive compounds were also studied. The size, polydispersity index and ζ-potential of optimized CS-HZ were 176.3 nm, 0.14 and +39.3 mV, respectively, indicating their small and uniform dimension with excellent colloidal stability. FA interacted with chitosan to form complexes and then coated on the zein particles where CA was encapsulated. After co-encapsulation in CS-HZ, the photostability of both FA and CA was improved in comparison with encapsulation of single compound, with 85% of FA remaining after 240 min of UVA irradiation, and 90% of CA remaining after 80 min. Antioxidant activity of CA decreased upon encapsulation, but significantly increased after irradiation. Findings in this study shed some light on the design of carriers for co-delivery of hydrophilic compounds in acidic condition.
Collapse
Affiliation(s)
- Wusigale
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Taoran Wang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Qiaobin Hu
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Jingyi Xue
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Muhammad Aslam Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Li Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
9
|
Yin X, Fu X, Cheng H, Wusigale, Liang L. α-Tocopherol and naringenin in whey protein isolate particles: Partition, antioxidant activity, stability and bioaccessibility. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105895] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Chen W, Li T, Yu H, Ma C, Wang X, Qayum A, Hou J, Jiang Z. Structure and emulsifying properties of whey protein isolate: Effect of safflower yellow concentration. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Hu L, Cheng H, Gao Y, Liang L. Mechanism for Inhibition of Folic Acid Photodecomposition by Various Antioxidants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:340-350. [PMID: 31874034 DOI: 10.1021/acs.jafc.9b06263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Folic acid, a synthetic form of folate, is a water-soluble vitamin that is essential during periods of rapid cell division and growth. However, it decomposes upon ultraviolet irradiation to form inactive photoproducts. In this study, the protective effect and mechanisms of antioxidants, including cinnamic acids, flavonoids, catechol and its derivatives, stilbenes, p-benzoquinone and its derivatives, isoprenoids, curcumin, oleic acid, and linoleic acid, against folic acid photodecomposition were investigated by using fluorescence and absorbance spectroscopy, high-performance liquid chromatography, and antioxidant assay. It was found that antioxidants could inhibit or delay the folic acid decomposition in varying degrees, among which caffeic acid was the most effective. The increase in its remarkable antioxidant efficiency and absorbance in the UVA region during irradiation contributed to its effective protection. This finding could be useful for the protection of photolabile components in food and other uses.
Collapse
|
12
|
Fang Z, Xu X, Cheng H, Li J, Guang C, Liang L. Comparison of whey protein particles and emulsions for the encapsulation and protection of α-tocopherol. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2018.11.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|