1
|
Gutiérrez TJ, León IE, Ponce AG, Alvarez VA. Active and pH-Sensitive Nanopackaging Based on Polymeric Anthocyanin/Natural or Organo-Modified Montmorillonite Blends: Characterization and Assessment of Cytotoxicity. Polymers (Basel) 2022; 14:polym14224881. [PMID: 36433007 PMCID: PMC9697583 DOI: 10.3390/polym14224881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Polymeric anthocyanins are biologically active, pH-sensitive natural compounds and pigments with beneficial functional, pharmacological and therapeutic properties for consumer health. More recently, they have been used for the manufacture of active and pH-sensitive ("intelligent") food nanopackaging, due to their bathochromic effect. Nevertheless, in order for polymeric anthocyanins to be included either as a functional food or as a pharmacological additive (medicinal food), they inevitably need to be stabilized, as they are highly susceptible to environmental conditions. In this regard, nanopackaging has become a tool to overcome the limitations of polymeric anthocyanins. The objective of this study was to evaluate their structural, thermal, morphological, physicochemical, antioxidant and antimicrobial properties, as well as their responses to pH changes, and the cytotoxicity of blends made from polymeric anthocyanins extracted from Jamaica flowers (Hibiscus sabdariffa) and natural or organo-modified montmorillonite (Mt), as active and pH-sensitive nanopackaging. This study allowed us to conclude that organo-modified Mts are efficient pH-sensitive and antioxidant nanopackaging systems that contain and stabilize polymeric anthocyanins compared to natural Mt nanopackaging and stabilizing polymeric anthocyanins. However, the use of these polymeric anthocyanin-stabilizing organo-modified Mt-based nanopackaging systems are limited for food applications by their toxicity.
Collapse
Affiliation(s)
- Tomy J. Gutiérrez
- Grupo de Materiales Compuestos Termoplásticos (CoMP), Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Facultad de Ingeniería, Universidad Nacional de Mar del Plata (UNMdP) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Colón 10850, Mar del Plata B7608FLC, Argentina
- Correspondence: ; Tel.: +54-223-6260627; Fax: +54-223-481-0046
| | - Ignacio E. León
- Centro de Química Inorgánica “Dr. Pedro J. Aymonino” (CEQUINOR), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Blvd. 120 No. 1465, La Plata 1900, Argentina
| | - Alejandra G. Ponce
- Grupo de Investigación en Ingeniería en Alimentos (GIIA), Instituto de Ciencia y Tecnología de Alimentos y Ambiente (INCITAA, CIC-UNMDP), Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Juan B. Justo 4302, Mar del Plata B7602AYL, Argentina
| | - Vera A. Alvarez
- Grupo de Materiales Compuestos Termoplásticos (CoMP), Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Facultad de Ingeniería, Universidad Nacional de Mar del Plata (UNMdP) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Colón 10850, Mar del Plata B7608FLC, Argentina
| |
Collapse
|
2
|
Applications of natural polysaccharide-based pH-sensitive films in food packaging: Current research and future trends. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Escamilla-García M, García-García MC, Gracida J, Hernández-Hernández HM, Granados-Arvizu JÁ, Di Pierro P, Regalado-González C. Properties and Biodegradability of Films Based on Cellulose and Cellulose Nanocrystals from Corn Cob in Mixture with Chitosan. Int J Mol Sci 2022; 23:ijms231810560. [PMID: 36142471 PMCID: PMC9503148 DOI: 10.3390/ijms231810560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
The increase in consumer demand for more sustainable packaging materials represents an opportunity for biopolymers utilization as an alternative to reduce the environmental impact of plastics. Cellulose (C) and chitosan (CH) are attractive biopolymers for film production due to their high abundance, biodegradability and low toxicity. The objective of this work was to incorporate cellulose nanocrystals (NC) and C extracted from corn cobs in films added with chitosan and to evaluate their properties and biodegradability. The physicochemical (water vapor barrier, moisture content, water solubility and color) and mechanical properties of the films were evaluated. Component interactions using Fourier-transform infrared (FTIR) spectroscopy, surface topography by means of atomic force microscopy (AFM), biodegradability utilizing a fungal mixture and compostability by burying film discs in compost were also determined. The C-NC-CH compared to C-CH films presented a lower moisture content (17.19 ± 1.11% and 20.07 ± 1.01%; w/w, respectively) and water vapor permeability (g m−1 s−1 Pa−1 × 10−12: 1.05 ± 0.15 and 1.57 ± 0.10; w/w, respectively) associated with the NC addition. Significantly high roughness (Rq = 4.90 ± 0.98 nm) was observed in films added to NC, suggesting a decreased homogeneity. The biodegradability test showed larger fungal growth on C-CH films than on CH films (>60% and <10%, respectively) due to the antifungal properties of CH. C extracted from corn cobs resulted in a good option as an alternative packaging material, while the use of NC improved the luminosity and water barrier properties of C-CH films, promoting strong interactions due to hydrogen bonds.
Collapse
Affiliation(s)
- Monserrat Escamilla-García
- Faculty of Chemistry, Autonomous University of Querétaro, Cerro de las Campanas S/N, Las Campanas, Santiago de Querétaro 76010, Mexico
| | - Mónica Citlali García-García
- Faculty of Chemistry, Autonomous University of Querétaro, Cerro de las Campanas S/N, Las Campanas, Santiago de Querétaro 76010, Mexico
| | - Jorge Gracida
- Faculty of Chemistry, Autonomous University of Querétaro, Cerro de las Campanas S/N, Las Campanas, Santiago de Querétaro 76010, Mexico
| | - Hilda María Hernández-Hernández
- CONACYT—Center for Research and Assistance in Technology and Design of the Jalisco State, A.C. (CIATEJ), Av. Normalistas 800, Colinas de la Normal, Guadalajara 44270, Mexico
| | - José Ángel Granados-Arvizu
- Faculty of Chemistry, Autonomous University of Querétaro, Cerro de las Campanas S/N, Las Campanas, Santiago de Querétaro 76010, Mexico
| | - Próspero Di Pierro
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università, 100, 80055 Naples, Italy
| | - Carlos Regalado-González
- Faculty of Chemistry, Autonomous University of Querétaro, Cerro de las Campanas S/N, Las Campanas, Santiago de Querétaro 76010, Mexico
- Correspondence: ; Tel.: +52-442-123-8332
| |
Collapse
|
4
|
Biodegradable active, intelligent, and smart packaging materials for food applications. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Vonnie JM, Li CS, Erna KH, Yin KW, Felicia WXL, Aqilah MNN, Rovina K. Development of Eggshell-Based Orange Peel Activated Carbon Film for Synergetic Adsorption of Cadmium (II) Ion. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12162750. [PMID: 36014615 PMCID: PMC9415680 DOI: 10.3390/nano12162750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/22/2022] [Accepted: 08/03/2022] [Indexed: 06/12/2023]
Abstract
Heavy metal contamination has spread around the world, particularly in emerging countries. This study aimed to assess the effectiveness of starch/eggshell/orange peel-activated carbon-based composite films in removing cadmium (II) ions from water samples. X-ray diffraction and scanning electron microscopy were used to characterize the composite films. The effect of Cd2+ was studied using a UV-Vis spectrophotometer and atomic absorption spectroscopy. The morphology of the composite film reveals a highly porous and rough surface with more open channels and a non-uniform honeycomb, indicating that the film has a high potential to adsorb Cd2+. The diffraction peaks for this film were found to be at 13.74°, 17.45°, 18.4°, and 23.6°, indicating a typical crystalline A-type packing arrangement within the starch granules. The results indicate that crystalline structure was unaffected by the addition of eggshell powder and orange peel-activated carbon. In 0.5 mg L-1 and 1.0 mg L-1 Cd2+ ions, the composite film removed 100% and 99.7% of the Cd2+, respectively, while the maximum removal efficiency for methylene blue was 93.75%. Thus, the current study shows that starch/eggshell/orange peel activated carbon film has a high potential for commercial activated carbon as a low-cost adsorbent.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kobun Rovina
- Correspondence: ; Tel.: +60-88320000 (ext. 8713); Fax: +60-88-320993
| |
Collapse
|
6
|
Homthawornchoo W, Kaewprachu P, Pinijsuwan S, Romruen O, Rawdkuen S. Enhancing the UV-Light Barrier, Thermal Stability, Tensile Strength, and Antimicrobial Properties of Rice Starch-Gelatin Composite Films through the Incorporation of Zinc Oxide Nanoparticles. Polymers (Basel) 2022; 14:polym14122505. [PMID: 35746081 PMCID: PMC9229570 DOI: 10.3390/polym14122505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
The effects of zinc oxide nanoparticles (ZnONPs) on the properties of rice starch−gelatin (RS−G) films were investigated. ZnONPs were synthesized by a green method utilizing Asiatic pennywort (Centella asiatica L.) extract. The ZnONPs were rod-shaped, with sizes ranging from 100−300 nm. An increase in the concentration of ZnONPs significantly (p < 0.05) increased the thickness (0.050−0.070 mm), tensile strength (3.49−4.63 MPa), water vapor permeability (5.52−7.45 × 10−11 g m/m2 s Pa), and thermal stability of the RS−G−ZnONPs nanocomposite films. On the other hand, elongation at break (92.20−37.68%) and film solubility (67.84−30.36%) were significantly lower (p < 0.05) than that of the control RS−G film (0% ZnONPs). Moreover, the addition of ZnONPs strongly affected the film appearance, color, transmission, and transparency. The ZnONPs had a profound effect on the UV-light barrier improvement of the RS−G film. The crystalline structure of the ZnONPs was observed in the fabricated nanocomposite films using X-ray diffraction analysis. Furthermore, the RS−G−ZnONPs nanocomposite films exhibited strong antimicrobial activity against all tested bacterial strains (Staphylococcus aureus TISTR 746, Bacillus cereus TISTR 687, Escherichia coli TISTR 527, Salmonella Typhimurium TISTR 1470) and antifungal activity toward Aspergillus niger. According to these findings, RS−G−ZnONPs nanocomposite film possesses a potential application as an active packaging: antimicrobial or UV protective.
Collapse
Affiliation(s)
- Wantida Homthawornchoo
- Innovative Food Packaging and Biomaterials Unit, School of Agro-Industry, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand;
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand;
- Correspondence: (W.H.); (S.R.); Tel.: +66-53916739 (W.H. & S.R.); Fax: +66-53916737 (W.H. & S.R.)
| | - Pimonpan Kaewprachu
- College of Maritime Studies and Management, Chiang Mai University, Samut Sakhon 74000, Thailand;
- Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Suttiporn Pinijsuwan
- Innovative Food Packaging and Biomaterials Unit, School of Agro-Industry, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand;
| | - Orapan Romruen
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Saroat Rawdkuen
- Innovative Food Packaging and Biomaterials Unit, School of Agro-Industry, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand;
- Correspondence: (W.H.); (S.R.); Tel.: +66-53916739 (W.H. & S.R.); Fax: +66-53916737 (W.H. & S.R.)
| |
Collapse
|
7
|
Laureanti EJG, Paiva TS, Souza Tasso I, Dallabona ID, Helm CV, Matos Jorge LM, Jorge RMM. Development of active cassava starch films reinforced with waste from industrial wine production and enriched with pink pepper extract. J Appl Polym Sci 2021. [DOI: 10.1002/app.50922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Emanuele Joana Gbur Laureanti
- Department of Chemical Engineering, Graduate Program in Chemical Engineering Federal University of Paraná Curitiba Brazil
| | - Thainnane Silva Paiva
- Department of Chemical Engineering, Graduate Program in Food Engineering Federal University of Paraná Curitiba Brazil
| | - Ivisson Souza Tasso
- Department of Chemical Engineering, Graduate Program in Food Engineering Federal University of Paraná Curitiba Brazil
| | - Ithiara Dalponte Dallabona
- Department of Chemical Engineering, Graduate Program in Food Engineering Federal University of Paraná Curitiba Brazil
| | | | - Luiz Mario Matos Jorge
- Department of Chemical Engineering State University of Maringá (UEM) Maringá Paraná Brazil
| | - Regina Maria Matos Jorge
- Department of Chemical Engineering, Graduate Program in Chemical Engineering Federal University of Paraná Curitiba Brazil
- Department of Chemical Engineering, Graduate Program in Food Engineering Federal University of Paraná Curitiba Brazil
| |
Collapse
|
8
|
Development and Characterization of Novel Composite Films Based on Soy Protein Isolate and Oilseed Flours. Molecules 2021; 26:molecules26123738. [PMID: 34205277 PMCID: PMC8235767 DOI: 10.3390/molecules26123738] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/17/2022] Open
Abstract
The possibility of using oilseed flours as a waste source for film-forming materials with a combination of soy protein isolate in preparation of edible films was evaluated. Physical, mechanical and barrier properties were determined as a function of the oilseed type: hemp, evening primrose, flax, pumpkin, sesame and sunflower. It was observed that the addition of oilseed flours increased the refraction and thus the opacity of the obtained films from 1.27 to 9.57 A mm−1. Depending on the type of flours used, the edible films took on various colors. Lightness (L*) was lowest for the evening primrose film (L* = 34.91) and highest for the soy protein film (L* = 91.84). Parameter a* was lowest for the sunflower film (a* = −5.13) and highest for the flax film (a* = 13.62). Edible films made of pumpkin seed flour had the highest value of the b* color parameter (b* = 34.40), while films made of evening primrose flour had the lowest value (b* = 1.35). All analyzed films had relatively low mechanical resistance, with tensile strength from 0.60 to 3.09 MPa. Films made of flour containing the highest amount of protein, pumpkin and sesame, had the highest water vapor permeability, 2.41 and 2.70 × 10−9 g·m−1 s−1 Pa−1, respectively. All the edible films obtained had high water swelling values from 131.10 to 362.16%, and the microstructure of the films changed after adding the flour, from homogeneous and smooth to rough. All blended soy protein isolate–oilseed flour films showed lower thermal stability which was better observed at the first and second stages of thermogravimetric analysis when degradation occurred at lower temperatures. The oilseed flours blended with soy protein isolate show the possibility of using them in the development of biodegradable films which can find practical application in the food industry.
Collapse
|
9
|
Márquez-Cardozo CJ, Caballero-Gutiérrez BL, Ciro-Velázquez HJ, Restrepo-Molina DA. Effect of pretreatment and temperature on the drying kinetics and physicochemical and techno-functional characteristics of pumpkin ( Cucurbita maxima). Heliyon 2021; 7:e06802. [PMID: 33948517 PMCID: PMC8080050 DOI: 10.1016/j.heliyon.2021.e06802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/14/2020] [Accepted: 04/10/2021] [Indexed: 11/20/2022] Open
Abstract
The study was carried out to assess fresh slices and thermally pretreated pumpkin (Cucurbita maxima) dried at temperatures of 55 °C, 60 °C, 65 °C, and 70 °C. The drying kinetics and quality attributes of the dried product were determined, and results indicated that the modified Page model was the best fit, with activation energies of 29.47 kJ mol-1 and 16.06 kJ mol-1 for drying fresh and thermally pretreated slices, respectively. A significant effect (p < 0.05) related to thermal pretreatment and temperature was evidenced on the physicochemical properties. The fresh pulp powders presented the following ranges of moisture and color (ΔE), 7.10%-8.31% w.b.; 21.23-25.23, respectively, and for the pretreated pulp powders, they were 8.94%-11.54% w.b., and from 19.00- 28.30, respectively. There were no significant effects on the techno-functional properties in the powders; cold water solubility was 5.36%-6.46%, water absorption capacity was 3.42-6.52 g/g, and oil absorption capacity was 1.00-1.30 g/g. The carbohydrate and fiber contents significantly decreased in the pretreated powder. An increase in antioxidant activity was found in fresh and thermally pretreated pulp powder at a temperature of 70 °C, presenting values between 2.23-2.98 μmol Trolox equivalent g-1d.b. evaluated by the DPPH method and between 40.48-45.92 μmol Trolox equivalent g-1d.b. by ABTS, and no significant differences (p > 0.05) were determined after pulp pretreatment. The total content of carotenoids presented retention percentages for fresh pulp powders of 52.09%, 41.92%, 30.55%, and 22.79%, while for pretreated pulp powders, they were 30.67%, 32.86%, 24.84%, and 14.71% when dried at temperatures of 55 °C, 60 °C, 65 °C, and 70 °C, respectively. The powders obtained from heat-pretreated pumpkin pulp showed significant differences (p < 0.05) in physicochemical characteristics and total carotenoids, but they were not found (p > 0.05) in the techno-functional properties and antioxidant activity evaluated by the DPPH and ABTS methods.
Collapse
Affiliation(s)
- Carlos J. Márquez-Cardozo
- Universidad Nacional de Colombia, Facultad de Ciencias Agrarias, Departamento de Ingeniería Agrícola y Alimentos, Medellín, Colombia
| | - Birina L. Caballero-Gutiérrez
- Universidad Nacional de Colombia, Facultad de Ciencias Agrarias, Departamento de Ingeniería Agrícola y Alimentos, Medellín, Colombia
| | - Héctor J. Ciro-Velázquez
- Universidad Nacional de Colombia, Facultad de Ciencias Agrarias, Departamento de Ingeniería Agrícola y Alimentos, Medellín, Colombia
| | - Diego A. Restrepo-Molina
- Universidad Nacional de Colombia, Facultad de Ciencias Agrarias, Departamento de Ingeniería Agrícola y Alimentos, Medellín, Colombia
| |
Collapse
|
10
|
In vitro and in vivo digestibility from bionanocomposite edible films based on native pumpkin flour/plum flour. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106272] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Gutiérrez TJ, Tovar J. Update of the concept of type 5 resistant starch (RS5): Self-assembled starch V-type complexes. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.078] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Gutiérrez TJ, Mendieta JR, Ortega-Toro R. In-depth study from gluten/PCL-based food packaging films obtained under reactive extrusion conditions using chrome octanoate as a potential food grade catalyst. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106255] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Reactive extrusion-processed native and phosphated starch-based food packaging films governed by the hierarchical structure. Int J Biol Macromol 2021; 172:439-451. [PMID: 33453260 DOI: 10.1016/j.ijbiomac.2021.01.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/03/2021] [Accepted: 01/08/2021] [Indexed: 12/19/2022]
Abstract
The aim of this research work was to investigate novel tools given by nanotechnology and green chemistry for improving the disadvantages typically associated to the starch-based films: water susceptibility and brittle mechanical behavior. With this in mind, four food packaging film systems were developed from corn starch or corn starch nanocrystals (SNCs), and modified by phosphating under reactive extrusion (REx) conditions using sodium tripolyphosphate (Na5P3O10 - TPP) as a crosslinker. The structural, physicochemical, thermal, rheological and mechanical properties, as well as studies associated with the management of carbohydrate polymer-based plastic wastes (biodegradability and compostability) were carried out in this study. The hierarchical structure and the modification of the starch were dependent on the amylose content and degree of substitution (DS), which in turn depended on the hydrogen (H)-bonding interactions. In both cases, a higher molecular ordering of the starch chains in parallel was decisive to obtain the self-assembled thermoplastic starches. Beyond the valuable results obtained and scientifically analyzed, unfortunately none of the manufactured materials achieved to improve their performance compared to the control film (thermoplastic starch - TPS). It was even thought that the phosphated starch-based films could fertilize lettuce (Lactuca sativa) seedlings during their biodegradation, and this was not achieved either. This possibly due to the low content of phosphorus or its poor bioavailability.
Collapse
|
14
|
Development of red apple pomace extract/chitosan-based films reinforced by TiO 2 nanoparticles as a multifunctional packaging material. Int J Biol Macromol 2020; 168:105-115. [PMID: 33309654 DOI: 10.1016/j.ijbiomac.2020.12.051] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/19/2020] [Accepted: 12/06/2020] [Indexed: 12/26/2022]
Abstract
A chitosan-based (CS) film was developed with nanosized TiO2 and red apple pomace extract (APE). The intermolecular interactions of CS, TiO2 and APE were evaluated by Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray diffraction. TiO2 nanoparticles remarkably improved the water vapor and UV-Vis light barrier properties, mechanical strength and thermal stability of CS-APE films. The strong antioxidant abilities of CS-APE and CS-TiO2-APE films were characterized. Nano-TiO2 and APE showed a synergistic enhancement of the antimicrobial activity in CS matrix. The addition of TiO2 nano-particles into CS-APE films resulted the sensitive color variations, which applied successfully as an indicator to monitor the freshness of salmon fillets. Consequently, the development of CS-APE-TiO2 film provides a new solution to convert rad apple pomace to an active and multifunctional food packaging material with considerable mechanical, antibacterial, antioxidant and pH-responsive color-changing properties.
Collapse
|
15
|
Development of biodegradable hybrid polymer film for detection of formaldehyde in seafood products. SENSING AND BIO-SENSING RESEARCH 2020. [DOI: 10.1016/j.sbsr.2019.100310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
16
|
Balbino S, Dorić M, Vidaković S, Kraljić K, Škevin D, Drakula S, Voučko B, Čukelj N, Obranović M, Ćurić D. Application of cryogenic grinding pretreatment to enhance extractability of bioactive molecules from pumpkin seed cake. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13300] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sandra Balbino
- Faculty of Food Technology and BiotechnologyUniversity of Zagreb Zagreb Croatia
| | - Martina Dorić
- Faculty of Food Technology and BiotechnologyUniversity of Zagreb Zagreb Croatia
| | - Silvija Vidaković
- Faculty of Food Technology and BiotechnologyUniversity of Zagreb Zagreb Croatia
| | - Klara Kraljić
- Faculty of Food Technology and BiotechnologyUniversity of Zagreb Zagreb Croatia
| | - Dubravka Škevin
- Faculty of Food Technology and BiotechnologyUniversity of Zagreb Zagreb Croatia
| | - Saša Drakula
- Faculty of Food Technology and BiotechnologyUniversity of Zagreb Zagreb Croatia
| | - Bojana Voučko
- Faculty of Food Technology and BiotechnologyUniversity of Zagreb Zagreb Croatia
| | - Nikolina Čukelj
- Faculty of Food Technology and BiotechnologyUniversity of Zagreb Zagreb Croatia
| | - Marko Obranović
- Faculty of Food Technology and BiotechnologyUniversity of Zagreb Zagreb Croatia
| | - Duška Ćurić
- Faculty of Food Technology and BiotechnologyUniversity of Zagreb Zagreb Croatia
| |
Collapse
|
17
|
Qin Y, Liu Y, Yuan L, Yong H, Liu J. Preparation and characterization of antioxidant, antimicrobial and pH-sensitive films based on chitosan, silver nanoparticles and purple corn extract. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.05.017] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
18
|
Zhang X, Liu Y, Yong H, Qin Y, Liu J, Liu J. Development of multifunctional food packaging films based on chitosan, TiO2 nanoparticles and anthocyanin-rich black plum peel extract. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.03.009] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Gutiérrez TJ, Toro-Márquez LA, Merino D, Mendieta JR. Hydrogen-bonding interactions and compostability of bionanocomposite films prepared from corn starch and nano-fillers with and without added Jamaica flower extract. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.10.058] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Herniou--Julien C, Mendieta JR, Gutiérrez TJ. Characterization of biodegradable/non-compostable films made from cellulose acetate/corn starch blends processed under reactive extrusion conditions. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.10.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Sothornvit R. Nanostructured materials for food packaging systems: new functional properties. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2019.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|