1
|
Li M, Liang T, Shu Y, Cheng M, Wang H, Khan S, Qi W, Zhang Z, Zhao K. Fabrication and characterization of Artemisia sphaerocephala Krasch. Gum-based active films containing coriander essential oil emulsion for meat preservation. Int J Biol Macromol 2025; 309:142809. [PMID: 40187451 DOI: 10.1016/j.ijbiomac.2025.142809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/20/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Bio-based packaging holds substantial prospects due to the inherent non-toxic property and biodegradability. The potential for practical applications would be improved if the requirements of antimicrobial, antioxidant and mechanical properties could be met simultaneously. This work utilized Artemisia sphaerocephala Krasch. Gum (ASKG) (film-forming matrix) for forming the active film by adding coriander essential oil emulsion (COE) at different concentrations. The active films were systematically tested for their physicochemical properties and evaluated for their freshness preservation effect on refrigerated lamb and chicken. The results indicated that emulsion incorporation reduced the water sensitivity of the films while enhancing their barrier, mechanical, antioxidant, and antibacterial properties. Specifically, compared to the control ASKG film, the water solubility of the active film decreased from 42.55 % to 38.39 %, while the tensile strength (TS) and elongation at break (EAB) increased to 9.34 MPa and 62.38 %, respectively. Additionally, the active film demonstrated a high capacity for radical scavenging, with maximum 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azido-bis(3-ethylbenzothiazoline-6-sulphonate) diammonium salt (ABTS) radical scavenging rates of 49.87 % and 72.00 %, respectively. Combined with its antibacterial properties against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) the active film can extend the shelf life of lamb and chicken. In summary, the prepared ASKG active film exhibits excellent comprehensive properties and holds significant potential as a packaging material for fresh meat preservation.
Collapse
Affiliation(s)
- Mengli Li
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, PR China
| | - Tieqiang Liang
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644000, PR China
| | - Ying Shu
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, PR China
| | - Ming Cheng
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, PR China
| | - Han Wang
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, PR China
| | - Sohail Khan
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, PR China
| | - Wenhui Qi
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, PR China
| | - Zhisheng Zhang
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, PR China.
| | - Kaixuan Zhao
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, PR China.
| |
Collapse
|
2
|
Revutskaya N, Polishchuk E, Kozyrev I, Fedulova L, Krylova V, Pchelkina V, Gustova T, Vasilevskaya E, Karabanov S, Kibitkina A, Kupaeva N, Kotenkova E. Application of Natural Functional Additives for Improving Bioactivity and Structure of Biopolymer-Based Films for Food Packaging: A Review. Polymers (Basel) 2024; 16:1976. [PMID: 39065293 PMCID: PMC11280963 DOI: 10.3390/polym16141976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The global trend towards conscious consumption plays an important role in consumer preferences regarding both the composition and quality of food and packaging materials, including sustainable ones. The development of biodegradable active packaging materials could reduce both the negative impact on the environment due to a decrease in the use of oil-based plastics and the amount of synthetic preservatives. This review discusses relevant functional additives for improving the bioactivity of biopolymer-based films. Addition of plant, microbial, animal and organic nanoparticles into bio-based films is discussed. Changes in mechanical, transparency, water and oxygen barrier properties are reviewed. Since microbial and oxidative deterioration are the main causes of food spoilage, antimicrobial and antioxidant properties of natural additives are discussed, including perspective ones for the development of biodegradable active packaging.
Collapse
Affiliation(s)
- Natalia Revutskaya
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Ekaterina Polishchuk
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Ivan Kozyrev
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Liliya Fedulova
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Valentina Krylova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Viktoriya Pchelkina
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Tatyana Gustova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Ekaterina Vasilevskaya
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Sergey Karabanov
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Anastasiya Kibitkina
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Nadezhda Kupaeva
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Elena Kotenkova
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| |
Collapse
|
3
|
Chen X, Lan W, Xie J. Characterization of active films based on chitosan/polyvinyl alcohol integrated with ginger essential oil-loaded bacterial cellulose and application in sea bass (Lateolabrax japonicas) packaging. Food Chem 2024; 441:138343. [PMID: 38211477 DOI: 10.1016/j.foodchem.2023.138343] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/13/2024]
Abstract
The poor mechanical properties, low water-resistance, and limited antimicrobial activity of chitosan (CS)/polyvinyl alcohol (PVA) based film limited its application in aquatic product preservation. Herein, bacterial cellulose (BC) was used to load ginger essential oil (GEO). The effects of the addition of BC and different concentrations of GEO on the physicochemical and antimicrobial activities of films were systematically evaluated. Finally, the application of sea bass fillets was investigated. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction analysis (XRD) analysis indicated dense networks were formed, which was verified by enhanced physical properties. The mechanical properties, barrier properties, and antimicrobial activities enhanced as GEO concentration increased. CPB0.8 (0.8 % GEO) film had better tensile strength (TS) and barrier performance, improved the quality, and extended the shelf-life of sea bass for another 6 days at least. Overall, active films are potential packaging materials for aquatic products.
Collapse
Affiliation(s)
- Xuening Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| |
Collapse
|
4
|
Peighambardoust SH, Karimi Davarani A, Fasihnia SH. Effect of active antimicrobial films on quality parameters and shelf-life of fresh yufka dough. Heliyon 2024; 10:e25972. [PMID: 38390102 PMCID: PMC10881336 DOI: 10.1016/j.heliyon.2024.e25972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/20/2023] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
This research aimed to develop polypropylene (PP) antimicrobial films loaded with different concentrations of sorbic acid (SA) for packaging of fresh yufka dough. PP-SA at 6% showed improved mechanical, UV absorption, and moisture barrier properties. Also, the obtained films exhibited in vitro antibacterial and anti-mold properties. Moisture content and aw of packaged dough with different types of active films were not significantly changed upon storage period. Extended storage of dough layered with PP-SA films at concentrations 0-4% for 45 days led to significant decrease of pH from 5.75 in fresh dough to 5.05 in control (p < 0.05). Color attributes including yellowness and whiteness indices of dough were declined and increased, respectively as function of prolonged storage and increase in the concentration of SA. The growth of aerobic psychrotrophic bacteria and filamentous fungi were significantly retarded in yufka dough packaged with PP-SA6% film compared to that packaged with control as well as PP-SA2-4% films. Direct addition of SA into the bulk of dough was not effective in preservation of dough against the growth of bacteria and fungi. Application of antimicrobial preservatives in the composition of PP films could be beneficial in preserving fresh foods such as bakery products against spoilage microorganisms.
Collapse
Affiliation(s)
| | - Afsaneh Karimi Davarani
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| | - Seyedeh Homa Fasihnia
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| |
Collapse
|
5
|
Rasool N, Baba WN, Rafiq S, Mirza U, Maqsood S. Macro and nano level intervention of reinforcing agents for production of novel edible whey composite films and their applications in food systems: A review. Food Chem 2023; 437:137715. [PMID: 39491252 DOI: 10.1016/j.foodchem.2023.137715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 11/05/2024]
Abstract
Whey protein-based biocomposite films (WBF) are gaining significant importance as edible packaging materials due to their eco-friendly, biodegradable and barrier properties. The review aims to explore the impact of different reinforcing agents on the techno-functional properties of WBF. The incorporation of reinforcing agents, such as polysaccharides, lipids, starch, chitosan, cellulose, essential oils, and hydrocolloid gums, plays a crucial role in shaping the techno-functional properties of WBF. The review article suggests that whey biocomposite films, when strengthened with various additives, have the potential to be used as edible food packaging materials with desirable attributes. However, despite extensive studies, the utilization of WBF in model food systems remains limited, highlighting a significant gap for further exploration. Further research in this domain could potentially unlock new opportunities for utilizing WBF in various model food systems.
Collapse
Affiliation(s)
- Nuzhat Rasool
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar, J&K, India
| | - Waqas N Baba
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Sheeba Rafiq
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar, J&K, India
| | - Urfeya Mirza
- Department of Veterinary Surgery and Radiology, Khalsa College of Veterinary and Animal Sciences, Amritsar, India
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
6
|
Grosu OM, Dragostin OM, Gardikiotis I, Chitescu CL, Lisa EL, Zamfir AS, Confederat L, Dragostin I, Dragan M, Stan CD, Zamfir CL. Experimentally Induced Burns in Rats Treated with Innovative Polymeric Films Type Therapies. Biomedicines 2023; 11:852. [PMID: 36979831 PMCID: PMC10045338 DOI: 10.3390/biomedicines11030852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Considering that microbial resistance to antibiotics is becoming an increasingly widespread problem, burn management, which usually includes the use of topical antimicrobial dressings, is still facing difficulties regarding their efficiency to ensure rapid healing. In this context, the main objective of this research is to include new oxytetracycline derivatives in polymeric-film-type dressings for the treatment of wounds caused by experimentally induced burns in rats. The structural and physico-chemical properties of synthesized oxytetracycline derivatives and the corresponding membranes were analyzed by FT-IR and MS spectroscopy, swelling ability and biodegradation capacity. In vitro antimicrobial activity using Gram-positive and Gram-negative bacterial strains and pathogenic yeasts, along with an in vivo study of a burn wound model induced in Wistar rats, was also analyzed. The newly obtained polymeric films, namely chitosan-oxytetracycline derivative membranes, showed good antimicrobial activity noticed in the tested strains, a membrane swelling ratio (MSR) of up to 1578% in acidic conditions and a biodegradation rate of up to 15.7% on day 7 of testing, which are important required characteristics for the tissue regeneration process, after the production of a burn. The in vivo study proved that chitosan-derived oxytetracycline membranes showed also improved healing effects which contributes to supporting the idea of using them for the treatment of wounds caused by burns.
Collapse
Affiliation(s)
- Oxana-Madalina Grosu
- Department of Surgery I, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Oana-Maria Dragostin
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 47 Domneasca Street, 800008 Galati, Romania
| | - Ioannis Gardikiotis
- Advanced Centre for Research-Development in Experimental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Carmen Lidia Chitescu
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 47 Domneasca Street, 800008 Galati, Romania
| | - Elena Lacramioara Lisa
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 47 Domneasca Street, 800008 Galati, Romania
| | - Alexandra-Simona Zamfir
- Medical Department III, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 16 Universitatii Street, 700115 Iasi, Romania
| | - Luminita Confederat
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 16 Universitatii Street, 700115 Iasi, Romania
| | - Ionut Dragostin
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 47 Domneasca Street, 800008 Galati, Romania
| | - Maria Dragan
- Department of Pharmaceutical Science, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universităţii Street, 700115 Iaşi, Romania
| | - Catalina Daniela Stan
- Department of Pharmaceutical Science, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universităţii Street, 700115 Iaşi, Romania
| | - Carmen-Lacramioara Zamfir
- Department of Morpho-Functional Sciences I, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| |
Collapse
|
7
|
A Review on Antimicrobial Packaging for Extending the Shelf Life of Food. Processes (Basel) 2023. [DOI: 10.3390/pr11020590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Food packaging systems are continually impacted by the growing demand for minimally processed foods, changing eating habits, and food safety risks. Minimally processed foods are prone to the growth of harmful microbes, compromising quality and safety. As a result, the need for improved food shelf life and protection against foodborne diseases alongside consumer preference for minimally processed foods with no or lesser synthetic additives foster the development of innovative technologies such as antimicrobial packaging. It is a form of active packaging that can release antimicrobial substances to suppress the activities of specific microorganisms, thereby improving food quality and safety during long-term storage. However, antimicrobial packaging continues to be a very challenging technology. This study highlights antimicrobial packaging concepts, providing different antimicrobial substances used in food packaging. We review various types of antimicrobial systems. Emphasis is given to the effectiveness of antimicrobial packaging in various food applications, including fresh and minimally processed fruit and vegetables and meat and dairy products. For the development of antimicrobial packaging, several approaches have been used, including the use of antimicrobial sachets inside packaging, packaging films, and coatings incorporating active antimicrobial agents. Due to their antimicrobial activity and capacity to extend food shelf life, regulate or inhibit the growth of microorganisms and ultimately reduce the potential risk of health hazards, natural antimicrobial agents are gaining significant importance and attention in developing antimicrobial packaging systems. Selecting the best antimicrobial packaging system for a particular product depends on its nature, desired shelf life, storage requirements, and legal considerations. The current review is expected to contribute to research on the potential of antimicrobial packaging to extend the shelf life of food and also serves as a good reference for food innovation information.
Collapse
|
8
|
NaY-Ag Zeolite Chitosan Coating Kraft Paper Applied as Ethylene Scavenger Packaging. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-022-02989-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Zou Z, Ismail BB, Zhang X, Yang Z, Liu D, Guo M. Improving barrier and antibacterial properties of chitosan composite films by incorporating lignin nanoparticles and acylated soy protein isolate nanogel. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Antimicrobial Active Packaging Containing Nisin for Preservation of Products of Animal Origin: An Overview. Foods 2022; 11:foods11233820. [PMID: 36496629 PMCID: PMC9735823 DOI: 10.3390/foods11233820] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The preservation of food represents one of the greatest challenges in the food industry. Active packaging materials are obtained through the incorporation of antimicrobial and/or antioxidant compounds in order to improve their functionality. Further, these materials are used for food packaging applications for shelf-life extension and fulfilling consumer demands for minimal processed foods with great quality and safety. The incorporation of antimicrobial peptides, such as nisin, has been studied lately, with a great interest applied to the food industry. Antimicrobials can be incorporated in various matrices such as nanofibers, nanoemulsions, nanoliposomes, or nanoparticles, which are further used for packaging. Despite the widespread application of nisin as an antimicrobial by directly incorporating it into various foods, the use of nisin by incorporating it into food packaging materials is researched at a much smaller scale. The researchers in this field are still in full development, being specific to the type of product studied. The purpose of this study was to present recent results obtained as a result of using nisin as an antimicrobial agent in food packaging materials, with a focus on applications on products of animal origin. The findings showed that nisin incorporated in packaging materials led to a significant reduction in the bacterial load (the total viable count or inoculated strains), maintained product attributes (physical, chemical, and sensorial), and prolonged their shelf-life.
Collapse
|
11
|
Martins MP, de Sousa RS, Dagostin JLA, Franco TS, de Muñiz GIB, Masson ML. Impact of clove essential oil and potassium sorbate incorporation on cassava starch‐based films reinforced peach palm cellulose nanofibrils. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - Talita Szlapak Franco
- Graduate Program in Forestry Engineering Federal University of Paraná Curitiba Brazil
| | | | - Maria Lucia Masson
- Graduate Program in Food Engineering Federal University of Paraná Curitiba Brazil
| |
Collapse
|
12
|
Wu C, Jiang H, Zhao J, Humayun M, Wu S, Wang C, Zhi Z, Pang J. A novel strategy to formulate edible active-intelligent packaging films for achieving dynamic visualization of product freshness. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Ionic Strength of Methylcellulose-Based Films: An Alternative for Modulating Mechanical Performance and Hydrophobicity for Potential Food Packaging Application. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The growing environmental concern with the inappropriate disposal of conventional plastics has driven the development of eco-friendly food packaging. However, the intrinsic characteristics of polymers of a renewable origin, e.g., poor mechanical properties, continue to render their practical application difficult. For this, the present work studied the influence of ionic strength (IS) from 0 to 500 mM to modulate the physicochemical properties of methylcellulose (MC). Moreover, for protection against biological risks, Nisin-Z was incorporated into MC’s polymeric matrices, providing an active function. The incorporation of salts (LiCl and MgCl2) promoted an increase in the equilibrium moisture content in the polymer matrix, which in turn acted as a plasticizing agent. In this way, films with a hydrophobic surface (98°), high true strain (85%), and low stiffness (1.6 mPa) can be manufactured by addition of salts, modulating the IS to 500 mM. Furthermore, films with an IS of 500 mM, established with LiCl, catalyzed antibacterial activity against E. coli, conferring synergism and extending protection against biological hazards. Therefore, we demonstrated that the IS control of MC dispersion presents a new alternative to achieve films with the synergism of antibacterial activity against Gram-negative bacteria in addition to flexibility, elasticity, and hydrophobicity required in various applications in food packaging.
Collapse
|
14
|
Application of innovative packaging technologies to manage fungi and mycotoxin contamination in agricultural products: Current status, challenges, and perspectives. Toxicon 2022; 214:18-29. [PMID: 35513053 DOI: 10.1016/j.toxicon.2022.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/21/2022]
Abstract
The consumer demand for safe, "healthy," and premium foods, preferably with an extended shelf-life; demand for easy packaging; and choice for more sustainable food packaging have contributed to the development of novel packaging technologies. The application of adequate packaging materials has recently become a major post-harvest challenge concerning the control of fungi and mycotoxin. This review will describe the current antifungal packaging technology involved to prevent the contamination of fungi and mycotoxin, along with the characteristics and mechanism of action in food products. Antifungal packaging has incredible potential in the food packaging sector. The most suitable approach for the safe storage of agricultural produce for farmers is the hermetic packaging technology, which maintains quality while providing a good barrier against fungi and mycotoxin. Furthermore, active antifungal packaging is a viable method for incorporating antifungal agents against pathogenic fungi. Essential oils and organic acid have received more scientific attention due to their increased efficacy against mold growth. Polypeptides, chitosan, and natamycin incorporated in active packaging significantly reduced fungi. Even though nanotechnological advancements in antifungal packaging are promising, safety and regulation issues remain significant concerns.
Collapse
|
15
|
Starch/PBAT blown antimicrobial films based on the synergistic effects of two commercial antimicrobial peptides. Int J Biol Macromol 2022; 204:457-465. [DOI: 10.1016/j.ijbiomac.2022.01.183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 01/24/2023]
|
16
|
Zhao Z, Ma F, Zhang B. Study on preservation method and mechanism of peeling waxy corn kernels treated with composite film. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Zixuan Zhao
- College of Food Science Shenyang Agricultural University Shenyang China
| | - Fengming Ma
- College of Food Science Shenyang Agricultural University Shenyang China
| | - Baiqing Zhang
- College of Food Science Shenyang Agricultural University Shenyang China
| |
Collapse
|
17
|
Lopresti F, Botta L, La Carrubba V, Di Pasquale L, Settanni L, Gaglio R. Combining carvacrol and nisin in biodegradable films for antibacterial packaging applications. Int J Biol Macromol 2021; 193:117-126. [PMID: 34688672 DOI: 10.1016/j.ijbiomac.2021.10.118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/06/2021] [Accepted: 10/17/2021] [Indexed: 10/20/2022]
Abstract
In this work, the feasibility of antibacterial biopolymeric films containing carvacrol (CRV) and a nisin commercial formulation (Nis) for potential food packaging applications was investigated. As polymer matrix, a commercial biodegradable polymer formulation of Mater-Bi (MB) was chosen due to its significant food packaging applications. CRV and Nis were chosen due to their well-established antibacterial properties and their potential synergistic effect. MB/CRV, MB/Nis, and MB/CRV/Nis systems were produced by melt mixing and compression molding. The mechanical properties of the films were evaluated by tensile tests. Differential scanning calorimetry was assessed aiming at investigating the effect of the two compounds and their mixture on the thermal properties of MB. The release profile of CRV and Nis from the MB-based films was evaluated in water at 4 °C by UV-Vis measurements and it was fitted with a power-law model. The antibacterial activity of MB-based films was tested in vitro against Listeria monocytogenes, Salmonella enteritidis, Escherichia coli, and Staphylococcus aureus. The combination of CRV and Nis strongly affected the properties of the MB-based films and ensured higher antibacterial activity if compared to MB/CRV and MB/Nis systems.
Collapse
Affiliation(s)
- Francesco Lopresti
- Dipartimento di Ingegneria, Università degli Studi di Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy
| | - Luigi Botta
- Dipartimento di Ingegneria, Università degli Studi di Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy.
| | - Vincenzo La Carrubba
- Dipartimento di Ingegneria, Università degli Studi di Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy
| | - Liliana Di Pasquale
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| | - Luca Settanni
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| | - Raimondo Gaglio
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| |
Collapse
|
18
|
Maciel VB, Remedio LN, Yoshida CM, Carvalho RA. Carboxymethyl cellulose-based orally disintegrating films enriched with natural plant extract for oral iron delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Terzioğlu P, Güney F, Parın FN, Şen İ, Tuna S. Biowaste orange peel incorporated chitosan/polyvinyl alcohol composite films for food packaging applications. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100742] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Wang H, Guo L, Liu L, Han B, Niu X. Composite chitosan films prepared using nisin and Perilla frutescense essential oil and their use to extend strawberry shelf life. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Salgado PR, Di Giorgio L, Musso YS, Mauri AN. Recent Developments in Smart Food Packaging Focused on Biobased and Biodegradable Polymers. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.630393] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Food packaging has a crucial function in the modern food industry. New food packaging technologies seek to meet consumers and industrial's demands. Changes related to food production, sale practices and consumers' lifestyles, along with environmental awareness and the advance in new areas of knowledge (such as nanotechnology or biotechnology), act as driving forces to develop smart packages that can extend food shelf-life, keeping and supervising their innocuousness and quality and also taking care of the environment. This review describes the main concepts and types of active and intelligent food packaging, focusing on recent progress and new trends using biodegradable and biobased polymers. Numerous studies show the great possibilities of these materials. Future research needs to focus on some important aspects such as possibilities to scale-up, costs, regulatory aspects, and consumers' acceptance, to make these systems commercially viable.
Collapse
|
22
|
Khedri S, Sadeghi E, Rouhi M, Delshadian Z, Mortazavian AM, de Toledo Guimarães J, fallah M, Mohammadi R. Bioactive edible films: Development and characterization of gelatin edible films incorporated with casein phosphopeptides. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110649] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
23
|
|
24
|
Su Z, Han C, Liu E, Zhang F, Liu B, Meng X. Formation, characterization and application of arginine-modified chitosan/γ-poly glutamic acid nanoparticles as carrier for curcumin. Int J Biol Macromol 2020; 168:215-222. [PMID: 33309665 DOI: 10.1016/j.ijbiomac.2020.12.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/01/2020] [Accepted: 12/06/2020] [Indexed: 01/16/2023]
Abstract
A novel nanoparticle (NP) delivery carrier for curcumin based on electrostatic 6-deoxy-6-arginine modified chitosan (DAC) assembled by γ-poly-glutamic acid (γ-PGA) was prepared. The NP structure was evaluated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Interactions between DAC and γ-PGA were characterized using Fourier transform infrared spectroscopy (FT-IR). The sustained release kinetics of curcumin-loaded NPs was investigated in simulated gastrointestinal fluids. After exposed to heating, pH, and NaCl aqueous solution, the stabilities of both normal and curcumin-loaded NPs were determined. The results showed that NPs achieved a high encapsulation efficiency (79.5%) and loading capacity (11.31%) for curcumin. The curcumin-loaded NPs displayed a sustained release profile under simulated gastrointestinal conditions. Under certain pH (3-9), salt (0-100 mM), and temperature (30 - 60 °C) conditions, the vehicles of curcumin showed better stability. This demonstrates that NPs can be used as stable carriers for curcumin.
Collapse
Affiliation(s)
- Zhiwei Su
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Chenlu Han
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Enchao Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Fang Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Bingjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Xianghong Meng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
25
|
He B, Wang W, Song Y, Ou Y, Zhu J. Structural and physical properties of carboxymethyl cellulose/gelatin films functionalized with antioxidant of bamboo leaves. Int J Biol Macromol 2020; 164:1649-1656. [DOI: 10.1016/j.ijbiomac.2020.07.286] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
|
26
|
Luciano CG, Tessaro L, Lourenço RV, Bittante AMQB, Fernandes AM, Moraes ICF, do Amaral Sobral PJ. Effects of nisin concentration on properties of gelatin film‐forming solutions and their films. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14731] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Carla Giovana Luciano
- Department of Food Engineering Faculty of Animal Science and Food Engineering University of São Paulo Av. Duque de Caxias Norte225Pirassununga SP Brazil
| | - Larissa Tessaro
- Department of Food Engineering Faculty of Animal Science and Food Engineering University of São Paulo Av. Duque de Caxias Norte225Pirassununga SP Brazil
| | - Rodrigo Vinicius Lourenço
- Department of Food Engineering Faculty of Animal Science and Food Engineering University of São Paulo Av. Duque de Caxias Norte225Pirassununga SP Brazil
| | - Ana Mônica Quinta Barbosa Bittante
- Department of Food Engineering Faculty of Animal Science and Food Engineering University of São Paulo Av. Duque de Caxias Norte225Pirassununga SP Brazil
| | - Andrezza Maria Fernandes
- Department of Veterinary Medicine Faculty of Animal Science and Food Engineering University of São Paulo Av. Duque de Caxias Norte225Pirassununga SP Brazil
| | - Isabel Cristina Freitas Moraes
- Department of Food Engineering Faculty of Animal Science and Food Engineering University of São Paulo Av. Duque de Caxias Norte225Pirassununga SP Brazil
| | - Paulo José do Amaral Sobral
- Department of Food Engineering Faculty of Animal Science and Food Engineering University of São Paulo Av. Duque de Caxias Norte225Pirassununga SP Brazil
- Food Research Center (FoRC) University of São Paulo Rua do Lago, 250, Semi‐industrial building, block C05508‐080São Paulo SP Brazil
| |
Collapse
|
27
|
Low-Density Polyethylene Films Carrying ferula asafoetida Extract for Active Food Packaging: Thermal, Mechanical, Optical, Barrier, and Antifungal Properties. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/4098472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The physical, thermal, mechanical, optical, microstructural, and barrier properties of low-density polyethylene films (LDPE) containing ferula asafoetida leaf and gum extracts were investigated. Results showed a reduction in elasticity and tensile strength with increasing extract concentration in the polymer matrix. The melting temperature and enthalpy increased with increasing concentration of extracts. The films containing extracts had lower L∗ and a∗ and higher b∗ indices. The films containing leaf extract had more barrier potential to UV than the gum extracts. The oxygen permeability in films containing 5% of leaf and gum extracts increased by 2.3 and 2.1 times, respectively. The morphology of the active films was similar to bubble swollen islands, which was more pronounced at higher concentrations of gum and leaf extracts. FTIR results confirmed some chemical interactions of ferula extracts with the polymer matrix. At the end of day 14th, the growth rate of Aspergillus niger and Saccharomyces cerevisea in the presence of the PE-Gum-5 reduced more than PE-Leaf-5 (3.7 and 2.4 logarithmic cycles, respectively) compared to the first day. Our findings showed that active LDPE films have desire thermo-mechanical and barrier properties for food packaging.
Collapse
|
28
|
Guo N, Zhu G, Chen D, Wang D, Zhang F, Zhang Z. Preparation and characterization of gellan gum-guar gum blend films incorporated with nisin. J Food Sci 2020; 85:1799-1804. [PMID: 32458576 DOI: 10.1111/1750-3841.15143] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/09/2020] [Accepted: 03/18/2020] [Indexed: 11/27/2022]
Abstract
Demand for antimicrobial packaging films is growing due to public attention to food safety. The structures and properties of gellan gum-guar gum blend films incorporated with nisin were investigated in this paper. Fourier transform infrared spectroscopy, rheological analyses showed intermolecular interactions among gellan gum, guar gum, and nisin. Furthermore, scanning electron microscopy and thermogravimetric analysis also indicated higher compatibility of the blend film components and better thermal stability than the gellan gum film. Tensile strength (TS), elongation at break (EAB) and water vapor permeability (WVP) of the blend films were enhanced with the addition of guar gum. The TS of the blend film reached 2.89 × 103 MPa, the EAB increased to 67.99%, and the WVP increased to 1.80 × 10-5 g/mm·s·Pa. Additionally, the film with nisin had antibacterial activity for Bacillus subtilis. The results demonstrated that a homogenous and smooth antimicrobial film with gellan gum, guar gum, and nisin could be a good option of antimicrobial packaging film for food preservation. PRACTICAL APPLICATION: This work investigated blend package films of gellan gum and guar gum incorporated with nisin. The results showed compatibility and thermal stability of the film were improved with adding a certain amount of guar gum, and also antibacterial activity for Bacillus subtilis of the blend film with nisin. Therefore, it can be used to the development of antimicrobial packaging films.
Collapse
Affiliation(s)
- Na Guo
- College of Life Science, Hefei Normal University, Hefei, 230601, China
| | - Guilan Zhu
- College of Life Science, Hefei Normal University, Hefei, 230601, China
| | - Ding Chen
- College of Life Science, Hefei Normal University, Hefei, 230601, China
| | - Dongkun Wang
- College of Life Science, Hefei Normal University, Hefei, 230601, China
| | - Fangyan Zhang
- College of Life Science, Hefei Normal University, Hefei, 230601, China
| | - Zhilan Zhang
- College of Life Science, Hefei Normal University, Hefei, 230601, China
| |
Collapse
|
29
|
Diblan S, Gökkaya Erdem B, Kaya S. Sorption, diffusivity, permeability and mechanical properties of chitosan, potassium sorbate, or nisin incorporated active polymer films. Journal of Food Science and Technology 2020; 57:3708-3719. [PMID: 32904019 DOI: 10.1007/s13197-020-04403-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/14/2020] [Accepted: 04/02/2020] [Indexed: 10/24/2022]
Abstract
The active multilayer packaging films were formed from low-density polyethylene (LDPE) and polyamide containing a 2% antimicrobial agent in one of the LDPE sides of the film (LDPE/polyamide/LDPE-2% antimicrobial agent). The antimicrobial agents used were potassium sorbate (PS-film), nisin (N-film), or chitosan (CTS-film). The effects of antimicrobial incorporation on water vapor permeability (P), diffusivity (D eff ), and solubility (S o and S H ) of the active and control films (LDPE/polyamide/LDPE) were investigated. A dynamic vapor sorption analyzer (DVS) was used to estimate the sorption isotherms of the films at 25 °C. Peleg was found to be the best equation to describe sorption behaviors. The addition of PS and nisin into the film matrix resulted in a lower P than that of the control film. The D eff values of the active films were lower than those of control films, except for the CTS-film. The high water-holding capacity of PS and nisin might limit the D eff of the respective films. It was found that Henry's law was applicable to relate P, D eff , and S o and S H values of the multilayer film [correlation coefficient (r) = 0.909-0.971]. The mechanical and thermal properties of the active films were not significantly affected by the incorporation of PS and nisin (p > 0.05). However, the impact of stress and elongation (transverse direction) on the CTS-film was lower than on other films, which indicated that chitosan improved the mechanical properties of the film.
Collapse
Affiliation(s)
- Sevgin Diblan
- Department of Food Engineering, Faculty of Engineering, Adana Alparslan Türkeş Science and Technology University, 01250 Adana, Turkey
| | - Burcu Gökkaya Erdem
- Department of Food Engineering, Engineering Faculty, Gaziantep University, 27310 Gaziantep, Turkey
| | - Sevim Kaya
- Department of Food Engineering, Engineering Faculty, Gaziantep University, 27310 Gaziantep, Turkey
| |
Collapse
|
30
|
Bocchetta P. Ionotropic Gelation of Chitosan for Next-Generation Composite Proton Conducting Flat Structures. Molecules 2020; 25:E1632. [PMID: 32252314 PMCID: PMC7180786 DOI: 10.3390/molecules25071632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 01/23/2023] Open
Abstract
(1) Background: Ionotropic gelation of cost-effective and eco-friendly biopolymer chitosan (Chit) is a novel and promising approach to the one-step synthesis of proton-conducting fuel cell bio-membranes.The method discovered by the author in 2011 and subsequently drowned among very few papers. This work aimed to relaunch this method through clear and effective communication of new unpublished results emphasizing the key aspects of this topic for successful dissemination of the results and significant future developments. (2) Methods and results: The mechanism of in-situ ionotropic gelation of Chit on an alumina substrate by phosphotungtate anions (PWA3-) was discussed and analyzed. The study sheds light on the effect of prolonged post-treatment in phosphotungstic acid (PWA) solution on the obtained chitosan/phosphotungstate (Chit-PWA) flat structures. Methods used included combined structural (XRD), thermal-gravimetric (DTG), electrochemical (in-situ EIS), compositional (EDX),morphological analysis (SEM), as well as the performances in a low temperature H2/O2 fuel cell(4) Conclusions: This contribution discloses novel possibilities aimed at increasing the impact of ionotropic gelation of chitosan on the scientific community working on the synthesis of novel proton conductive bio-composite membranes and structures.
Collapse
Affiliation(s)
- Patrizia Bocchetta
- Dipartimento di Ingegneria dell'Innovazione, Università del Salento via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
31
|
Zhang P, Zhao Y, Zhang X, Zhu L, Fang Z, Shi Q. Thermodynamic Properties and State Diagram of Gum Ghatti-Based Edible Films: Effects of Glycerol and Nisin. Polymers (Basel) 2020; 12:E449. [PMID: 32074987 PMCID: PMC7077710 DOI: 10.3390/polym12020449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 11/26/2022] Open
Abstract
In this present study, the thermodynamic and thermal properties of glycerol and nisin-incorporated gum ghatti (GG, Anogeissus latifolia)-based films were determined. The films exhibited type III isotherm behaviors. Moisture content (MC) of films was increased with increasing water activity (aw) and decreased with higher temperature. The incorporation of glycerol and nisin increased the sorption ability of GG films. The net isosteric heat of adsorption (qst) and differential entropy (Sd) were decreased with increasing MC, showing an exponential negative correlation between them. Spreading pressure (φ) was increased with increasing aw, but decreased with higher temperature. This incorporation of glycerol and nisin increased the qst, Sd and φ of the GG films. The sorption behaviors were enthalpy-driven and non-spontaneous processes. The glass transition temperature (Tg), critical MC and aw of the films were decreased, and increased respectively with the incorporation of glycerol and nisin. This work provides a theoretical basis for the application of edible films in fresh food preservation.
Collapse
Affiliation(s)
- Pingping Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Xincun West Road, Zibo, Shandong 255000, China
| | - Ya Zhao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Xincun West Road, Zibo, Shandong 255000, China
| | - Xin Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Xincun West Road, Zibo, Shandong 255000, China
| | - Lanlan Zhu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Xincun West Road, Zibo, Shandong 255000, China
| | - Zhongxiang Fang
- School of Agriculture and Food, The University of Melbourne, Parkville 3010, Australia
| | - Qilong Shi
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Xincun West Road, Zibo, Shandong 255000, China
| |
Collapse
|
32
|
Antilisterial and physical properties of polysaccharide-collagen films embedded with cell-free supernatant of Lactococcus lactis. Int J Biol Macromol 2020; 145:1031-1038. [DOI: 10.1016/j.ijbiomac.2019.09.195] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/15/2019] [Accepted: 09/22/2019] [Indexed: 12/20/2022]
|
33
|
Abstract
Antibacterial agents are a group of materials that selectively destroy bacteria by interfering with bacterial growth or survival. With the emergence of resistance phenomenon of bacterial pathogens to current antibiotics, new drugs are frequently entering into the market along with the existing drugs, and the alternative compounds with antibacterial functions are being explored. Due to the advantages of their inherent biochemical and biophysical properties including precise targeting ability, biocompatibility, biodegradability, long blood circulation time, and low cytotoxicity, biomolecules such as peptides, carbohydrates, and nucleic acids have huge potential for the antimicrobial application and have been extensively studied in recent years. In this review, antimicrobial therapeutic agents composed of three kinds of functional biological molecules were summarized. In addition, the research progress of antibacterial mechanism, chemical modification, and nanoparticle coupling of those biomolecules were also discussed.
Collapse
|
34
|
He L, Lan W, Ahmed S, Qin W, Liu Y. Electrospun polyvinyl alcohol film containing pomegranate peel extract and sodium dehydroacetate for use as food packaging. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100390] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Sobhan A, Muthukumarappan K, Cen Z, Wei L. Characterization of nanocellulose and activated carbon nanocomposite films’ biosensing properties for smart packaging. Carbohydr Polym 2019; 225:115189. [DOI: 10.1016/j.carbpol.2019.115189] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/24/2019] [Accepted: 08/09/2019] [Indexed: 12/12/2022]
|
36
|
Liang X, Feng S, Ahmed S, Qin W, Liu Y. Effect of Potassium Sorbate and Ultrasonic Treatment on the Properties of Fish Scale Collagen/Polyvinyl Alcohol Composite Film. Molecules 2019; 24:molecules24132363. [PMID: 31248023 PMCID: PMC6651731 DOI: 10.3390/molecules24132363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/23/2019] [Accepted: 06/26/2019] [Indexed: 11/16/2022] Open
Abstract
Composite films containing different amounts of potassium sorbate (KS) were prepared by using fish scale collagen (Col) and polyvinyl alcohol (PVA). Fourier transform infrared spectroscopy (FTIR), light transmittance, mechanical, water vapor transmission rate (WVTR), and the antibacterial properties of the composite films were analyzed. The results showed that the addition of Col significantly reduced the light transmittance of the composite film, but KS had no significant effect on the light transmission. The tensile strength decreased first and then increased with the addition of KS, while the WVTR increased first and then decreased. The composite film exhibited a certain degree of antibacterial properties against E. coli and S. aureus. In addition, we found that ultrasonic treatment reduced the WVTR, and also improved tensile strength and elongation at break of the composite films, but had no significant effect on other properties. The KS/Col/PVA films have the potential to be used as antimicrobial food packaging.
Collapse
Affiliation(s)
- Xue Liang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Shiyi Feng
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Saeed Ahmed
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|