1
|
Niu J, Li X, McClements DJ, Ji H, Jin Z, Qiu C. Biopolymer-based emulsion gels as fat replacers: A review of their design, fabrication, and applications. Int J Biol Macromol 2025; 305:141297. [PMID: 39986513 DOI: 10.1016/j.ijbiomac.2025.141297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Excessive intake of fat has been linked to a variety of diet-related chronic diseases, such as diabetes, obesity, cardiovascular disease, and cerebrovascular disease. At the same time, fat provides calories and nutrients to the human body, as well as impacting the appearance, taste, texture, and palatability of foods. Consequently, it is not feasible to simply remove fats from food, without adversely affecting their nutritional, functional, and sensory properties. Emulsion gels are colloidal viscoelastic materials that can be used to mimic the appearance, taste, texture, and other properties of fats, while still providing valuable fat-soluble nutrients, like vitamins and nutraceuticals. In this article, we review the design and preparation of emulsion gels based on different food-grade biopolymers, including proteins, polysaccharides, and their complexes. In addition, we discuss how structural design principles can be used to create emulsion gels that exhibit a diverse range of different properties. The potential applications of emulsion gels as fat replacers in different kinds of foods are briefly summarized. When properly designed, emulsion gels can convert healthy plant-based liquid oils into semi-solid plastic fats that can mimic many of the rheological characteristics of animal fats. In conclusion, emulsion gels provide an effective approach for designing healthier and more nutritious low-fat foods.
Collapse
Affiliation(s)
- Jingxian Niu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu 210037, China
| | | | - Hangyan Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Hu Y, Fu D, Wang Y, Li Y, Guo Q, McClements DJ, Wang L. Diversity of structure and gastrointestinal fate of O/W emulsion induced by potato-soluble starch. Int J Biol Macromol 2025; 311:143269. [PMID: 40250681 DOI: 10.1016/j.ijbiomac.2025.143269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/30/2025] [Accepted: 04/16/2025] [Indexed: 04/20/2025]
Abstract
The purpose of this study was to examine the effect of potato-soluble starch on the structure, stability, and gastrointestinal fate of O/W emulsion. O/W emulsion was emulsified by whey protein isolate, and potato-soluble starch (0.0-16.0 %) was incorporated to alter its structure and digestibility. With progressing soluble starch, this system changed from liquid to gel-like, with turbidity and viscosity significantly increased. In the observation of macrostructure, this structure altered from an irregular lamellar structure to a dense comb-like three-dimensional network structure, with emulsion droplets embedded in the interstice. During the gastrointestinal tract, discrepant digestive behavior was observed, suggesting that the presence of potato-soluble starch could affect the gastrointestinal fate of O/W emulsion. And the lipid digestion result indicated that the structure transformation had an important effect on the rate and extent of lipid digestion. The final extent of lipid digestion reduced from 131.4 % to 66.4 % with different soluble starch content, indicating that the soluble starch incorporation contributed to the inhabitation of lipid digestion. Moreover, nutraceutical bioaccessibility has also significantly changed. This research indicated that potato soluble starch has potential in the modulation and design of emulsion systems with diversified structure and digestibility.
Collapse
Affiliation(s)
- Yuying Hu
- School of Life and Health Sciences, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industry Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, China.; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.; Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA..
| | - Dongli Fu
- School of Life and Health Sciences, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industry Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Yudong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yanhong Li
- School of Life and Health Sciences, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industry Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Qing Guo
- School of Food Science and Technology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | | | - Lufeng Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China..
| |
Collapse
|
3
|
Tian J, Chen J, Wang P, Kang S, Guo J, Zhu W, Jin Y, Song J, Rojas OJ. Pickering emulsion stabilization with colloidal lignin is enhanced by salt-induced networking in the aqueous phase. Int J Biol Macromol 2024; 274:133504. [PMID: 38944069 DOI: 10.1016/j.ijbiomac.2024.133504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/03/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
We study the effect of electrolytes on the stability in aqueous media of spherical lignin particles (LP) and its relevance to Pickering emulsion stabilization. Factors considered included the role of ionic strength on morphology development, LP size distribution, surface charge, interfacial adsorption, colloidal and wetting behaviors. Stable emulsions are formed at salt concentrations as low as 50 mM, with the highest stability observed at a critical concentration (400 mM). We show salt-induced destabilization of LP aqueous dispersions at an ionic strength >400 mM. At this critical concentration LP flocculation takes place and particulate networks are formed. This has a profound consequence on the stability of LP-stabilized Pickering emulsions, affecting rheology and long-term stability. The results along with quartz microgravimetry and confocal microscopy observations suggest a possible mechanism for stabilization that considers the interfacial adsorption of LP at oil/water interfaces. The often-unwanted colloidal LP destabilization in water ensues remarkably stable Pickering emulsions by the effect of network formation.
Collapse
Affiliation(s)
- Jing Tian
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Shandong laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 26400, China
| | - Jingqian Chen
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Peipei Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Shaomin Kang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Wenyuan Zhu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Junlong Song
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Wood Science, The University of British Columbia, 2900-2424 Main Mall, Vancouver, BC V6T 1Z4, Canada; Department of Chemistry, 2036 Main Mall. Vancouver, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
4
|
Yao X, Teng W, Wang J, Wang Y, Zhang Y, Cao J. Polyglycerol polyricinoleate and lecithin stabilized water in oil nanoemulsions for sugaring Beijing roast duck: Preparation, stability mechanisms and color improvement. Food Chem 2024; 447:138979. [PMID: 38518617 DOI: 10.1016/j.foodchem.2024.138979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/24/2024]
Abstract
Traditional Beijing roast duck often suffers from uneven color and high sugar content after roasting. Water-in-oil (W/O) nanoemulsion is a promising alternative to replace high concentration of sugar solution used in sugaring process according to similarity-intermiscibility theory. Herein, 3% of xylose was embedded in the aqueous phase of W/O emulsion to replace 15% maltose solution. W/O emulsions with different ratios of lecithin (LEC) and polyglycerol polyricinoleate (PGPR) were constructed by high-speed homogenization and high-pressure homogenization. Distribution and penetration extent of solutions and emulsions through the duck skin, as well as the color uniformity of Beijing roast duck were analyzed. Emulsions with LEC:PGPR ratios of 1:3 and 2:2 had better stability. Stable interfacial film and spatial structure were important factors influencing emulsion stabilization. The stable W/O emulsions could more uniformly distribute onto the surface of duck skin and longitudinally penetrate through the skin than solutions.
Collapse
Affiliation(s)
- Xinshuo Yao
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Wendi Teng
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Jinpeng Wang
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Ying Wang
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yuemei Zhang
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jinxuan Cao
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
5
|
Liu C, Sun F, Tian Y, Jiang L, Wang Z, Zhou L. Recovery of soy whey protein from soy whey wastewater at various cavitation jet pretreatment time and their structural and emulsifying properties. Food Chem X 2024; 21:101122. [PMID: 38261844 PMCID: PMC10796266 DOI: 10.1016/j.fochx.2024.101122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024] Open
Abstract
Protein-polysaccharide composite is of great significance for the development of soluble protein recovery process. This study investigated the effects of cavitation jet (CJ) pretreatment at different time (0, 60, 120, 180, 240, 300 s) intervals on the recovery of soy whey protein (SWP) from soy whey wastewater using chitosan (CH). In addition, the structure and properties of the SWP/CH complexes were examined. The results showed that the recovery yield of SWP reached 84.44 % when the CJ pretreatment time was 180 s, and the EAI and ESI values of the SWP/CH complex increased from 32.39 m2/g and 21 min to 48.47 m2/g and 32 min, respectively. In the CJ pretreatment process, SWP promotes the recombination with chitosan through electrostatic interaction and hydrogen bond, while hydrophobic interaction is also involved. This study has guiding significance for CJ technology in the recovery and utilization of protein in industrial wastewater.
Collapse
Affiliation(s)
- Caihua Liu
- College of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fuwei Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yachao Tian
- School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Linyi Zhou
- College of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
6
|
Liang Q, Zhou C, Rehman A, Qayum A, Liu Y, Ren X. Improvement of physicochemical properties, microstructure and stability of lotus root starch/xanthan gum stabilized emulsion by multi-frequency power ultrasound. ULTRASONICS SONOCHEMISTRY 2023; 101:106687. [PMID: 37976566 PMCID: PMC10692874 DOI: 10.1016/j.ultsonch.2023.106687] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/01/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Multi-frequency power ultrasound was applied as an environmentally friendly technique to control the nanoparticles (LS/XG-NPs) embedded with lotus root starch/xanthan gum, with the aim of enhancing the stability of Pickering emulsions. The present investigation was centered on evaluating the impact of ultrasound technology on various aspects of the emulsions, encompassing their mean particle size, particle size distribution, zeta potential, microstructure, rheological characteristics, and environmental stability. The findings of this study indicate that ultrasonic treatment enhanced the adsorption of LS/XG-NP onto oil droplets surface, resulting in a reduction in their size. Additionally, ultrasonic treatment decreased the viscosity and Brownian motion rate of the emulsion stabilized by LS/XG-NP, leading to increased fluidity. Furthermore, the emulsion's thermal stability and resistance to environmental oxidation were significantly enhanced through ultrasonic treatment. The Pickering emulsions that were prepared using ultrasound demonstrated excellent resistance to acid, alkali (pH 2-8) and salt ions (50-300 mM NaCl) for a period of 30 days during storage. It was worth anticipating that ultrasound-assisted LS/XG-NPs could efficiently retard the volatilization of fishy odor components within fish oil. Taken together, the present research has evinced the efficacy of ultrasound in enhancing the stability of Pickering emulsions coated with LS/XG-NPs. These findings offer significant novel insights into the advancement of ultrasound-assisted Pickering emulsions that are stabilized with starch-based or biopolymeric materials.
Collapse
Affiliation(s)
- Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Jiangsu Provincial Key Laboratory for Physical Processing of Agricultural Products, Zhenjiang, Jiangsu 212013, China
| | - Chengwei Zhou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Abdur Rehman
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Yuxuan Liu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Jiangsu Provincial Key Laboratory for Physical Processing of Agricultural Products, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
7
|
Qayum A, Rashid A, Liang Q, Wu Y, Cheng Y, Kang L, Liu Y, Zhou C, Hussain M, Ren X, Ashokkumar M, Ma H. Ultrasonic and homogenization: An overview of the preparation of an edible protein-polysaccharide complex emulsion. Compr Rev Food Sci Food Saf 2023; 22:4242-4281. [PMID: 37732485 DOI: 10.1111/1541-4337.13221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/28/2023] [Accepted: 07/17/2023] [Indexed: 09/22/2023]
Abstract
Emulsion systems are extensively utilized in the food industry, including dairy products, such as ice cream and salad dressing, as well as meat products, beverages, sauces, and mayonnaise. Meanwhile, diverse advanced technologies have been developed for emulsion preparation. Compared with other techniques, high-intensity ultrasound (HIUS) and high-pressure homogenization (HPH) are two emerging emulsification methods that are cost-effective, green, and environmentally friendly and have gained significant attention. HIUS-induced acoustic cavitation helps in efficiently disrupting the oil droplets, which effectively produces a stable emulsion. HPH-induced shear stress, turbulence, and cavitation lead to droplet disruption, altering protein structure and functional aspects of food. The key distinctions among emulsification devices are covered in this review, as are the mechanisms of the HIUS and HPH emulsification processes. Furthermore, the preparation of emulsions including natural polymers (e.g., proteins-polysaccharides, and their complexes), has also been discussed in this review. Moreover, the review put forward to the future HIUS and HPH emulsification trends and challenges. HIUS and HPH can prepare much emulsifier-stable food emulsions, (e.g., proteins, polysaccharides, and protein-polysaccharide complexes). Appropriate HIUS and HPH treatment can improve emulsions' rheological and emulsifying properties and reduce the emulsions droplets' size. HIUS and HPH are suitable methods for developing protein-polysaccharide forming stable emulsions. Despite the numerous studies conducted on ultrasonic and homogenization-induced emulsifying properties available in recent literature, this review specifically focuses on summarizing the significant progress made in utilizing biopolymer-based protein-polysaccharide complex particles, which can provide valuable insights for designing new, sustainable, clean-label, and improved eco-friendly colloidal systems for food emulsion. PRACTICAL APPLICATION: Utilizing complex particle-stabilized emulsions is a promising approach towards developing safer, healthier, and more sustainable food products that meet legal requirements and industrial standards. Moreover, the is an increasing need of concentrated emulsions stabilized by biopolymer complex particles, which have been increasingly recognized for their potential health benefits in protecting against lifestyle-related diseases by the scientific community, industries, and consumers.
Collapse
Affiliation(s)
- Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Yue Wu
- Sonochemistry Group, School of Chemistry, The University of Melbourne, Melbourne, Australia
| | - Yu Cheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, PR China
| | - Lixin Kang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Yuxuan Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Chengwei Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, PR China
| | | | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, PR China
| |
Collapse
|
8
|
Chen Y, Yao M, Peng S, Fang Y, Wan L, Shang W, Xiang D, Zhang W. Development of protein-polyphenol particles to stabilize high internal phase Pickering emulsions by polyphenols' structure. Food Chem 2023; 428:136773. [PMID: 37423104 DOI: 10.1016/j.foodchem.2023.136773] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/07/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
Protein-polyphenol colloidal particles are promising stabilizers for high internal phase Pickering emulsions (HIPPEs). However, the relationship between the structure of the polyphenols and its ability to stabilize HIPPEs has not been studied thus far. In this study, bovine serum albumin (BSA)-polyphenols (B-P) complexes were prepared, and their ability to stabilize HIPPEs was investigated. The polyphenols were bound to BSA via non-covalent interactions. Optically isomeric polyphenols formed similar bonds with BSA, whereas a greater number of trihydroxybenzoyl groups or hydroxyl groups in the dihydroxyphenyl moieties of polyphenols increased the B-P interactions. Polyphenols also reduced the interfacial tension and enhanced the wettability at the oil-water interface. The HIPPE stabilized by BSA-tannic acid complex exhibited the highest stability among the B-P complexes and resisted demixing and aggregation during centrifugation. This study promotes the potential applications of polyphenol-protein colloidal particles-stabilized HIPPEs in the food industry.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Mengying Yao
- Public Inspection and Testing Center of Gong'an County, Jingzhou 434300, China
| | - Su Peng
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yajing Fang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Liting Wan
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Wenting Shang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Dong Xiang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Weimin Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou 570228, China.
| |
Collapse
|
9
|
Ding H, Han Z, Wang B, Wang Y, Ran Y, Zhang L, Li Y, Lu C, Lu X, Ma L. Effect of Direct Steam Injection and Instantaneous Ultra-High-Temperature (DSI-IUHT) Sterilization on the Physicochemical Quality and Volatile Flavor Components of Milk. Molecules 2023; 28:molecules28083543. [PMID: 37110776 PMCID: PMC10143338 DOI: 10.3390/molecules28083543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The effects of variations in the heat treatment process of milk on its quality and flavor are inevitable. This study investigated the effect of direct steam injection and instantaneous ultra-high-temperature (DSI-IUHT, 143 °C, 1-2 s) sterilization on the physicochemical properties, whey protein denaturation (WPD) rate, and volatile compounds (VCs) of milk. The experiment compared raw milk as a control with high-temperature short-time (HTST, 75 °C 15 s and 85 °C 15 s) pasteurization and indirect ultra-high-temperature (IND-UHT, 143 °C, 3-4 s) sterilization. The results showed no significant differences (p > 0.05) in physical stability between milk samples with different heat treatments. The DSI-IUHT and IND-UHT milks presented smaller particle sizes (p < 0.05) and more concentrated distributions than the HTST milk. The apparent viscosity of the DSI-IUHT milk was significantly higher than the other samples (p < 0.05) and is consistent with the microrheological results. The WPD of DSI-IUHT milk was 27.52% lower than that of IND-UHT milk. Solid-phase microextraction (SPME) and solvent-assisted flavor evaporation (SAFE) were combined with the WPD rates to analyze the VCs, which were positively correlated with ketones, acids, and esters and negatively associated with alcohols, heterocycles, sulfur, and aldehydes. The DSI-IUHT samples exhibited a higher similarity to raw and HTST milk than the IND-UHT samples. In summary, DSI-IUHT was more successful in preserving the milk's quality due to its milder sterilization conditions compared to IND-UHT. This study provides excellent reference data for the application of DSI-IUHT treatment in milk processing.
Collapse
Affiliation(s)
- Hao Ding
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Zhaosheng Han
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Bei Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yadong Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yawen Ran
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Liebing Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yan Li
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Chun Lu
- Junlebao Dairy Group Co., Ltd., Shijiazhuang 050221, China
| | - Xiaoli Lu
- Junlebao Dairy Group Co., Ltd., Shijiazhuang 050221, China
| | - Ligang Ma
- Junlebao Dairy Group Co., Ltd., Shijiazhuang 050221, China
| |
Collapse
|
10
|
Su J, Ma Q, Cai Y, Li H, Yuan F, Ren F, Wang P, Van der Meeren P. Incorporating surfactants within protein-polysaccharide hybrid particles for high internal phase emulsions (HIPEs): Toward plant-based mayonnaise. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Jiang W, Xiang W, Xu L, Yuan D, Gao Z, Hu B, Li Y, Wu Y. Fabrication, characterization, and emulsifying properties of hexadecyltrimethylammonium bromide complexed alginate microgel. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
12
|
Niu H, Wang W, Dou Z, Chen X, Chen X, Chen H, Fu X. Multiscale combined techniques for evaluating emulsion stability: A critical review. Adv Colloid Interface Sci 2023; 311:102813. [PMID: 36403408 DOI: 10.1016/j.cis.2022.102813] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/09/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Emulsions are multiscale and thermodynamically unstable systems which will undergo various unstable processes over time. The behavior of emulsifier molecules at the oil-water interface and the properties of the interfacial film are very important to the stability of the emulsion. In this paper, we mainly discussed the instability phenomena and mechanisms of emulsions, the effects of interfacial films on the long-term stability of emulsions and summarized a set of systematic multiscale combined methods for studying emulsion stability, including droplet size and distribution, zeta-potential, the continuous phase viscosity, adsorption mass and thickness of the interfacial film, interfacial dilatational rheology, interfacial shear rheology, particle tracking microrheology, visualization technologies of the interfacial film, molecular dynamics simulation and the quantitative evaluation methods of emulsion stability. This review provides the latest research progress and a set of systematic multiscale combined techniques and methods for researchers who are committed to the study of oil-water interface and emulsion stability. In addition, this review has important guiding significances for designing and customizing interfacial films with different properties, so as to obtain emulsion-based delivery systems with varying stability, oil digestibility and bioactive substance utilization.
Collapse
Affiliation(s)
- Hui Niu
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, PR China; SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, PR China
| | - Wenduo Wang
- School of Food Science and Technology, Guangdong Ocean University, Yangjiang 529500, Guangdong, PR China
| | - Zuman Dou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Xianwei Chen
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, PR China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Haiming Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, PR China; Maritime Academy, Hainan Vocational University of Science and Technology, 18 Qiongshan Road, Haikou 571126, PR China.
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, PR China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, PR China.
| |
Collapse
|
13
|
Li X, Wang Q, Hao J, Xu D. Stability, Structure, Rheological Properties, and Tribology of Flaxseed Gum Filled with Rice Bran Oil Bodies. Foods 2022; 11:foods11193110. [PMID: 36230186 PMCID: PMC9561989 DOI: 10.3390/foods11193110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, rice bran oil bodies (RBOBs) were filled with varying concentrations of flaxseed gum (FG) to construct an RBOB-FG emulsion-filled gel system. The particle size distribution, zeta potential, physical stability, and microstructure were measured and observed. The molecular interaction of RBOBs and FG was studied by Fourier transform infrared spectroscopy (FTIR). In addition, the rheological and the tribology properties of the RBOB-FG emulsion-filled gels were evaluated. We found that the dispersibility and stability of the RBOB droplets was improved by FG hydrogel, and the electrostatic repulsion of the system was enhanced. FTIR analysis indicated that the hydrogen bonds and intermolecular forces were the major driving forces in the formation of RBOB-FG emulsion-filled gel. An emulsion-filled gel-like structure was formed, which further improved the rheological properties, with increased firmness, storage modulus values, and viscoelasticity, forming thermally stable networks. In the tribological test, with increased FG concentration, the friction coefficient (μ) decreased. The elasticity of RBOB-FG emulsion-filled gels and the ball-bearing effect led to a minimum boundary friction coefficient (μ). These results might contribute to the development of oil-body-based functional ingredients for applications in plant-based foods as fat replacements and delivery systems.
Collapse
Affiliation(s)
- Xiaoyu Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Qiuyu Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Jia Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Duoxia Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: ; Tel.: +86-106-898-5645; Fax: +86-106-898-5645
| |
Collapse
|
14
|
Protective Effects of Four Natural Antioxidants on Hydroxyl-Radical-Induced Lipid and Protein Oxidation in Yak Meat. Foods 2022; 11:foods11193062. [PMID: 36230138 PMCID: PMC9564240 DOI: 10.3390/foods11193062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
The impacts of natural antioxidants, including ferulic acid, diallyl sulfide, α-tocopherol, and rutin, at a level of 0.2 g/kg on lipid and protein oxidation of minced yak meat in a hydroxyl-radical-generating system were investigated, and the effectiveness was compared with synthetic antioxidant 2,6-di-tert-butyl-4-methylphenol (BHT). The exposure of yak meat to oxidative stress from 12 h to 24 h elevated lipid and protein oxidation. Treatments with antioxidants resulted in significantly lower peroxides, conjugated dienes, and thiobarbituric acid-reactive substances, and were also effective in retarding the formation of carbonyl groups, reducing the loss of sulfhydryl groups and protecting α-helix contents, of which ferulic acid and rutin were the most effective. Myosin heavy chain underwent lower degradation in the samples treated with ferulic acid or rutin compared with the oxidized control and other antioxidant treatments, while that of the BHT treatment showed a similar intensity with oxidized control at 24 h of oxidation. The physical stability of myofibrillar proteins in samples with antioxidants from high to low was rutin, ferulic acid, α-tocopherol, and BHT~diallyl sulfide. These results indicate that rutin and ferulic acid may be promising antioxidants in inhibiting the oxidative reactions during the processing of yak meat.
Collapse
|
15
|
The interfacial behavior and long-term stability of emulsions stabilized by gum arabic and sugar beet pectin. Carbohydr Polym 2022; 291:119623. [DOI: 10.1016/j.carbpol.2022.119623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 01/15/2023]
|
16
|
Sun C, Zhang M, Zhang X, Li Z, Guo Y, He H, Liang B, Li X, Ji C. Design of protein-polysaccharide multi-scale composite interfaces to modify lipid digestion. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
Zhang S, Chen H, Geng F, Peng D, Xie B, Sun Z, Chen Y, Deng Q. Natural oil bodies from typical oilseeds: Structural characterization and their potentials as natural delivery system for curcumin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
18
|
Yan S, Zhang S, Zhu H, Qi B, Li Y. Recent Advances in Protein-Based Multilayer Emulsions: Fabrication, Characterization, and Applications: A Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2090576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Shizhang Yan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Huaping Zhu
- China Rural Technology Development Center, Beijing, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
- National Research Center of Soybean Engineering and Technology, Harbin, Heilongjiang, China
| |
Collapse
|
19
|
Zhang R, Han Y, Xie W, Liu F, Chen S. Advances in Protein-Based Nanocarriers of Bioactive Compounds: From Microscopic Molecular Principles to Macroscopical Structural and Functional Attributes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6354-6367. [PMID: 35603429 DOI: 10.1021/acs.jafc.2c01936] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Many proteins can be used to fabricate nanocarriers for encapsulation, protection, and controlled release of nutraceuticals. This review examined the protein-based nanocarriers from microscopic molecular characteristics to the macroscopical structural and functional attributes. Structural, physical, and chemical properties of protein-based nanocarriers were introduced in detail. The spatial size, shape, water dispersibility, colloidal stability, etc. of protein-based nanocarriers were largely determined by the molecular physicochemical principles of protein. Different preparative techniques, including antisolvent precipitation, pH-driven, electrospray, and gelation methods, among others, can be used to fabricate different protein-based nanocarriers. Various modifications based on physical, chemical, and enzymatic approaches can be used to improve the functional performance of these nanocarriers. Protein is a natural resource with a wide range of sources, including plant, animal, and microbial, which are usually used to fabricate the nanocarriers. Protein-based nanocarriers have many advantages in aid of the application of bioactive ingredients to the medical, food, and cosmetic industries.
Collapse
Affiliation(s)
- Ruyi Zhang
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei 430071, People's Republic of China
| | - Yahong Han
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, College of Engineering, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Weijie Xie
- Shanghai Mental Health Centre, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Shuai Chen
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei 430071, People's Republic of China
| |
Collapse
|
20
|
Pectin degree of esterification influences rheology and digestibility of whey protein isolate-pectin stabilized bilayer oil-in-water nanoemulsions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Falsafi SR, Rostamabadi H, Samborska K, Mirarab S, Rashidinejhad A, Jafari SM. Protein-polysaccharide interactions for the fabrication of bioactive-loaded nanocarriers: Chemical conjugates and physical complexes. Pharmacol Res 2022; 178:106164. [PMID: 35272044 DOI: 10.1016/j.phrs.2022.106164] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 01/22/2023]
Abstract
As unique biopolymeric architectures, covalently and electrostatically protein-polysaccharide (PRO-POL) systems can be utilized for bioactive delivery by virtue of their featured structures and unique physicochemical attributes. PRO-POL systems (i. e, microscopic /nano-dimensional multipolymer particles, molecularly conjugated vehicles, hydrogels/nanogels/oleogels/emulgels, biofunctional films, multilayer emulsion-based delivery systems, particles for Pickering emulsions, and multilayer coated liposomal nanocarriers) possess a number of outstanding attributes, like biocompatibility, biodegradability, and bioavailability with low toxicity that qualify them as powerful agents for the delivery of different bioactive ingredients. To take benefits from these systems, an in-depth understanding of the chemical conjugates and physical complexes of the PRO-POL systems is crucial. In this review, we offer a comprehensive study concerning the unique properties of covalently/electrostatically PRO-POL systems and introduce emerging platforms to fabricate relevant nanocarriers for encapsulation of bioactive components along with a subsequent sustained/controlled release.
Collapse
Affiliation(s)
- Seid Reza Falsafi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hadis Rostamabadi
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran.
| | - Katarzyna Samborska
- Institute of Food Sciences, Warsaw University of Life Sciences WULS-SGGW, Warsaw, Poland
| | - Saeed Mirarab
- Sari Agricultural Sciences and Natural Resources University, Khazar Abad Road, P.O. Box 578, Sari, Iran
| | - Ali Rashidinejhad
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain.
| |
Collapse
|
22
|
Song G, Liu J, Wang Q, Wang D, Chu B, Li L, Xiao G, Gong J, Zheng F. Layer-by-layer self-assembly of hollow dextran sulfate/chitosan-coated zein nanoparticles loaded with crocin: Fabrication, structural characterization and potential biological fate. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Hao J, Xu J, Zhang W, Li X, Liang D, Xu D, Cao Y, Sun B. The improvement of the physicochemical properties and bioaccessibility of lutein microparticles by electrostatic complexation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Zhang R, Han Y, McClements DJ, Xu D, Chen S. Production, Characterization, Delivery, and Cholesterol-Lowering Mechanism of Phytosterols: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2483-2494. [PMID: 35170307 DOI: 10.1021/acs.jafc.1c07390] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phytosterols are natural plant-based bioactive compounds that can lower blood cholesterol levels and help prevent cardiovascular diseases. Consequently, they are being utilized in functional foods, supplements, and pharmaceutical products designed to improve human health. This paper summarizes different approaches to isolate, purify, and characterize phytosterols. It also discusses the hypolipidemic mechanisms of phytosterols and their impact on cholesterol transportation. Phytosterols have a low water-solubility, poor chemical stability, and limited bioavailability, which limits their utilization and efficacy in functional foods. Strategies are therefore being developed to overcome these shortcomings. Colloidal delivery systems, such as emulsions, oleogels, liposomes, and nanoparticles, have been shown to be effective at improving the water-dispersibility, stability, and bioavailability of phytosterols. These delivery systems can be used to incorporate phytosterols into a broader range of cholesterol-lowering functional foods and beverages. We also discuses several issues that need to be addressed before these phytosterol delivery systems can find widespread commercial utilization.
Collapse
Affiliation(s)
- Ruyi Zhang
- School of Public Health, Wuhan University, Wuhan 430071, China
| | - Yahong Han
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Duoxia Xu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing 100048, China
| | - Shuai Chen
- School of Public Health, Wuhan University, Wuhan 430071, China
| |
Collapse
|
25
|
Hong L, Salentinig S. Functional food colloids: studying structure and interactions during digestion. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
Effect of ultrasound assisted emulsification in the production of Pickering emulsion formulated with chitosan self-assembled particles: Stability, macro, and micro rheological properties. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Falsafi SR, Rostamabadi H, Nishinari K, Amani R, Jafari SM. The role of emulsification strategy on the electrospinning of β-carotene-loaded emulsions stabilized by gum Arabic and whey protein isolate. Food Chem 2021; 374:131826. [PMID: 34915375 DOI: 10.1016/j.foodchem.2021.131826] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 12/22/2022]
Abstract
This work was aimed to systematically assess the effect of diverse emulsification strategies, i.e., layer-by-layer (LbL), directly mixing (DM), and heteroaggregation (HA) assemblies on electrospinnability of emulsions stabilized by gum Arabic (GA)-whey protein isolate (WPI) blend and their subsequence potential in β-carotene (BC) encapsulation. The designed BC emulsions were characterized in terms of zeta-potential, droplet size, and rheological properties. According to the results, LbL-formulated emulsions possessed the highest zeta-potential; however, HA-produced ones appeared to be more viscous among all emulsions. Properties of electrospun nanofibers varied considerably relying on either the emulsification strategy or the oil phase volume fraction as confirmed by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and fourier transform infrared specroscopy (FTIR). It was found that the resulting nanofibers produced by LbL and HA emulsification guaranteed higher BC encapsulation efficiency (>90%), in comparison to that of DM-engineered samples offering a lower efficiency of ∼71 %. The storage stability of BC emulsions stabilized with WPI-GA blend was in the order of LbL > HA > DM emulsions. Most importantly, the application of LbL assembly exhibited the most thermally/physicochemically stable carotenoid-comprising nanofibers among all studied mixing techniques. These results offer useful information for applications of different emulsification strategies for fabricating BC-loaded nanofibers via emulsion electrospining technique.
Collapse
Affiliation(s)
- Seid Reza Falsafi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hadis Rostamabadi
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran.
| | - Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloid Research Centre, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China; Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan 430068, China
| | - Reza Amani
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
28
|
Improve the physical and oxidative stability of O/W emulsions by moderate solidification of the oil phase by stearic acid. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
29
|
Light K, Karboune S. Emulsion, hydrogel and emulgel systems and novel applications in cannabinoid delivery: a review. Crit Rev Food Sci Nutr 2021; 62:8199-8229. [PMID: 34024201 DOI: 10.1080/10408398.2021.1926903] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Emulsions, hydrogels and emulgels have attracted a high interest as tools for the delivery of poorly soluble hydrophobic nutraceuticals by enhancing their stability and bioavailability. This review provides an overview of these delivery systems, their unique qualities and their interactions with the human gastrointestinal system. The modulation of the various delivery systems to enhance the bioavailability and modify the release profile of bioactive encapsulates is highlighted. The application of the delivery systems in the delivery of cannabinoids is also discussed. With the recent increase of cannabis legalization across North America, there is much interest in developing cannabis edibles which can provide a consistent dose of cannabinoids per portion with a rapid time of onset. Indeed, the long time of onset of psychoactive effects and varied metabolic responses to these products result in a high risk of severe intoxication due to overconsumption. Sophisticated emulsion or hydrogel-based delivery systems are one potential tool to achieve this goal. To date, there is a lack of evidence linking specific classes of delivery systems with their pharmacokinetic profiles in humans. More research is needed to directly compare different classes of delivery systems for the gastrointestinal delivery of cannabinoids.
Collapse
Affiliation(s)
- Kelly Light
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, Canada
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, Canada
| |
Collapse
|
30
|
Yang M, Wu J, Huang Q, Jia Y. Probing the Role of Catalytic Triad on the Cleavage between Intramolecular Chaperone and NK Mature Peptide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2348-2353. [PMID: 33569954 DOI: 10.1021/acs.jafc.0c07238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Many proteases require the assistance of an intramolecular chaperone (IMC) that is essential for protein folding. Subtilisin is produced as a precursor that requires its N-terminal propeptide to act as an IMC to chaperone the folding of its subtilisin domain. During the precursor folding, the cleavage of the peptide bond between the IMC and the subtilisin domain is the most important and rate-limiting step, which leads to the structural reorganization of the subtilisin domain and IMC's degradation. It is speculated that the cleavage is fulfilled by the nucleophilic attack of Ser221, with the assistance of Asp32 positioning the correct tautomer of His64 and His64 accepting a proton from Ser221. In this study, our results suggested that there was a different mechanism of cleavage of the peptide bond between the IMC and the subtilisin domain in nattokinase (NK), and the role of the NK catalytic triad on the cleavage was not consistent with the classical theory. This finding suggested that members of the subtilisin family had evolved different mechanisms to acquire their own active subtilisin efficiently.
Collapse
Affiliation(s)
- Manli Yang
- Beijing Key Laboratory of Plants Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Jingyu Wu
- Beijing Key Laboratory of Plants Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Qingrong Huang
- Department of Food Science, Rutgers University, New Brunswick NJ08901, United States
| | - Yan Jia
- Beijing Key Laboratory of Plants Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
31
|
Su J, Cai Y, Tai K, Guo Q, Zhu S, Mao L, Gao Y, Yuan F, Van der Meeren P. High-internal-phase emulsions (HIPEs) for co-encapsulation of probiotics and curcumin: enhanced survivability and controlled release. Food Funct 2021; 12:70-82. [DOI: 10.1039/d0fo01659d] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Synergistic biological activities of probiotics and curcumin can be achieved based on the gut–brain axis.
Collapse
Affiliation(s)
- Jiaqi Su
- Key Laboratory of Precision Nutrition and Food Quality
- Key Laboratory of Functional Dairy
- Ministry of Education; College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing 100083
| | - Yongjian Cai
- Particle and Interfacial Technology Group
- Faculty of Bioscience Engineering
- Ghent University
- B-9000 Gent
- Belgium
| | - Kedong Tai
- Key Laboratory of Precision Nutrition and Food Quality
- Key Laboratory of Functional Dairy
- Ministry of Education; College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing 100083
| | - Qing Guo
- Key Laboratory of Precision Nutrition and Food Quality
- Key Laboratory of Functional Dairy
- Ministry of Education; College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing 100083
| | - Shaoxin Zhu
- Guangdong Sino Nutri-food Biological Technology Co
- Ltd
- Dongguan 523000
- P.R. China
| | - Like Mao
- Key Laboratory of Precision Nutrition and Food Quality
- Key Laboratory of Functional Dairy
- Ministry of Education; College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing 100083
| | - Yanxiang Gao
- Key Laboratory of Precision Nutrition and Food Quality
- Key Laboratory of Functional Dairy
- Ministry of Education; College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing 100083
| | - Fang Yuan
- Key Laboratory of Precision Nutrition and Food Quality
- Key Laboratory of Functional Dairy
- Ministry of Education; College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing 100083
| | - Paul Van der Meeren
- Particle and Interfacial Technology Group
- Faculty of Bioscience Engineering
- Ghent University
- B-9000 Gent
- Belgium
| |
Collapse
|
32
|
Xu D, Gao Q, Ma N, Hao J, Yuan Y, Zhang M, Cao Y, Ho CT. Structures and physicochemical characterization of enzyme extracted oil bodies from rice bran. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.109982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
McClements DJ. Advances in edible nanoemulsions: Digestion, bioavailability, and potential toxicity. Prog Lipid Res 2020; 81:101081. [PMID: 33373615 DOI: 10.1016/j.plipres.2020.101081] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022]
Abstract
The design, fabrication, and application of edible nanoemulsions for the encapsulation and delivery of bioactive agents has been a highly active research field over the past decade or so. In particular, they have been widely used for the encapsulation and delivery of hydrophobic bioactive substances, such as hydrophobic drugs, lipids, vitamins, and phytochemicals. A great deal of progress has been made in creating stable edible nanoemulsions that can increase the stability and efficacy of these bioactive agents. This article highlights some of the most important recent advances within this area, including increasing the water-dispersibility of bioactives, protecting bioactives from chemical degradation during storage, increasing the bioavailability of bioactives after ingestion, and targeting the release of bioactives within the gastrointestinal tract. Moreover, it highlights progress that is being made in creating plant-based edible nanoemulsions. Finally, the potential toxicity of edible nanoemulsions is considered.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
34
|
Xu D, Zheng B, Che Y, Liu G, Yuan Y, Wang S, Cao Y. The Stability, Microstructure, and Microrheological Properties of Monascus Pigment Double Emulsions Stabilized by Polyglycerol Polyricinoleate and Soybean Protein Isolate. Front Nutr 2020; 7:543421. [PMID: 33385004 PMCID: PMC7770174 DOI: 10.3389/fnut.2020.543421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 11/10/2020] [Indexed: 11/13/2022] Open
Abstract
Monascus pigment is a natural food pigment and is commonly used for coloring and as antiseptic of cured meat products, confectionery, cakes, and beverages. However, Monascus pigment is sensitive to environmental conditions. The main aim of this study was to investigate the effect of polyglycerol polyricinoleate (PGPR) and soy protein isolate (SPI) on the particle size, zeta potential, physical stability, microstructure, and microrheological properties of Monascus pigment double emulsions. The effects of ionic strength, heating, and freeze thawing treatment on the stabilities of Monascus pigment double emulsions were also characterized. It was found that the optimum PGPR and SPI concentrations for fabricating Monascus pigment double emulsion were 3.6 and 3.0 wt%, respectively. The fabricated Monascus pigment double emulsion was composed of fine particles with narrow and uniform size distributions. Microrheological property results suggested that the elastic characteristic of the Monascus pigment double emulsion was dominated with increasing PGPR and SPI contents. It was mainly due to the increased collision and interaction between the droplets during the movement resulting in force increasing. Monascus pigment double emulsions with <5 mM CaCl2 prevented calcium to destroy the physical stability of emulsions, while Monascus pigment double emulsions with more than 10 mM CaCl2 formed creaming. After freeze thawing treatment, creaming occurred in Monascus pigment double emulsion. However, it was stable against heating treatment due to heating leading to a dense network structure. It could be contributed to the practical applications of Monascus pigment double emulsions in food products.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yanping Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology & Business University, Beijing, China
| |
Collapse
|
35
|
Hu M, Liu G, Du X, Zhang X, Qi B, Li Y. Molecular crowding prevents the aggregation of protein-dextran conjugate by inducing structural changes, improves its functional properties, and stabilizes it in nanoemulsions. Int J Biol Macromol 2020; 164:4183-4192. [DOI: 10.1016/j.ijbiomac.2020.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/22/2020] [Accepted: 09/02/2020] [Indexed: 12/19/2022]
|
36
|
Su J, Cai Y, Zhi Z, Guo Q, Mao L, Gao Y, Yuan F, Van der Meeren P. Assembly of propylene glycol alginate/β-lactoglobulin composite hydrogels induced by ethanol for co-delivery of probiotics and curcumin. Carbohydr Polym 2020; 254:117446. [PMID: 33357916 DOI: 10.1016/j.carbpol.2020.117446] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/21/2022]
Abstract
Probiotics and curcumin can exhibit synergistic biological activities on the basis of a gut-brain axis, but are sensitive to environmental conditions, making it a challenge for their co-utilization. To meet the demand for high efficiency and convenience, both probiotics and curcumin were encapsulated within a propylene glycol alginate-based hydrogel delivery system, which was assembled using an ethanol-induced approach. The composite hydrogel was effective at sustaining the release of curcumin and protecting LGG cells in simulated gastrointestinal tract conditions. Moreover, it could also largely reduce the chemical degradation of curcumin and increase the survival of LGG during light exposure and long-term storage: up to 91.3 % of curcumin and 9.72 log CFU cm-3 remained present throughout 4 weeks of storage. Results in this work demonstrate a low-energy and green approach to assemble a composite hydrogel with remarkable biocompatibility, which is considered as a desired delivery vehicle for co-delivery of probiotics and curcumin.
Collapse
Affiliation(s)
- Jiaqi Su
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; Particle and Interfacial Technology Group, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Yongjian Cai
- Particle and Interfacial Technology Group, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Zijian Zhi
- Particle and Interfacial Technology Group, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Qing Guo
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Like Mao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yanxiang Gao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Fang Yuan
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Paul Van der Meeren
- Particle and Interfacial Technology Group, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| |
Collapse
|
37
|
Li M, McClements DJ, Liu X, Liu F. Design principles of oil‐in‐water emulsions with functionalized interfaces: Mixed, multilayer, and covalent complex structures. Compr Rev Food Sci Food Saf 2020; 19:3159-3190. [DOI: 10.1111/1541-4337.12622] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Moting Li
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi China
| | | | - Xuebo Liu
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi China
| | - Fuguo Liu
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi China
| |
Collapse
|
38
|
Gentile L. Protein–polysaccharide interactions and aggregates in food formulations. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2020.03.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|