1
|
Yang X, Liang Y, Li K, Hu Q, He J, Xie J. Advances in Microencapsulation of Flavor Substances: Preparation Techniques, Wall Material Selection, Characterization Methods, and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9459-9477. [PMID: 40198106 DOI: 10.1021/acs.jafc.4c11399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
This review systematically examines advances in flavor microencapsulation technology from 2014 to 2024, focusing on innovations in preparation techniques, trends in wall material selection, and characterization methods. Literature metrological analysis shows that spray drying is the predominant technology (25% of reports); its shortcomings in volatile flavor retention have driven improved strategies such as vacuum low-temperature drying, ultrasound assistance, and monodisperse atomization. Emerging technologies such as electrohydrodynamic methods (electrospinning/electrospraying) and supercritical fluid processing are favored due to their nonthermal advantages. Overall, traditional polysaccharides have been widely used due to their good emulsifying and stabilizing properties. In the meanwhile, plant-based polysaccharides (e.g., inulin, hemicellulose) and proteins (e.g., pea protein) are increasingly preferred as the wall materials driven by sustainability and clean-labeling requirements. Morphological analysis and particle size and distribution studies have highlighted the key role of microstructure in stability and release kinetics, with multicore and multishell structures optimizing controlled release performance. Despite progress, gaps remain in the standardized assessment of encapsulation efficacy, the cost-effectiveness of novel materials, and practical food applications. In the future, a combination of interdisciplinary approaches is needed to investigate low-energy preparation technologies, functionalized wall materials, and intelligent release mechanisms to achieve the better application of flavor microencapsulates in food.
Collapse
Affiliation(s)
- Xiaodong Yang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 102488, China
| | - Yu Liang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 102488, China
| | - Kexin Li
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 102488, China
| | - Qingqing Hu
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 102488, China
| | - Jinxin He
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 102488, China
| | - Jianchun Xie
- School of Food Science and Health, Beijing Technology and Business University, Beijing 102488, China
| |
Collapse
|
2
|
Mohamed SA, Elsherbini AM, Alrefaey HR, Adelrahman K, Moustafa A, Egodawaththa NM, Crawford KE, Nesnas N, Sabra SA. Gum Arabic: A Commodity with Versatile Formulations and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:290. [PMID: 39997853 PMCID: PMC11858195 DOI: 10.3390/nano15040290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Abstract
Gum Arabic (GA), or acacia gum, refers to the dried exudate produced by certain Acacia trees. GA is composed mainly of a mixture of polysaccharides and glycoproteins, with proportions that can slightly differ from one species to another. It is commonly utilized in the food and pharmaceutical industries as a stabilizer or an emulsifier owing to its biocompatibility, hydrophilicity, and antibacterial properties. In addition, GA can be manipulated as it possesses many functional groups that can be used in grafting, cross-linking, or chemical modifications to add a new feature to the developed material. In this review, we highlight recent GA-based formulations, including nanoparticles, hydrogels, nanofibers, membranes, or scaffolds, and their possible applications in tissue regeneration, cancer therapy, wound healing, biosensing, bioimaging, food packaging, and antimicrobial and antifouling membranes.
Collapse
Affiliation(s)
- Shaymaa A. Mohamed
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt; (S.A.M.); (A.M.E.)
| | - Asmaa M. Elsherbini
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt; (S.A.M.); (A.M.E.)
| | - Heba R. Alrefaey
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA; (H.R.A.); (N.M.E.)
| | - Kareem Adelrahman
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (K.A.); (K.E.C.)
| | - Alshaimaa Moustafa
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt;
| | - Nishal M. Egodawaththa
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA; (H.R.A.); (N.M.E.)
| | - Kaitlyn E. Crawford
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (K.A.); (K.E.C.)
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - Nasri Nesnas
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA; (H.R.A.); (N.M.E.)
| | - Sally A. Sabra
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt; (S.A.M.); (A.M.E.)
| |
Collapse
|
3
|
Fernandes B, Oliveira MC, Marques AC, Dos Santos RG, Serrano C. Microencapsulation of Essential Oils and Oleoresins: Applications in Food Products. Foods 2024; 13:3873. [PMID: 39682947 DOI: 10.3390/foods13233873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Essential oils (EOs) and oleoresins (ORs) are plant-derived extracts that contain both volatile and non-volatile compounds used for flavoring, coloring, and preservation. In the food industry, they are increasingly used to replace synthetic additives, aligning with consumer demand for natural ingredients, by substituting artificial flavors, colorants, and preservatives. Microcapsules can be added to a vast range of foods and beverages, including bakery products, candies, meat products, and sauces, as well as active food packages. However, incorporating EOs and ORs into foods and beverages can be difficult due to their hydrophobic nature and poor stability when exposed to light, oxygen, moisture, and temperature. Microencapsulation techniques address these challenges by enhancing their stability during storage, protecting sensitive molecules from reacting in the food matrix, providing controlled release of the core ingredient, and improving dispersion in the medium. There is a lack of articles that research, develop, and optimize formulations of microencapsulated EOs and ORs to be incorporated into food products. Microencapsulated ORs are overlooked by the food industry, whilst presenting great potential as natural and more stable alternatives to synthetic flavors, colorants, and preservatives than the pure extract. This review explores the more common microencapsulation methods of EOs and ORs employed in the food industry, with spray drying being the most widely used at an industrial scale. New emerging techniques are explored, with a special focus on spray drying-based technologies. Categories of wall materials and encapsulated ingredients are presented, and their applications in the food and beverage industry are listed.
Collapse
Affiliation(s)
- Beatriz Fernandes
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
- CERENA, DEQ, Instituto Superior Técnico (IST), University of Lisbon, Av. Rovisco Pais, No. 1, 1049-001 Lisbon, Portugal
| | - M Conceição Oliveira
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico (IST), University of Lisbon, Av. Rovisco Pais, No. 1, 1049-001 Lisbon, Portugal
| | - Ana C Marques
- CERENA, DEQ, Instituto Superior Técnico (IST), University of Lisbon, Av. Rovisco Pais, No. 1, 1049-001 Lisbon, Portugal
| | - Rui Galhano Dos Santos
- CERENA, DEQ, Instituto Superior Técnico (IST), University of Lisbon, Av. Rovisco Pais, No. 1, 1049-001 Lisbon, Portugal
| | - Carmo Serrano
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
- Linking Landscape, Environment, Agriculture and Food-Research Center (LEAF), Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| |
Collapse
|
4
|
Chaudhary MN, Li X, Yang S, Wang D, Luo L, Zeng L, Luo W. Microencapsulation Efficiency of Carboxymethylcellulose, Gelatin, Maltodextrin, and Acacia for Aroma Preservation in Jasmine Instant Tea. Gels 2024; 10:670. [PMID: 39451323 PMCID: PMC11507381 DOI: 10.3390/gels10100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Enhancing the sensory appeal of jasmine instant tea, particularly its aroma, poses a significant challenge due to the loss of volatile organic compounds during conventional processing. This study introduces a novel approach to address this issue through the application of microencapsulation techniques, aimed at preserving these key aromatic elements. Our investigation focused on the encapsulating agents gelatin, acacia gum, carboxymethylcellulose (CMC), and maltodextrin, chosen for their compatibility with the volatile organic compounds of tea. A statistical analysis was conducted on the analytical results through comprehensive analytical techniques like Principal Component Analysis (PCA), Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA), and Variable Importance in Projection (VIP) analysis for microcapsule characterization. The statistical analysis revealed gelatin to be a particularly effective encapsulating medium, preserving an aroma profile more akin to fresh tea. The statistical analysis confirmed the reliability of these findings, highlighting the potential of microencapsulation in refining the quality of jasmine instant tea products. The results of this research suggest that microencapsulation could be instrumental in improving the sensory quality and shelf life of instant tea products, offering new opportunities for product enhancement in the beverage industry.
Collapse
Affiliation(s)
- Muneeba Naseer Chaudhary
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China; (M.N.C.); (X.L.); (S.Y.); (L.L.)
| | - Xiaolin Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China; (M.N.C.); (X.L.); (S.Y.); (L.L.)
| | - Siyue Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China; (M.N.C.); (X.L.); (S.Y.); (L.L.)
| | - Damao Wang
- College of Food Science, Southwest University, Chongqing 400715, China;
| | - Liyong Luo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China; (M.N.C.); (X.L.); (S.Y.); (L.L.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
| | - Liang Zeng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China; (M.N.C.); (X.L.); (S.Y.); (L.L.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
| | - Wei Luo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China; (M.N.C.); (X.L.); (S.Y.); (L.L.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Deng Q, Han L, Tang C, Ma Y, Lao S, Min D, Liu X, Jiang H. Sweet tea extract encapsulated by different wall material combinations with improved physicochemical properties and bioactivity stability. J Microencapsul 2024; 41:360-374. [PMID: 38804967 DOI: 10.1080/02652048.2024.2357779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Aim: To prepare sweet tea extract microcapsules (STEMs) via a spray-drying by applying different wall material formulations with maltodextrin (MD), inulin (IN), and gum arabic (GA). Methods: The microcapsules were characterised by yield, encapsulation efficiency (EE), particle size, sensory evaluation, morphology, attenuated total reflectance-Fourier transform infra-red spectroscopy and in vitro digestion studies. Results: The encapsulation improved the physicochemical properties and bioactivity stability of sweet tea extract (STE). MD5IN5 had the highest yield (56.33 ± 0.06% w/w) and the best EE (e.g. 88.84 ± 0.36% w/w of total flavonoids). MD9GA1 obtained the smallest particle size (642.13 ± 4.12 nm). MD9GA1 exhibited the highest retention of bioactive components, inhibition of α-glucosidase (96.85 ± 0.55%), α-amylase (57.58 ± 0.99%), angiotensin-converting enzyme (56.88 ± 2.20%), and the best antioxidant activity during in vitro gastrointestinal digestion. Conclusion: The encapsulation of STE can be an appropriate way for the valorisation of STE with improved properties.
Collapse
Affiliation(s)
- Qingyue Deng
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Lishu Han
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Chengjiang Tang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Yue Ma
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Shuibing Lao
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Douyong Min
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Xiaoling Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Hongrui Jiang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| |
Collapse
|
6
|
The type of gum arabic affects interactions with soluble pea protein in complex coacervation. Carbohydr Polym 2022; 295:119851. [DOI: 10.1016/j.carbpol.2022.119851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/22/2022]
|
7
|
Azarashkan Z, Motamedzadegan A, Ghorbani‐HasanSaraei A, Biparva P, Rahaiee S. Investigation of the physicochemical, antioxidant, rheological, and sensory properties of ricotta cheese enriched with free and nano-encapsulated broccoli sprout extract. Food Sci Nutr 2022; 10:4059-4072. [PMID: 36348770 PMCID: PMC9632186 DOI: 10.1002/fsn3.3001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/09/2022] [Accepted: 07/14/2022] [Indexed: 12/04/2022] Open
Abstract
This study aimed to produce the functional ricotta cheese using broccoli sprouts extract (BSE) and to evaluate its physicochemical, antioxidant, rheological, and sensory properties. The BSE nano-liposome was nano-encapsulated into basil seed gum (BSG) and was incorporated into the ricotta cheese formulation in two forms of free and nano-capsules in two levels of 3% and 5% w/w. The measurements were conducted during a 15-day storage period at 4-6°C. The results showed that the titratable acidity, hardness, and chewiness of cheeses were increased and the pH, moisture, total phenol content (TPC), and antioxidant activity were decreased (p < .05). With the addition of BSE concentration, the TPC and antioxidant activity increased significantly (p < .05) and applying the nano-encapsulation method for BSE led to better preservation of bioactive compounds. Based on the rheological results, viscoelastic solid behavior and a weak gel were observed in all cheese samples. The results of sensory evaluation demonstrated that cheeses containing free extract had lower flavor and overall acceptability scores than other samples, which indicates that the nano-encapsulation covered the undesirable flavor of the BSE. Generally, during the 15-day cold storage period, the highest sensory acceptance and functional activity were related to the samples containing nano-encapsulated BSE, especially at the 5% level.
Collapse
Affiliation(s)
- Zahra Azarashkan
- Department of Food Science and Technology, Ayatollah Amoli BranchIslamic Azad UniversityAmolIran
| | - Ali Motamedzadegan
- Department of Food Science and TechnologySari Agricultural Sciences and Natural Resource UniversitySariIran
| | | | - Pourya Biparva
- Department of Basic SciencesSari University of Agricultural Sciences and Natural ResourcesSariIran
| | - Somayeh Rahaiee
- Department of Microbial Biotechnology, Faculty of BiotechnologyAmol University of Special Modern TechnologiesAmolIran
| |
Collapse
|
8
|
Zhang L, Zhang M, Ju R, Mujumdar AS, Deng D. Recent advances in essential oil complex coacervation by efficient physical field technology: A review of enhancing efficient and quality attributes. Crit Rev Food Sci Nutr 2022; 64:3384-3406. [PMID: 36226715 DOI: 10.1080/10408398.2022.2132207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Although complex coacervation could improve the water solubility, thermal stability, bioavailability, antioxidant activity and antibacterial activity of essential oils (EOs). However, some wall materials (such as proteins and polysaccharides) with water solubility and hydrophobic nature limited their application in complex coacervation. In order to improve the properties of EO complex coacervates, some efficient physical field technology was proposed. This paper summarizes the application and functional properties of EOs in complex coacervates, formation and controlled-release mechanism, as well as functions of EO complex coacervates. In particular, efficient physical field technology as innovative technology, such as high pressure, ultrasound, cold plasma, pulsed electric fields, electrohydrodynamic atomization and microwave technology improved efficient and quality attributes of EO complex coacervates are reviewed. The physical fields could modify the gelling, structural, textural, emulsifying, rheological properties, solubility of wall material (proteins and polysaccharides), which improve the properties of EO complex coacervates. Overall, EOs complex coacervates possess great potential to be used in the food industry, including high bioavailability, excellent antioxidant capacity and gut microbiota in vivo, masking the sensation of off-taste or flavor, favorable antimicrobial capacity.
Collapse
Affiliation(s)
- Lihui Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Ronghua Ju
- Agricultural and Forestry Products Deep Processing Technology and Equipment Engineering Center of Jiangsu Province, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Dewei Deng
- Zhengzhou Xuemailong Food Flavor Co, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Xiao J, Tian W, Abdullah, Wang H, Chen M, Huang Q, Zhang M, Lu M, Song M, Cao Y. Updated design strategies for oral delivery systems: maximized bioefficacy of dietary bioactive compounds achieved by inducing proper digestive fate and sensory attributes. Crit Rev Food Sci Nutr 2022; 64:817-836. [PMID: 35959723 DOI: 10.1080/10408398.2022.2109583] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Interest in the application of dietary bioactive compounds (DBC) in healthcare and pharmaceutical industries has motivated researchers to develop functional delivery systems (FDS) aiming to maximize their bioefficacy. As the direct and indirect health benefiting effects of DBC are acknowledged, traditional design principle of FDS aiming at improving the bioavailability of intact DBC is challenged by the updated one, where the maximized bioefficacy of DBC delivered by FDS will be achieved via rationally absorbed at target sites with proper metabolism pathways. This article briefly summarized the absorption and metabolic fates of orally digested DBC along with their direct and indirect mechanisms to perform health benefiting effects. Current strategies in designing the next generation FDS with an emphasis on their modulation effects on the distribution portion between the upper and lower digestive tract, portal vein and lymphatic absorption, human digestive and gut microbiota enzymatic mediated metabolism were highlighted. Updated research progresses of FDS in adjusting sensory attributes of food end products and inducing synergistic effects rooting from matrix materials and co-delivered cargos were also discussed. Challenges as well as future perspectives concerning the precise nutrition and the critical role of delivery systems in dietary intervention were proposed.
Collapse
Affiliation(s)
- Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Wenni Tian
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Abdullah
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Haonan Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Meimiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingrong Huang
- Department of Food Science, Rutgers, the State University of New Jersey, New Jersey, New Brunswick, USA
| | - Man Zhang
- Department of Food Science, Rutgers, the State University of New Jersey, New Jersey, New Brunswick, USA
| | - Muwen Lu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
10
|
Oliveira WQD, Neri-Numa IA, Arruda HS, McClements DJ, Pastore GM. Encapsulated flavonoids for diabetic foods: The emerging paradigm for an effective therapy. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Zeng X, Jiang W, Du Z, Kokini JL. Encapsulation of tannins and tannin-rich plant extracts by complex coacervation to improve their physicochemical properties and biological activities: A review. Crit Rev Food Sci Nutr 2022:1-14. [PMID: 35549567 DOI: 10.1080/10408398.2022.2075313] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
As a major class of dietary polyphenols, tannins are demonstrated to have various health-promoting properties. Although tannins have been widely utilized in food, pharmaceutical and many other industries, the applications of tannins are quite limited due to their poor stability, sensory attributes and bioavailability. Encapsulation helps improve all of these properties. Complex coacervation, one of the most effective encapsulation techniques, is known for its simplicity, low cost, scalability and reproducibility in encapsulation of functional components. In recent years, complex coacervation has been successfully used for encapsulation of tannins and tannin-rich plant extracts. In this article, the research progress in encapsulating tannins and tannin-rich plant extracts by complex coacervation to improve their physicochemical properties and biological activities is critically reviewed for the first time. Encapsulation of tannins and tannin-rich plant extracts can effectively improve their sensory characteristics, stabilities, bioavailability, anti-hypercholesterolemia, anti-diabetic, antioxidant, anticancer and antimicrobial activities. In particular, the enhancement of biological activities of tannins and tannin-rich plant extracts is usually correlated to their improved physicochemical properties imparted by the encapsulation technique. Moreover, we introduce the issues that need to be further resolved in future studies on encapsulation of tannins and tannin-rich plant extracts by complex coacervation.
Collapse
Affiliation(s)
- Xiangquan Zeng
- Department of Food Quality and Safety, School of Food and Health, Beijing Technology and Business University, Beijing, PR China.,Department of Food Science, College of Agriculture, Purdue University, West Lafayette, IN, USA
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Zhenjiao Du
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, USA
| | - Jozef L Kokini
- Department of Food Science, College of Agriculture, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
12
|
Luiza Koop B, Nascimento da Silva M, Diniz da Silva F, Thayres dos Santos Lima K, Santos Soares L, José de Andrade C, Ayala Valencia G, Rodrigues Monteiro A. Flavonoids, anthocyanins, betalains, curcumin, and carotenoids: Sources, classification and enhanced stabilization by encapsulation and adsorption. Food Res Int 2022; 153:110929. [DOI: 10.1016/j.foodres.2021.110929] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 12/14/2022]
|
13
|
Hua XY, Chiang JH, Henry CJ. Application of plant proteins as alternative emulsifiers in double emulsions: using
kappa
‐carrageenan for complex coacervation and microencapsulation of riboflavin. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Xin Yi Hua
- Clinical Nutrition Research Centre Singapore Institute of Food and Biotechnology Innovation Agency for Science, Technology and Research (A*STAR) Singapore 117599 Singapore
| | - Jie Hong Chiang
- Clinical Nutrition Research Centre Singapore Institute of Food and Biotechnology Innovation Agency for Science, Technology and Research (A*STAR) Singapore 117599 Singapore
| | - Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre Singapore Institute of Food and Biotechnology Innovation Agency for Science, Technology and Research (A*STAR) Singapore 117599 Singapore
- Department of Biochemistry Yong Loo Lin School of Medicine National University of Singapore Singapore 117593 Singapore
| |
Collapse
|
14
|
Effect of Tannic Acid Concentration on the Physicochemical, Thermal, and Antioxidant Properties of Gelatin/Gum Arabic–Walled Microcapsules Containing Origanum onites L. Essential Oil. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02633-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Guo A, Xiong YL. Myoprotein-phytophenol interaction: Implications for muscle food structure-forming properties. Compr Rev Food Sci Food Saf 2021; 20:2801-2824. [PMID: 33733583 DOI: 10.1111/1541-4337.12733] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/23/2022]
Abstract
Phenolic compounds are commonly incorporated into muscle foods to inhibit lipid oxidation and modify product flavor. Those that are present in or extracted from plant sources (seeds, leaves, and stems) known as "phytophenols" are of particular importance in the current meat industry due to natural origins, diversity, and safety record. Apart from these primary roles as antioxidants and flavorings, phytophenols are now recognized to be chemically reactive with a variety of food constituents, including proteins. In processed muscle foods, where the structure-forming ability is critical to a product's texture-related quality attributes and palatability, the functional properties of proteins, especially gelation and emulsification, play an essential role. A vast amount of recent studies has been devoted to protein-phenol interactions to investigate the impact on meat product texture and flavor. Considerable efforts have been made to elucidate the specific roles of phytophenol interaction with "myoproteins" (i.e., muscle-derived proteins) probing the structure-forming process in cooked meat products. The present review provides an insight into the actions of phytophenols in modifying and interacting with muscle proteins with an emphasis on the reaction mechanisms, detection methods, protein functionality, and implications for structural characteristics and textural properties of muscle foods.
Collapse
Affiliation(s)
- Anqi Guo
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Youling L Xiong
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
16
|
Preparation and Characterization of Double-Layered Microcapsules Containing Nano-SiO2. INT J POLYM SCI 2021. [DOI: 10.1155/2021/6675278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The double-layered microencapsulation technology has been used in many fields. In this study, the double-layered microencapsulated anthocyanin of Passiflora edulis shells (APESs) was prepared via complex coacervation using gelatin and gum Arabic as the first wall materials (single-layered microcapsules (SMs)) and using gum Arabic containing nano-SiO2 as the second wall material (double-layered microcapsules (DMs)/nano-SiO2) to enhance the stability of the core material. Properties of microcapsules were analyzed on the basis of EE, morphology, scanning electron microscopy (SEM), droplet size, moisture content, and differential scanning calorimetry (DSC). The results showed that the EE values of SMs, DMs, and DMs/nano-SiO2 were 96.12%, 97.24%, and 97.85%, respectively. DMs/nano-SiO2 had the lowest moisture content (2.17%). The average droplet size of DMs/nano-SiO2 (34.93 μm) was higher than those of SMs and DMs. DSC indicated that the melting temperature of DMs/nano-SiO2 was 73.61°C and 45.33°C higher than those of SMs and DMs, respectively. SEM demonstrated that DMs/nano-SiO2 had the smoothest surface compared with the other two kinds of microcapsules. The storage stability of APESs and their microcapsules indicated that the stability of the microcapsules was improved by adding DMs/nano-SiO2 into the wall material of microcapsules. These results indicated double-layered microcapsules containing silica nanoparticles contribute to the stability of the core material.
Collapse
|
17
|
Huang R, Xu C. An overview of the perception and mitigation of astringency associated with phenolic compounds. Compr Rev Food Sci Food Saf 2020; 20:1036-1074. [PMID: 33340236 DOI: 10.1111/1541-4337.12679] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/07/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022]
Abstract
Astringency, as a kind of puckering, drying, or rough sensation, is widely perceived from natural foods, especially plants rich in phenolic compounds. Although the interaction and precipitation of salivary proteins by phenolic compounds was often believed as the major mechanism of astringency, a definitive theory about astringency is still lacking due to the complex oral sensations. The interaction with oral epithelial cells and the activation of trigeminal chemoreceptors and mechanoreceptors also shed light on some of the phenolic astringency mechanisms, which complement the insufficient mechanism of interaction with salivary proteins. Since phenolic compounds with different types and structures show different astringency thresholds in a certain regularity, there might be some relationships between the phenolic structures and perceived astringency. On the other hand, novel approaches to reducing the unfavorable perception of phenolic astringency have been increasingly emerging; however, the according summary is still sparse. Therefore, this review aims to: (a) illustrate the possible mechanisms of astringency elicited by phenolic compounds, (b) reveal the possible relationships between phenolic structures and perception of astringency, and (c) summarize the emerging mitigation approaches to astringency triggered by phenolic compounds. This comprehensive review would be of great value to both the understanding of phenolic astringency and the finding of appropriate mitigation approaches to phenolic astringency in future research.
Collapse
Affiliation(s)
- Rui Huang
- The Food Processing Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Changmou Xu
- The Food Processing Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
18
|
Albuquerque BR, Heleno SA, Oliveira MBPP, Barros L, Ferreira ICFR. Phenolic compounds: current industrial applications, limitations and future challenges. Food Funct 2020; 12:14-29. [PMID: 33242057 DOI: 10.1039/d0fo02324h] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Phenolic compounds are natural bioactive molecules found mainly in plant tissues that have shown interesting bioactivities, such as antioxidant, antimicrobial, anti-inflammatory, and antiproliferative activities, among others, which has led to great interest in their use by several industries. However, despite the large number of scientific studies on this topic, some issues still need to be studied and solved, such as the understanding of the main actions of these compounds in organisms. Besides their large potential applicability in industry, phenolic compounds still face some issues making it necessary to develop strategies to improve bioavailability, sustainable technologies of extraction and refinement, and stability procedures to increase the range of applicability. This review focuses on the most recent advances in the applications of phenolic compounds in different technological and medicinal areas. In addition, techniques to improve their sustainable resourcing, stability and bioavailability will be presented and discussed.
Collapse
Affiliation(s)
- Bianca R Albuquerque
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal. and REQUIMTE - Science Chemical Department, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal
| | - Sandrina A Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - M Beatriz P P Oliveira
- REQUIMTE - Science Chemical Department, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
19
|
Influence of stinging nettle (Urtica dioica L.) extract-loaded nano-emulsion on the storage stability and antioxidant attributes of Doogh (Traditional Iranian yoghurt beverage). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00647-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Rudke AR, de Andrade CJ, Ferreira SRS. Kappaphycus alvarezii macroalgae: An unexplored and valuable biomass for green biorefinery conversion. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.07.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Masking the Perceived Astringency of Proanthocyanidins in Beverages Using Oxidized Starch Hydrogel Microencapsulation. Foods 2020; 9:foods9060756. [PMID: 32521628 PMCID: PMC7353531 DOI: 10.3390/foods9060756] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Proanthocyanidins (PAs) are responsible for several health benefits of many fruits, but they could cause a generally disliked sensation of astringency. Traditional deastringency methods remove bioactive ingredients, resulting in the loss of valuable nutrients and associated health benefits. This work aimed to microencapsulate PAs from grape seeds using oxidized starch hydrogel (OSH) and mask its perceived astringency in beverages while maintaining its bioavailability. The maximum PA uptake capabilities of OSH, as well as the binding site and primary binding force between these two components, were determined. The resulting PA-OSH complex was stable under in vitro digestion, with only 1.6% of PA being released in the salivary digestion, and it has an intestine-specific release property. The reaction of PA with α-amylase in artificial saliva was substantially reduced by OSH microencapsulation, leading to 41.5% less precipitation of the salivary proteins. The sensory evaluation results showed that the microencapsulation was able to mask the astringency of PA-fortified water, as the perceived threshold of astringency increased by 3.85 times. These results proved that OSH could be used as a novel food additive to reduce the astringency of beverage products due to its hydrogel properties and ability to encapsulate phenolic compounds.
Collapse
|