1
|
Rownaghi M, Keramat-Jahromi M, Golmakani MT, Niakousari M. Cold plasma-induced structural and thermal enhancements in marshmallow root mucilage-gelatin aerogels. Curr Res Food Sci 2025; 10:101027. [PMID: 40161309 PMCID: PMC11951209 DOI: 10.1016/j.crfs.2025.101027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/18/2025] [Accepted: 03/06/2025] [Indexed: 04/02/2025] Open
Abstract
Aerogels are highly regarded for their low density and large surface area, attracting significant attention due to their diverse applications. This study explored nitrogen cold plasma's impact on the structure and thermal stability of mucilage-gelatin aerogels (MGA). Aerogels were prepared using marshmallow root mucilage and gelatin in a 1:1 ratio and gelatin-only as a blank under different pH conditions (5 and 7). Rheological and texture analyses identified pH 7 as optimal. Aerogels at pH 7 were then exposed to cold plasma for varying durations (0, 3, and 6 min). Thermogravimetric analysis (TGA), differential thermal analysis (DTA), and X-ray diffraction (XRD) showed enhanced thermal stability and structural changes with increased plasma exposure. Fourier-transform Infrared Spectroscopy (FTIR) revealed functional group changes, and contact angle measurements showed that 3 min of plasma treatment increased hydrophilicity (88.37-82.05°), while 6 min enhanced hydrophobicity in 1:1 MGA (93.27°). BET (Brunauer-Emmett-Teller) analyses of the MGA samples revealed changes in surface area (2.9-4.33 m2/g after 3 min of plasma) and BJH (Barrett-Joyner-Halenda) pore volume (0.004-0.02 cm3/g), with a complex trend over time. This study highlights nitrogen cold plasma's potential to enhance mucilage-based biopolymer aerogels, paving the way for advanced materials via optimized treatments.
Collapse
Affiliation(s)
- Marzieh Rownaghi
- Department of Food Science & Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Mahdi Keramat-Jahromi
- Department of Mechanical Engineering of Biosystems, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Mohammad-Taghi Golmakani
- Department of Food Science & Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Mehrdad Niakousari
- Department of Food Science & Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
2
|
Sharma M, Bains A, Goksen G, Ali N, Rehman MZ, Chawla P. Arabinogalactans-rich microwave-assisted nanomucilage originated from garden cress seeds as an egg replacement in the production of cupcakes: Market orientation and in vitro digestibility. Int J Biol Macromol 2024; 282:136929. [PMID: 39490856 DOI: 10.1016/j.ijbiomac.2024.136929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/04/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The increasing demand for functional foods arises from concerns regarding food allergies, dietary restrictions, and ethical considerations related to egg consumption. Consequently, this study investigates the feasibility of using arabinogalactan-rich nanomucilage derived from garden cress seeds as an egg replacement in cupcake production. The microwave-assisted process resulted in 23.28 ± 0.34 % yield and it demonstrated a nanoscale particle size of 146.3 ± 2.67 nm. Smooth surfaces with spherical concavities-shaped particles were observed containing carbohydrate and protein-based functional groups. A market survey involving 250 participants indicated a notable interest in egg-free cupcakes, with 75% of respondents determining a willingness to sample them. Cupcakes containing 15% nanomucilage (C3) exhibited comparable sensory acceptability and similar physicochemical properties, along with significantly improved hardness (751.03 ± 1.24 g), resilience (23.98 ± 0.56), and chewiness (513.75 ± 1.37 g) when compared to egg-based cupcakes. In vitro digestibility exhibited a significant reduction in the area under the curve for reducing sugars in C3 (155.68 mg g-1) relative to the control (238.83 mg g-1), suggesting a lower glycemic index. Hence, this study reveals that garden cress seed mucilage could be an effective egg substitute in cupcakes, offering comparable sensory and textural attributes with potentially lower glycemic index.
Collapse
Affiliation(s)
- Madhu Sharma
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, PO Box 2457, Saudi Arabia
| | - Mohd Ziaur Rehman
- Department of Finance, College of Business Administration, King Saud University, PO Box 71115, Riyadh 11587, Saudi Arabia
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India.
| |
Collapse
|
3
|
Groult S, Buwalda S, Budtova T. Tuning bio-aerogel properties. Part 3: Exploring silica-pectin composite aerogels for drug delivery. BIOMATERIALS ADVANCES 2024; 163:213954. [PMID: 38996543 DOI: 10.1016/j.bioadv.2024.213954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
The release of the model drug theophylline from silica-pectin aerogels was investigated. The composite aerogels were prepared via impregnation of pectin alcogels with silica sol, followed by in situ silica gelation and drying with supercritical CO2. The structural and physico-chemical properties of the aerogels were tuned via the preparation conditions (type of silica sol, calcium crosslinking of pectin or not). Theophylline was loaded via impregnation and its release into simulated gastric fluid was studied during 1 h followed by release into simulated intestinal fluid. The swelling, mass loss and theophylline release behavior of the composites were analyzed and correlated with material properties. It followed that only aerogels prepared with calcium-crosslinked pectin and polyethoxydisiloxane were stable in aqueous systems, exhibiting a slow theophylline release governed by near-Fickian diffusion.
Collapse
Affiliation(s)
- Sophie Groult
- MINES Paris, PSL University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France
| | - Sytze Buwalda
- MINES Paris, PSL University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France
| | - Tatiana Budtova
- MINES Paris, PSL University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France.
| |
Collapse
|
4
|
Noor M, Muhammad G, Hanif H, Hussain MA, Iqbal MM, Mehmood U, Taslimi P, Shafiq Z. Structure, chemical modification, and functional applications of mucilage from Mimosa pudica seeds - A review. Int J Biol Macromol 2024; 270:132390. [PMID: 38754657 DOI: 10.1016/j.ijbiomac.2024.132390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/28/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Mimosa pudica (MP) is an ornamental plant due to seismonastic movements that close leaves and fall petioles in response to touch, wind, light, heat, cold, and vibration. The seeds of MP secrete smart, biocompatible, and non-toxic mucilage that has captivated researchers due to its widespread use in various fields such as pharmaceuticals and biotechnology. The mucilage is responsive to pH, salt solutions, and solvents and acts as a binder in tablet formulations for targeted drug delivery. The mucilage is chemically modifiable via acetylation, succinylation, and graft polymerization. Chemically modified MP mucilage appeared supersorbent for heavy metal ion uptake. Nanoparticles synthesized using mucilage as a reducing and capping agent displayed significant antimicrobial and wound-healing potential. Crosslinking of mucilage using citric acid as a crosslinking agent offers a sustained release of drugs. The present review is aimed to discuss extraction optimization, structure, modification, and the stimuli-responsive nature of mucilage. The review article will cover the potential of mucilage as emulsifying, suspending, bio-adhesive, gelling, and thickening agent. The role of mucilage as a capping and reducing agent for nanoparticles will also be discussed.
Collapse
Affiliation(s)
- Manahil Noor
- Department of Chemistry, Government College University, Lahore 54000, Pakistan
| | - Gulzar Muhammad
- Department of Chemistry, Government College University, Lahore 54000, Pakistan.
| | - Hina Hanif
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Ajaz Hussain
- Centre for Organic Chemistry, School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | | | - Uqba Mehmood
- Department of Biological Sciences, Superior University, Lahore, Pakistan
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100 Bartin, Turkey
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| |
Collapse
|
5
|
Choque-Quispe D, Ligarda-Samanez CA, Choque-Quispe Y, Froehner S, Solano-Reynoso AM, Moscoso-Moscoso E, Carhuarupay-Molleda YF, Peréz-Salcedo R. Stability in Aqueous Solution of a New Spray-Dried Hydrocolloid of High Andean Algae Nostoc sphaericum. Polymers (Basel) 2024; 16:537. [PMID: 38399913 PMCID: PMC10892598 DOI: 10.3390/polym16040537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
There is a growing emphasis on seeking stabilizing agents with minimal transformation, prioritizing environmentally friendly alternatives, and actively contributing to the principles of the circular economy. This research aimed to assess the stability of a novel spray-dried hydrocolloid from high Andean algae when introduced into an aqueous solution. Nostoc sphaericum freshwater algae were subject to atomization, resulting in the production of spray-dried hydrocolloid (SDH). Subsequently, suspension solutions of SDH were meticulously prepared at varying pH levels and gelling temperatures. These solutions were then stored for 20 days to facilitate a comprehensive evaluation of their stability in suspension. The assessment involved a multifaceted approach, encompassing rheological analysis, scrutiny of turbidity, sedimentation assessment, ζ-potential, and measurement of particle size. The findings from these observations revealed that SDH exhibits a dilatant behavior when in solution, signifying an increase in with higher shear rate. Furthermore, it demonstrates commendable stability when stored under ambient conditions. SDH is emerging as a potential alternative stabilizer for use in aqueous solutions due to its easy extraction and application.
Collapse
Affiliation(s)
- David Choque-Quispe
- Water and Food Treatment Materials Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (C.A.L.-S.); (R.P.-S.)
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Carlos A. Ligarda-Samanez
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (C.A.L.-S.); (R.P.-S.)
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Yudith Choque-Quispe
- Water and Food Treatment Materials Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Department of Environmental Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Sandro Froehner
- Department of Environmental Engineering, Federal University of Parana, Curitiba 80010, Brazil;
| | - Aydeé M. Solano-Reynoso
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Department of Basic Sciences, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Elibet Moscoso-Moscoso
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | | | - Ronald Peréz-Salcedo
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (C.A.L.-S.); (R.P.-S.)
| |
Collapse
|
6
|
El-Nashar HAS, Taleb M, El-Shazly M, Zhao C, Farag MA. Polysaccharides (pectin, mucilage, and fructan inulin) and their fermented products: A critical analysis of their biochemical, gut interactions, and biological functions as antidiabetic agents. Phytother Res 2024; 38:662-693. [PMID: 37966040 DOI: 10.1002/ptr.8067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/29/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023]
Abstract
Diabetes mellitus is a globally metabolic endocrine syndrome marked by a deficiency of insulin secretion (type-1 DM) or glucose intolerance arising from insulin response impairment (type-2 DM) leading to abnormal glucose metabolism. With an increasing interest in natural dietary components for diabetes management, the identification of novel agents witnessed major discoveries. Plant-derived mucilage, pectin, and inulin are important non-starch polysaccharides that exhibit effective antidiabetic properties often termed soluble dietary fiber (SDF). SDF affects sugar metabolism through multiple mechanisms affecting glucose absorption and diffusion, modulation of carbohydrate metabolizing enzymes (α-amylase and α-glucosidase), ameliorating β-pancreatic cell dysfunction, and improving insulin release or sensitivity. Certain SDFs inhibit dipeptidyl peptidase-4 and influence the expression levels of genes related to glucose metabolism. This review is designed to discuss holistically and critically the antidiabetic effects of major SDF and their underlying mechanisms of action. This review should aid drug discovery approaches in developing novel natural antidiabetic drugs from SDF.
Collapse
Affiliation(s)
- Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed Taleb
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University-Gaza, Gaza, Palestine
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Chao Zhao
- College of Marine Sciences, Fujian Agricultural and Forestry University, Fuzhou, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Yang H, Chen Z, Wang H, Jin D, Wang X, Wang F, Cen X, Liu J, Shen Q. Uncovering the rheological properties basis for freeze drying treatment-induced improvement in the solubility of myofibrillar proteins. Curr Res Food Sci 2023; 8:100651. [PMID: 38283162 PMCID: PMC10818194 DOI: 10.1016/j.crfs.2023.100651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 01/30/2024] Open
Abstract
Myofibrillar proteins (MPs) are an important nutritional supplement and have great significance in sports training and rehabilitation therapy. Currently, MPs preservation is still disputed since they are vulnerable to degradation, polymerization, and denaturation. Freeze-drying is an emerging technology for protein preservation, its effects on the functionality of MPs from different sources have not yet been thoroughly studied. This study aims to evaluate the performance differences of freeze-drying in maintaining the functional characteristics of MPs from fish and mammalian sources, providing valuable insights for the processing and preservation of MPs, and providing nutritional support for nursing and rehabilitation. The results showed that freeze-drying was an efficient method for protein preservation, and the effects of freeze-drying on both fish and mammalian sources MPs were significant (p < 0.05) consistent. Specifically, whether before and after freeze-drying, the solubility of fish MPs (FMPs) was significant (p < 0.05) lower than that of mammalian MPs, while the foaming and emulsifying properties were significant (p < 0.05) higher than those of beef and sheep MPs (BMPs and SMPs, respectively). Furthermore, the most efficient protein concentration for freeze-drying was 10 mg/mL, and with this concentration, the gel strengths of BMPs and SMPs showed an insignificant difference (p > 0.05) after freeze-drying.
Collapse
Affiliation(s)
- Huijuan Yang
- College of Standardization, China Jiliang University, Hangzhou, 310018, China
| | - Zhizhao Chen
- College of Standardization, China Jiliang University, Hangzhou, 310018, China
| | - Haifeng Wang
- Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Danping Jin
- Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Xiaoqi Wang
- Tufts University Friedman School of Nutrition Science and Policy, Boston, MA, 02111, USA
| | - Fan Wang
- Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Xuejiang Cen
- Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Jinsong Liu
- Zhejiang Huijia Biotechnology Co. Ltd., Anji, Zhejiang, 313307, PR China
| | - Qing Shen
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
- Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310012, China
| |
Collapse
|
8
|
Li X, Yell V, Li X. Two Arabidopsis promoters drive seed-coat specific gene expression in pennycress and camelina. PLANT METHODS 2023; 19:140. [PMID: 38053155 DOI: 10.1186/s13007-023-01114-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/20/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Pennycress and camelina are two important novel biofuel oilseed crop species. Their seeds contain high content of oil that can be easily converted into biodiesel or jet fuel, while the left-over materials are usually made into press cake meals for feeding livestock. Therefore, the ability to manipulate the seed coat encapsulating the oil- and protein-rich embryos is critical for improving seed oil production and press cake quality. RESULTS Here, we tested the promoter activity of two Arabidopsis seed coat genes, AtTT10 and AtDP1, in pennycress and camelina by using eGFP and GUS reporters. Overall, both promoters show high levels of activities in the seed coat in these two biofuel crops, with very low or no expression in other tissues. Importantly, AtTT10 promoter activity in camelina shows differences from that in Arabidopsis, which highlights that the behavior of an exogenous promoter in closely related species cannot be assumed the same and still requires experimental determination. CONCLUSION Our work demonstrates that AtTT10 and AtDP1 promoters are suitable for driving gene expression in the outer integument of the seed coat in pennycress and camelina.
Collapse
Affiliation(s)
- Xin Li
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA
| | - Victoria Yell
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA
| | - Xu Li
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA.
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA.
| |
Collapse
|
9
|
Wu H, Sang S, Weng P, Pan D, Wu Z, Yang J, Liu L, Farag MA, Xiao J, Liu L. Structural, rheological, and gelling characteristics of starch-based materials in context to 3D food printing applications in precision nutrition. Compr Rev Food Sci Food Saf 2023; 22:4217-4241. [PMID: 37583298 DOI: 10.1111/1541-4337.13217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/17/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023]
Abstract
Starch-based materials have viscoelasticity, viscous film-forming, dough pseudoplasticity, and rheological properties, which possess the structural characteristics (crystal structure, double helix structure, and layered structure) suitable for three-dimensional (3D) food printing inks. 3D food printing technology has significant advantages in customizing personalized and precise nutrition, expanding the range of ingredients, designing unique food appearances, and simplifying the food supply chain. Precision nutrition aims to consider individual nutritional needs and individual differences, which include special food product design and personalized precise nutrition, thus expanding future food resources, then simplifying the food supply chain, and attracting extensive attention in food industry. Different types of starch-based materials with different structures and rheological properties meet different 3D food printing technology requirements. Starch-based materials suitable for 3D food printing technology can accurately deliver and release active substances or drugs. These active substances or drugs have certain regulatory effects on the gut microbiome and diabetes, so as to maintain personalized and accurate nutrition.
Collapse
Affiliation(s)
- Huanqi Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, P. R. China
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Shangyuan Sang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, P. R. China
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Peifang Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, P. R. China
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, P. R. China
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, P. R. China
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Junsi Yang
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Orense, Spain
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, P. R. China
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, P. R. China
| |
Collapse
|
10
|
Yang Y, Gupta VK, Du Y, Aghbashlo M, Show PL, Pan J, Tabatabaei M, Rajaei A. Potential application of polysaccharide mucilages as a substitute for emulsifiers: A review. Int J Biol Macromol 2023; 242:124800. [PMID: 37178880 DOI: 10.1016/j.ijbiomac.2023.124800] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/08/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
Mucilages are natural compounds consisting mainly of polysaccharides with complex chemical structures. Mucilages also contain uronic acids, proteins, lipids, and bioactive compounds. Because of their unique properties, mucilages are used in various industries, including food, cosmetics, and pharmaceuticals. Typically, commercial gums are composed only of polysaccharides, which increase their hydrophilicity and surface tension, reducing their emulsifying ability. As a result of the presence of proteins in combination with polysaccharides, mucilages possess unique emulsifying properties due to their ability to reduce surface tension. In recent years, various studies have been conducted on using mucilages as emulsifiers in classical and Pickering emulsions because of their unique emulsifying feature. Studies have shown that some mucilages, such as yellow mustard, mutamba, and flaxseed mucilages, have a higher emulsifying capacity than commercial gums. A synergistic effect has also been shown in some mucilages, such as Dioscorea opposita mucilage when combined with commercial gums. This review article investigates whether mucilages can be used as emulsifiers and what factors affect their emulsifying properties. A discussion of the challenges and prospects of using mucilages as emulsifiers is also presented in this review.
Collapse
Affiliation(s)
- Yadong Yang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Vijai Kumar Gupta
- Centre for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Yating Du
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, University of Nottingham, Malaysia, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Junting Pan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Department of Biomaterials, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India.
| | - Ahmad Rajaei
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran.
| |
Collapse
|
11
|
Basak S, Singhal RS. The potential of supercritical drying as a “green” method for the production of food-grade bioaerogels: A comprehensive critical review. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
12
|
Frosi I, Ferron L, Colombo R, Papetti A. Natural carriers: Recent advances in their use to improve the stability and bioaccessibility of food active compounds. Crit Rev Food Sci Nutr 2022; 64:5700-5718. [PMID: 36533404 DOI: 10.1080/10408398.2022.2157371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the last decades, the incorporation of bioactive compounds in food supplements aroused the attention of scientists. However, these ingredients often exhibit both low solubility and stability and their poor bioaccessibility within the gastrointestinal tract limits their effectiveness. To overcome these drawbacks, many carriers have been investigated for encapsulating nutraceuticals and enhancing their bioavailability. It is note that several different vegetable wall materials have been applied to build delivery systems. Considering their encapsulation mechanism, lipid and protein-based carriers display specific interaction patterns with bioactives, whereas polysaccharidic-based carriers can entrap them by creating porous highly stable networks. To maximize the encapsulation efficiency, mixed systems are very promising. Following the current goal of using natural and sustainable ingredients, only a limited number of studies about the isolation of new ingredients from agro-food waste are available. In this review, a comprehensive overview of the state of art in the development of innovative natural lipid-, protein- and polysaccharide-based plant carriers is presented, focusing on their application as food active compounds. Different aspects to be considered in the design of delivery systems are discussed, including the carrier structure and chemical features, the interaction between the encapsulating and the core material, and the parameters affecting bioactives entrapment.
Collapse
Affiliation(s)
- Ilaria Frosi
- Drug Sciences Department, University of Pavia, Pavia, Italy
| | - Lucia Ferron
- Drug Sciences Department, University of Pavia, Pavia, Italy
| | | | - Adele Papetti
- Drug Sciences Department, University of Pavia, Pavia, Italy
| |
Collapse
|
13
|
Charles APR, Mu R, Jin TZ, Li D, Pan Z, Rakshit S, Cui SW, Wu Y. Application of yellow mustard mucilage and starch in nanoencapsulation of thymol and carvacrol by emulsion electrospray. Carbohydr Polym 2022; 298:120148. [DOI: 10.1016/j.carbpol.2022.120148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/07/2022] [Accepted: 09/20/2022] [Indexed: 11/27/2022]
|
14
|
Selvasekaran P, Chidambaram R. Bioaerogels as food materials: A state-of-the-art on production and application in micronutrient fortification and active packaging of foods. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Pirsa S, Mahmudi M, Ehsani A. Biodegradable film based on cress seed mucilage, modified with lutein, maltodextrin and alumina nanoparticles: Physicochemical properties and lutein controlled release. Int J Biol Macromol 2022; 224:1588-1599. [DOI: 10.1016/j.ijbiomac.2022.10.244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/10/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
|
16
|
Perera SP, McIntosh T, Coutu C, Tyler RT, Hegedus DD, Wanasundara JPD. Profiling and characterization of
Camelina sativa
(
L
.)
Crantz
meal proteins. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Suneru P. Perera
- Agriculture and Agri‐Food Canada Saskatoon Research and Development Centre Saskatoon Canada
- Department of Food and Bioproduct Sciences University of Saskatchewan Saskatoon Canada
| | - Tara McIntosh
- Agriculture and Agri‐Food Canada Saskatoon Research and Development Centre Saskatoon Canada
| | - Cathy Coutu
- Agriculture and Agri‐Food Canada Saskatoon Research and Development Centre Saskatoon Canada
| | - Robert T. Tyler
- Department of Food and Bioproduct Sciences University of Saskatchewan Saskatoon Canada
| | - Dwayne D. Hegedus
- Agriculture and Agri‐Food Canada Saskatoon Research and Development Centre Saskatoon Canada
- Department of Food and Bioproduct Sciences University of Saskatchewan Saskatoon Canada
| | - Janitha P. D. Wanasundara
- Agriculture and Agri‐Food Canada Saskatoon Research and Development Centre Saskatoon Canada
- Department of Food and Bioproduct Sciences University of Saskatchewan Saskatoon Canada
| |
Collapse
|
17
|
Aerogel: Functional Emerging Material for Potential Application in Food: a Review. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02829-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Dedhia N, Marathe SJ, Singhal RS. Food polysaccharides: A review on emerging microbial sources, bioactivities, nanoformulations and safety considerations. Carbohydr Polym 2022; 287:119355. [DOI: 10.1016/j.carbpol.2022.119355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 12/13/2022]
|
19
|
Zhang Y, Li Y, Xia Q, Liu L, Wu Z, Pan D. Recent advances of cereal β-glucan on immunity with gut microbiota regulation functions and its intelligent gelling application. Crit Rev Food Sci Nutr 2021:1-17. [PMID: 34748438 DOI: 10.1080/10408398.2021.1995842] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
β-glucan from cereals such as wheat, barley, oats and rye are a water-soluble dietary fiber, which are composed of repeating (1→4)-β-bond β-D-glucopyranosyl units and a single (1→3)-β-D-bond separated unit. β-glucan has a series of physicochemical properties (such as viscosity, gelling properties, solubility, etc.), which can be used as a food gel and fat substitute. Its structure endows the healthy functions, including anti-oxidative stress, lowering blood glucose and serum cholesterol, regulating metabolic syndrome and exerting gut immunity via gut microbiota. Due to their unique structural properties and efficacy, cereal β-glucan are not only applied in food substrates in the food industry, but also in food coatings and packaging. This article reviewed the applications of cereal β-glucan in hydrogels, aerogels, intelligent packaging systems and targeted delivery carriers in recent years. Cereal β-glucan in edible film and gel packaging applications are becoming more diversified and intelligent in recent years. Those advances provide a potential solution based on cereal β-glucan as biodegradable substances for immune regulation delivery system and intelligent gelling material in the biomedicine field.
Collapse
Affiliation(s)
- Yunzhen Zhang
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Yueqin Li
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Qiang Xia
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Lianliang Liu
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Zufang Wu
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Daodong Pan
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| |
Collapse
|
20
|
Food-grade aerogels obtained from polysaccharides, proteins, and seed mucilages: Role as a carrier matrix of functional food ingredients. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
Aerogels as porous structures for food applications: Smart ingredients and novel packaging materials. FOOD STRUCTURE 2021. [DOI: 10.1016/j.foostr.2021.100188] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
22
|
Tosif MM, Najda A, Bains A, Kaushik R, Dhull SB, Chawla P, Walasek-Janusz M. A Comprehensive Review on Plant-Derived Mucilage: Characterization, Functional Properties, Applications, and Its Utilization for Nanocarrier Fabrication. Polymers (Basel) 2021; 13:polym13071066. [PMID: 33800613 PMCID: PMC8037796 DOI: 10.3390/polym13071066] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
Easily sourced mucus from various plant parts is an odorless, colorless and tasteless substance with emerging commercial potential in agriculture, food, cosmetics and pharmaceuticals due to its non-toxic and biodegradable properties. It has been found that plant-derived mucilage can be used as a natural thickener or emulsifier and an alternative to synthetic polymers and additives. Because it is an invisible barrier that separates the surface from the surrounding atmosphere, it is used as edible coatings to extend the shelf life of fresh vegetables and fruits as well as many food products. In addition to its functional properties, mucilage can also be used for the production of nanocarriers. In this review, we focus on mucus extraction methods and its use as a natural preservative for fresh produce. We detailed the key properties related to the extraction and preservation of food, the mechanism of the effect of mucus on the sensory properties of products, coating methods when using mucus and its recipe for preserving fruit and vegetables. Understanding the ecological, economic and scientific factors of production and the efficiency of mucus as a multi-directional agent will open up its practical application in many industries.
Collapse
Affiliation(s)
- Mansuri M. Tosif
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India;
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 20-280 Lublin, Poland;
- Correspondence: (A.N.); (P.C.)
| | - Aarti Bains
- Department of Biotechnology, Chandigarh Group of Colleges Landran, Mohali, Punjab 140307, India;
| | - Ravinder Kaushik
- Department of Food Technology, School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India;
| | - Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana 125055, India;
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India;
- Correspondence: (A.N.); (P.C.)
| | - Magdalena Walasek-Janusz
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 20-280 Lublin, Poland;
| |
Collapse
|
23
|
Kassem IAA, Joshua Ashaolu T, Kamel R, Elkasabgy NA, Afifi SM, Farag MA. Mucilage as a functional food hydrocolloid: ongoing and potential applications in prebiotics and nutraceuticals. Food Funct 2021; 12:4738-4748. [PMID: 34100507 DOI: 10.1039/d1fo00438g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mucilage is a soluble dietary fiber used as a food additive to give foods a firmer texture, aside from its many health benefits and pharmacological properties. It is a polysaccharide in nature, composed of large molecules of sugars and uronic acid moieties. The extraction of mucilage is achieved from a wide variety of plant parts, including rhizomes, roots, and seeds, and it has also been reported from microorganisms. In this review, the nutritional and medicinal applications of mucilage are described in the context of the different mucilage types. The current article highlights state-of-the-art valorization practices relating to mucilage and its potential novel usages in the food industry and nutraceuticals, and as a prebiotic, in addition to its nutritional and anti-nutritional values. Analysis of the prebiotic action of mucilage with respect to its structure activity relationship, as well as how it modulates gut bacteria, is presented for the first time and in the context of its known health benefits inside the colon. It is recommended that more investigations are carried out to maximize the health benefits of mucilage and ensure its safety, especially upon long-term usage.
Collapse
Affiliation(s)
- Iman A A Kassem
- Chemistry of Natural Compounds Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Tolulope Joshua Ashaolu
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam and Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Rabab Kamel
- Pharmaceutical Technology Department, National Research Centre, Giza 12622, Egypt
| | - Nermeen A Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Sherif M Afifi
- Pharmacognosy Department, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B. 11562, Cairo, Egypt. and Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| |
Collapse
|
24
|
Lemaire A, Duran Garzon C, Perrin A, Habrylo O, Trezel P, Bassard S, Lefebvre V, Van Wuytswinkel O, Guillaume A, Pau-Roblot C, Pelloux J. Three novel rhamnogalacturonan I- pectins degrading enzymes from Aspergillus aculeatinus: Biochemical characterization and application potential. Carbohydr Polym 2020; 248:116752. [DOI: 10.1016/j.carbpol.2020.116752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 10/23/2022]
|