1
|
Sang H, Zhang R, Gao R, Zhang S, Liu H, Pei J, Wang J, Gao S. Comparison of annealing and heat-moisture modification on effects of Tartary buckwheat starch under plasma-activated water condition. Food Chem 2025; 481:144014. [PMID: 40168865 DOI: 10.1016/j.foodchem.2025.144014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/10/2025] [Accepted: 03/21/2025] [Indexed: 04/03/2025]
Abstract
This study investigated the effects of plasma-activated water (PAW) assisted annealing and heat-moisture treatment (HMT) on the physicochemical, structural properties, and in vitro digestibility of Tartary buckwheat starch (TBS). The results showed that there were much aggregates on the surface of starch granules under annealing and HMT conditions, it was more pronounced when subjected in PAW. The modified starches showed higher R1047/1022 and pasting temperature, which led to reducing digestibility of TBS. Notably, the highest resistant starch content (71.08 %) was observed with PAW-HMT under the moisture content of 30 %. In addition, all the modified starches remained A type pattern except HMT and PAW-HMT samples, which displayed an A + V type pattern. Therefore, TBS was more sensitive to the combined HMT and PAW treatment. These findings offered valuable insights into the application of PAW combined with thermal treatments to enhance the quality of TBS in the utilization of functional foods.
Collapse
Affiliation(s)
- Huilong Sang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Rui Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Ruiyang Gao
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Si Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Hang Liu
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan 030031, PR China
| | - Jianfei Pei
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| | - Jiamei Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| | - Shanshan Gao
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
2
|
Wang F, Du M, Cui G, Zheng S, Wen Y, Li H, Wang J, Sun B. Rice bran peptides with α-glucosidase inhibition activity delay the in vitro starch digestion of different rice foods. Int J Biol Macromol 2025:143428. [PMID: 40274152 DOI: 10.1016/j.ijbiomac.2025.143428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/28/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
Rice bran peptides (RBPs) with α-glucosidase inhibition activity have shown great efficacy in reducing postprandial blood glucose levels. This study investigated the inhibitory mechanism of rice bran peptides (RBPs) on amyloglucosidase (AMG) and their potential for modulating starch digestion in rice-based foods. The results demonstrated that RBPs significantly reduced the digestibility and estimated glycemic index (eGI) values of all rice foods in a dose-dependent manner. Fourier transform infrared (FTIR) spectroscopy revealed that interactions between RBPs and amyloglucosidase (AMG) resulted in significant alterations to AMG's secondary structure, characterized by a 20.31 ± 0.01 % decrease in α-helical content and a 59.33 ± 0.01 % increase in β-sheet content compared to the control. Moreover, the size exclusion chromatography (SEC) weight distribution curve further illustrated that RBPs delayed the hydrolysis of starch macromolecules, enabling them to remain in a higher molecular weight state during digestion. Molecular docking revealed that RBPs interact with critical catalytic residues via hydrogen bonding and electrostatic forces, directly obstructing substrate access to AMG's active site. In summary, RBPs altered the secondary structure of AMG, inhibited enzyme activity, and thereby delayed starch digestion. These findings further explain the possible mechanism of peptide effects on starch digestion and have important implications for the development of functional carbohydrate foods aimed at delaying starch digestion.
Collapse
Affiliation(s)
- Fuan Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Meng Du
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Gengjie Cui
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Shulin Zheng
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Yangyang Wen
- College of Chemistry and Materials Engineering, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Hongyan Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| | - Jing Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| |
Collapse
|
3
|
Liu L, Lin Q, Zhang Y, Wang X, Zheng B, Guo Z. Formation and structural dynamics of Lotus seed starch-linolenic acid complexes under high pressure microfluidization and their evolution during simulated gastrointestinal digestion. Food Chem 2025; 484:144400. [PMID: 40267672 DOI: 10.1016/j.foodchem.2025.144400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025]
Abstract
Linolenic acid (ALA) can promote the production of intestinal short-chain fatty acids and the growth of beneficial bacteria. However, its polyunsaturated nature makes it prone to oxidation. To address this, lotus seed starch (LS) was used as a carrier to form LS-ALA complexes via dynamic high-pressure microfluidization (DHPM) at 180 MPa. The resulting complex exhibited high crystallinity and thermal stability, with 14.84 ± 0.16 % ALA content. This complexation reduced starch's short-range order and increased its solubility at room temperature, with 17.42 ± 0.49 % being resistant starch. Importantly, during in vitro digestion, the complex's crystal form remained unchanged, the ALA content in the remaining complex increased, and the carboxyl peak of the fatty acid was more obvious after digestion, indicating that ALA was protected during this process. These findings reveal the interaction mechanisms between ALA and starch, establish a basis for efficient LS-ALA complex preparation, and support further interaction studies.
Collapse
Affiliation(s)
- Lu Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qi Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yixiang Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoying Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
4
|
Cao H, Wang X, Zhang Y, Song H, Liu C, Huang K, Lu J, Grimi N, Guan X. Enhancing the texture and modulating digestive behavior of gluten-free quinoa sponge cakes via microwave-assisted alkaline amino acid treatment. Food Chem 2025; 470:142699. [PMID: 39742602 DOI: 10.1016/j.foodchem.2024.142699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/15/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025]
Abstract
This study investigated the effects of microwave treatment combined with lysine and arginine on gluten-free quinoa sponge cakes. The results indicated that the addition of these amino acids during microwave treatment significantly increased the cakes' specific volume by 49 %. X-ray diffraction analysis revealed that cake crystallinity reached 56.23 % and 49.17 % when lysine and arginine were used, respectively. Fourier Transform Infrared spectroscopy showed confirmed the absence of new functional groups or chemical bonds under different treatments, but the absorbance ratio at 1047 cm-1 to 1022 cm-1 was higher in microwave-treated cakes with lysine compared to traditionally steamed cakes. Simulated digestion experiments demonstrated that microwave-treated cakes, especially with added amino acids, exhibited higher protein digestibility but lower starch digestibility. Confocal Laser Scanning Microscopy observations further showed that proteins formed a denser network structure around starch granules during in vitro digestion, suggesting improved protein functionality and structure in microwave-treated quinoa sponge cakes.
Collapse
Affiliation(s)
- Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Xiaoxue Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Caiyun Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Jun Lu
- Auckland Bioengineering Institute, the University of Auckland, Auckland 1142, New Zealand
| | - Nabil Grimi
- Sorbonne Universités, Laboratoire de Transformations Intégrées de la Matière Renouvelable, Université de Technologie de Compiègne, France
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China.
| |
Collapse
|
5
|
Chen X, Zhang X, Li E, Li C. Mechanistic investigation of impact of malic acid, ultrasound and dual treatment on starch digestibility of cooked whole rice grains. Carbohydr Polym 2025; 352:123230. [PMID: 39843122 DOI: 10.1016/j.carbpol.2025.123230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/11/2024] [Accepted: 01/02/2025] [Indexed: 01/24/2025]
Abstract
Physical, chemical, and dual modifications can all significantly affect the digestibility of isolated rice granules, while their effects on the starch digestibility of whole cooked rice grains remain elusive. Therefore, the impact of malic acid, ultrasound, and ultrasound + malic acid dual treatment on the starch digestibility of cooked rice grains with different starch molecular structures was investigated in this study. Ultrasound mainly caused cavitation on the surface of rice grains, promoting the leaching of materials (> 11 %) and amylose during cooking. This led to a faster retrogradation rate, smaller pores, and a lower maximum starch digestion extent. In contrast, malic acid caused a faster digestion rate due to the significant degradation of starch molecules, although its moderate esterification smoothed the cooked rice grain surface and slightly reduced the maximum starch digestion extent. Compared to malic acid treatment, the dual treatment showed a much higher degree of esterification, which may thus contribute to its significantly lower maximum starch digestion extent (up to 21 %). Collectively, these findings suggest that both ultrasound and dual treatment can be effective strategies for producing cooked rice grains with slower starch digestibility, with implications for improving the public health.
Collapse
Affiliation(s)
- Xinyi Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiaowei Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Enpeng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Cheng Li
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong.
| |
Collapse
|
6
|
Zuo Z, Zhang M, Li T, Zhang X, Wang L. Quality control of cooked rice: Exploring physicochemical changes of the intrinsic component in production. Food Chem 2025; 463:141295. [PMID: 39340909 DOI: 10.1016/j.foodchem.2024.141295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
Sensory deterioration exists in marketed cooked rice. The migration and interaction of intrinsic components occur under multiple conditions in each industrial production process and cause relevant physicochemical changes in cooked rice. This review aims to establish a scientific knowledge system of intrinsic component transition and migration in cooked rice kernel during processing to solve qualitative deficiencies in cooked rice products. The main influencing factors of intrinsic component structural change in cooked rice and the quality control points that should be considered are summarized. Further studies are needed to establish proper evaluation standards for cooked rice products to meet the growing consumer demands.
Collapse
Affiliation(s)
- Zhongyu Zuo
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China
| | - Ming Zhang
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China
| | - Ting Li
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China
| | - Xinxia Zhang
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China.
| | - Li Wang
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China.
| |
Collapse
|
7
|
Lv R, Chen Y, Zhou J, Jiang L, Xu E, Ling J, Tang J. Green fabrication of hierarchical pore starch with controllable pore size and shape based on different amylose-amylopectin ratios. Carbohydr Polym 2024; 346:122594. [PMID: 39245486 DOI: 10.1016/j.carbpol.2024.122594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024]
Abstract
Porous starch (PS) was widely prepared for its large effective surface area, pore volume, and superior hydrophilic property, but its application is limited by enzyme and chemical use. In this study, a novel method to prepare PS with controllable hierarchical pores through ultrasound-ethanol precipitation and different amylose-amylopectin ratios is proposed. As shown in porous morphology and parameters, there were macropores, mesopores and micropores in the formed PS. Moreover, we found that the content of amylose (AM) was negatively related with the total pore volume and pore diameter in PS. The different surface tensions created through ethanol evaporation and water migration during oven drying are the main mechanisms of forming pores with controllable sizes. Based on the molecular information and the long-/short-range orders reflected by crystalline pattern, lamellas, and single-/double-helices, we conclude that AM is easier to form V-type inclusion complexes with ethanol. More single helix of V-amylose was transformed from B-type polymorph after ethanol exchange, which had significantly broadened dLozentz in PS. The TG spectra proved that the novel PS has the stable thermodynamic property. Overall, the finding of an objective regular between AM and pore sizes of PS in this study may support the other work related to PS.
Collapse
Affiliation(s)
- Ruiling Lv
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, the State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yi Chen
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, the State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jianwei Zhou
- School of Mechanical and Energy Engineering, NingboTech University, Ningbo 315100, China
| | - Ling Jiang
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, the State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, the State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Jiangang Ling
- Institute of Agricultural Products Processing, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang 315000, China
| | - Junyu Tang
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, the State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
López-Silva M, García-Valle DE. Ice cream cone fortified with spent coffee ground: Chemical composition, quality and sensory characteristics, and in vitro starch digestibility. Food Chem 2024; 459:140288. [PMID: 39002335 DOI: 10.1016/j.foodchem.2024.140288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/24/2024] [Accepted: 06/29/2024] [Indexed: 07/15/2024]
Abstract
The objective of the study was to evaluate the effect of the incorporation of spent coffee grounds in ice cream cones on the quality, sensory characteristics, and in vitro starch digestibility. The incorporation of spent coffee grounds in ice cream cones increased the content of dietary fiber and phenolic compounds. However, the quality and texture characteristics decreased with the addition of spent coffee grounds. The in vitro starch digestibility decreased significantly, resulting in a significant increase in resistant starch content. Fitting starch digestibility using the LOS-plot model revealed the presence of two sequential first-order digestion rates. Sensory analysis revealed that the panelists well accepted ice cream cones fortified with spent coffee grounds. The results suggest that spent coffee grounds are a potential ingredient for the formulation of food matrices with reduced starch digestibility, which contributes to the prevention of chronic degenerative diseases such as type II diabetes.
Collapse
Affiliation(s)
- Madai López-Silva
- Tecnológico Nacional de México/Instituto Tecnólogico Superior de Atlixco-Departamento de Ingeniería Bioquímica, Atlixco, Puebla, México
| | | |
Collapse
|
9
|
Zhao Y, Dang X, Du H, Wang D, Zhang J, Liu R, Ge Z, Sun Z, Zhong Q. Understanding the Impact of Extrusion Treatment on Cereals: Insights from Alterations in Starch Physicochemical Properties and In Vitro Digestion Kinetics. Animals (Basel) 2024; 14:3144. [PMID: 39518868 PMCID: PMC11544977 DOI: 10.3390/ani14213144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
In this study, three samples were randomly selected from corn, wheat, and broken rice before and after extrusion for electron microscope scanning, Fourier transform infrared spectral analysis, and in vitro digestion to investigate the impact of extrusion on physicochemical characteristics and starch digestion kinetics of cereals. The cereals used for extrusion were sourced identically before and after the process, with each analysis conducted in triplicate. The results showed that the extrusion compromised the physical structure of cereal, resulting in loose structure arrangement, and the ratio of Fourier transform infrared spectral absorbance at wavelength 1047 cm-1 and 1022 cm-1, which characterized the short-range order of starch, was significantly reduced (p < 0.05). In addition, the proportion of rapidly digestible starch (RDS), the velocity parameter k of digestive kinetics and the predicted glycemic index of cereals were significantly increased by extrusion (p < 0.05). Digestibility kinetics showed a total increase of 10.7%, 7.3%, and 5.4% for cereals, along with a sharp rise in digestion rate within the first 15 minutes. The findings revealed that the compromising of starch's structural integrity and the increase in proportion of RDS not only enhanced overall starch digestibility, but also significantly accelerated its digestion, particularly during the initial 15 min of intestinal digestion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zewei Sun
- Jilin Province Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (X.D.); (H.D.); (D.W.); (J.Z.); (R.L.); (Z.G.)
| | - Qingzhen Zhong
- Jilin Province Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (X.D.); (H.D.); (D.W.); (J.Z.); (R.L.); (Z.G.)
| |
Collapse
|
10
|
Mulargia LI, Lemmens E, Reyniers S, Gebruers K, Wouters AGB, Warren FJ, Goderis B, Delcour JA. Investigation of the link between first-order kinetic models of the in vitro digestion of native starches and the accompanying changes in their crystallinity and structure. Carbohydr Polym 2024; 343:122440. [PMID: 39174085 DOI: 10.1016/j.carbpol.2024.122440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 08/24/2024]
Abstract
Starch is the main source of dietary energy for humans. In order to understand the mechanisms governing native starch in vitro digestion, digestion data for six starches [wheat, maize, (waxy) maize, rice, potato and pea] of different botanical sources were fitted with the most common first-order kinetic models, i.e. the single, sequential, parallel and combined models. Parallel and combined models provided the most accurate fits and showed that all starches studied except potato starch followed a biphasic in vitro digestion pattern. The biological relevance of the kinetic parameters was explored by determining changes in crystallinity and molecular structure of the undigested starch residues during in vitro digestion. While the crystallinity of the undigested potato starch residues did not change substantially, a respectively small and large decrease in their amylose content and chain length during in vitro digestion was observed, indicating that amylose was digested slightly preferentially over amylopectin in native starch. However, the molecular structure of the starch residues changed too slowly and/or only to an insufficient extent to relate it to the kinetic parameters of the digested fractions predicted by the models. Such parameters thus need to be interpreted with caution, as their biological relevance still needs to be proven.
Collapse
Affiliation(s)
- Leonardo I Mulargia
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Elien Lemmens
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Stijn Reyniers
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Kurt Gebruers
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Arno G B Wouters
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Frederick J Warren
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom.
| | - Bart Goderis
- Laboratory for Macromolecular Structural Chemistry, KU Leuven, Leuven, Belgium.
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| |
Collapse
|
11
|
Qiao J, Zhang Z, Xing B, Liang Y, Jia M, Yun J, Niu J, Li H, Ren G, Qin P, Zhang L. Starch chain-length distributions affect the processing and digestion characteristics of proso millet starch. Food Chem 2024; 457:140104. [PMID: 38941905 DOI: 10.1016/j.foodchem.2024.140104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/30/2024]
Abstract
Starch chain-length distributions play a key role in regulating the processing and digestion characteristics of proso millet starch. Waxy proso millet starch has higher endothermic enthalpy (13.06-16.73 J/g) owing to its higher relative crystallinity (27.83%-32.04%), while nonwaxy proso millet starch has lower peak viscosity (1.0630-1.1930 Pa∙s) and stronger viscoelasticity owing to its higher amylose content (21.72%-24.34%). Non-waxy proso millet starch exhibited two different digestion phases and its resistant starch content (18.37%-20.80%) was higher than waxy proso millet starch. Correlation analysis showed proso millet starch with longer amylopectin B1 chains and more amylopectin B2 chains exhibited excellent thermal ability and retrograde resistance, whereas proso millet starch with shorter and more amylose medium/long-chains not only reduced the digestion rate and increased the resistant starch content but also exhibited stronger viscoelasticity and excellent retrogradation properties. These results could provide more insights into efficient utilization of proso millet starch.
Collapse
Affiliation(s)
- Jiawei Qiao
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Zhuo Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Bao Xing
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yongqiang Liang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Min Jia
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Junyan Yun
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jiahui Niu
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Hai Li
- Institute of the High Latitude Crops, Shanxi Agricultural University, Datong 037008, China
| | - Guixing Ren
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Peiyou Qin
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Lizhen Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
12
|
Gu Z, Qiao R, Chen Q, Yang Y, Song T. The structural and digestive properties of indica rice starch-fatty acid complexes. Int J Biol Macromol 2024; 278:134379. [PMID: 39098692 DOI: 10.1016/j.ijbiomac.2024.134379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/11/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
The structural and digestive properties of indica rice starch-fatty acid complexes and the effects of lipoxygenase on the structural and digestive properties of the complexes were examined in this study. The complexes were characterized by scanning electron microscopy, X-ray diffraction, Fourier transform-infrared spectroscopy and Raman spectroscopy. The results showed that indica rice starch had the highest molecular chain order and the highest crystallinity, and the crystallization disappeared after gelatinization, and the formation of indica rice starch-fatty acid complexes promoted the transformation of starch crystal structure from A-type to V-type. Lipoxygenase reduced the regularity of starch molecular crystal structure in the complexes, while enzyme protein improved the order of starch molecular structure in the complexes. The regularity of starch crystal structure in the complexes could improve with the increase of composite temperature and the increase of fatty acid unsaturation. In vitro digestibility and in vitro digestion kinetics showed that the formation of indica rice starch-fatty acid complexes reduced the digestibility of indica rice starch to a certain extent. The RDS content of indica rice starch was 66.42 ± 0.39 %, and lipoxygenase reduced the reduction of rapidly digested starch content during complexes digestion, while enzyme protein increased the content of resistant starch.
Collapse
Affiliation(s)
- Zhenyu Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; National Experimental Teaching Demonstration Center of Food Engineering and Quality and Safety, Hangzhou 310018, China
| | - Ran Qiao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qing Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yuexi Yang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; National Experimental Teaching Demonstration Center of Food Engineering and Quality and Safety, Hangzhou 310018, China.
| | - Tianyuan Song
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; National Experimental Teaching Demonstration Center of Food Engineering and Quality and Safety, Hangzhou 310018, China.
| |
Collapse
|
13
|
Feng P, Zhou X, Yu W. Study of starch molecular structure-property relations provides new insight into slowly digested rice development. Food Res Int 2024; 194:114887. [PMID: 39232521 DOI: 10.1016/j.foodres.2024.114887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024]
Abstract
White rice consumption has been regarded as a potential risk factor for non-communicable diseases including obesity and type 2 diabetes. Thus, increasing attention has been paid to develop slowly digested rices with acceptable palatability. As the most abundant component of rice kernels, the fine molecular structure of starch controls not only the texture & aroma, but also the digestion properties of cooked rice. A large number of studies have been conducted to see what molecular structural features control the digestibility and palatability of cooked rice, which further could be connected to starch biosynthesis to enable rices with targeted functionalities to be chosen in non-empirical ways. Nonetheless, little progress has been made because of improper experimental designs. For example, the effects of starch fine molecular structure on cooked rice digestibility and palatability has been rarely studied within one study, resulting to various digestion results. Even for the same sample, it is hard to obtain consistent conclusions and sometimes, the results/coclusions are even controversy. In this review paper, starch fine molecular structural effects on the texture, aroma and starch digestion properties of cooked white rice were summarized followed by a detailed discussion of the relations between the fine molecular structures of amylopectin and amylose to deduce a more general conclusion of starch molecular structure-cooked rice property relations. It is expected that this review paper could provide useful information in terms of how to develop slowly digested rices with acceptable palatability.
Collapse
Affiliation(s)
- Puxu Feng
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, China
| | - Xianglong Zhou
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, China
| | - Wenwen Yu
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, China.
| |
Collapse
|
14
|
Xing B, Zou L, Liu J, Liang Y, Wang N, Zhang Z, Qiao J, Ren G, Zhang L, Qin P. The importance of starch chain-length distribution for in vitro digestion of ungelatinized and retrograded foxtail millet starch. Food Res Int 2024; 189:114563. [PMID: 38876595 DOI: 10.1016/j.foodres.2024.114563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/08/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024]
Abstract
The digestibility of ungelatinized, short-term retrograded and long-term retrograded starch from foxtail millet was investigated and correlated with starch chain length distributions (CLDs). Some variations in starch CLDs of different varieties were obtained. Huangjingu and Zhonggu 9 had higher average chain lengths of debranched starch and lower average chain length ratios of amylopectin and amylose than Dajinmiao and Jigu 168. Compared to ungelatinized starch, retrogradation significantly increased the estimated glycemic index (eGI), whereas significantly decreased the resistant starch (RS). In contrast, long-term retrograded starches have lower eGI (93.33-97.37) and higher RS (8.04-14.55%) than short-term retrograded starch. PCA and correlation analysis showed that amylopectin with higher amounts of long chains and longer long chains contributed to reduced digestibility in ungelatinized starch. Both amylose and amylopectin CLDs were important for the digestibility of retrograded starch. This study helps a better understanding of the interaction of starch CLDs and digestibility during retrogradation.
Collapse
Affiliation(s)
- Bao Xing
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Jingke Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, China
| | - Yongqiang Liang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Nuo Wang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhuo Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jiawei Qiao
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Guixing Ren
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Lizhen Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| | - Peiyou Qin
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
15
|
Liu R, Geng Z, Li T, Zhang M, Zhang C, Ma T, Xu Z, Xu S, Liu H, Zhang X, Wang L. Effects of different extrusion temperatures on the physicochemical properties, edible quality and digestive attributes of multigrain reconstituted rice. Food Funct 2024; 15:6000-6014. [PMID: 38743003 DOI: 10.1039/d4fo00044g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Multigrain reconstituted rice, as a nutritious and convenient staple, holds considerable promise for the food industry. Furthermore, highland barley, corn, and other coarse cereals are distinguished by their low glycemic index (GI), rendering them effective in mitigating postprandial blood glucose levels, thereby underscoring their beneficial physiological impact. This study investigated the impact of extrusion temperature on the physicochemical properties, edible quality, and digestibility of multigrain reconstituted rice. The morphology revealed that starch particles that are not fully gelatinized in multigrain reconstituted rice are observed at an extrusion temperature range of 60 °C-90 °C. As the extrusion temperature increased, the degree of gelatinization (DG) increased, while the contents of water, protein, total starch, and amylopectin decreased substantially. Concurrently, the relative crystallinity, orderliness of starch, and heat absorption enthalpy (ΔH) decreased significantly, and water absorption (WAI) and water solubility (WSI) increased markedly. Regarding edible quality, sensory evaluation displayed an initial increase followed by a decrease. In terms of digestibility, the estimated glycemic index (eGI) increased from 61.10 to 70.81, and the GI increased from 60.41 to 75.33. In addition, the DG was significantly correlated with both eGI (r = 0.886**) and GI (r = 0.947**). The results indicated that the ideal extrusion temperature for multigrain reconstituted rice was 90 °C. The findings underscored the pivotal role of optimal extrusion temperatures in the production of multigrain reconstituted rice, which features low GI and high nutritional quality.
Collapse
Affiliation(s)
- Ruohai Liu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Zhanhui Geng
- Systems Engineering Institute, Academy of Military Sciences, Beijing 100141, China
| | - Ting Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Ming Zhang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Congnan Zhang
- Jiangsu Nongken Agricultural Development Co., Ltd, Hengshan Road 136, Nanjing 210019, China
| | - Tianjiao Ma
- Systems Engineering Institute, Academy of Military Sciences, Beijing 100141, China
| | - Zhicun Xu
- Jiangsu Nongken Agricultural Development Co., Ltd, Hengshan Road 136, Nanjing 210019, China
| | - Shunqian Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - He Liu
- Systems Engineering Institute, Academy of Military Sciences, Beijing 100141, China
| | - Xinxia Zhang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Li Wang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| |
Collapse
|
16
|
Qi K, Cao S, Li C. Possible interaction between pectin and gluten alters the starch digestibility and texture of wheat bread. Int J Biol Macromol 2024; 269:131907. [PMID: 38677676 DOI: 10.1016/j.ijbiomac.2024.131907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024]
Abstract
This study incorporated citrus pectin in wheat bread, aiming to develop breads with both desirable texture and slow starch digestibility. Results showed that starch digestibility in wheat bread decreased over the addition of pectin, and the maximum starch digested amount decreased by 6.6 % after the addition of 12 % pectin (wheat flour weight basis). The addition of pectin transferred part of the rapidly digestible starch into slowly digestible starch, and reduced the binding rate constant between slowly digestible starch and digestive enzymes, resulting in overall reduced starch digestibility. Furthermore, the addition of 4 % pectin contributed to the development of wheat bread with softer texture and increased specific volume. Mechanistically, the lowered starch digestibility of wheat bread after the pectin addition was due to (1) residual outermost swollen layer of starch granules, (2) protein and pectin interactions, and (3) increased short-range ordering of starch. This study, therefore, suggests that the addition of an appropriate amount of citrus pectin has the potential to develop bread with both a low glycemic index and desirable texture.
Collapse
Affiliation(s)
- Kaixin Qi
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Senbin Cao
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Cheng Li
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China.
| |
Collapse
|
17
|
Zhang Z, Feng Y, Wang H, He H. Synergistic modification of hot-melt extrusion and nobiletin on the multi-scale structures, interactions, thermal properties, and in vitro digestibility of rice starch. Front Nutr 2024; 11:1398380. [PMID: 38812933 PMCID: PMC11133735 DOI: 10.3389/fnut.2024.1398380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/16/2024] [Indexed: 05/31/2024] Open
Abstract
Background Rice starch has high digestibility due to its large carbohydrate content. Synergistic modification of hot-melt extrusion (HME) and additives such as flavonoids, hydrocolloids, proteins, lipids, and other additives has the tendency to retard the rate of starch hydrolysis. Hence, the current investigation aimed to study the combined effect of the HME-assisted addition of nobiletin (NOB, 0, 2, 4, and 6%) on the multi-scale structures, interactions, thermal, and digestibility characteristics of rice starch. Methods The study employed density functional theory calculations and an infrared second derivative of an Fourier-transform infrared (FTIR) spectrometer to analyze the interactions between NOB and starch. The physicochemical properties of the starch extrudates were characterized by FTIR, 13C nuclear magnetic resonance, X-ray diffraction, and differential scanning calorimetry, while the digestibility was evaluated using an in vitro digestion model. Results HME was found to disrupt the crystalline structure, helix structure, short-ordered structure, and thermal properties of starch. The interaction between NOB and starch involved hydrophobic interactions and hydrogen bonds, effectively preventing the molecular chains of starch from interacting with each other and disrupting their double helix structure. The addition of NOB led to the formation of a highly single-helical V-type crystalline structure, along with the formation of ordered structural domains. Consequently, the combined treatment significantly enhanced the ordered structure and thermal stability of starch, thus effectively leading to an increase in resistant starch and slowly digestion starch. Discussion The study underscores that synergistic modification of HME and NOB holds promise for enhancing both the nutritional value and functional properties of rice starch. These findings offer valuable insights for developing high-quality rice starch products with broader applications.
Collapse
Affiliation(s)
- Zhihong Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, Hainan, China
| | - Ying Feng
- Department of Nutrition and Food Hygiene, School of Public Health, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, Hainan, China
| | - Honglan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, Hainan, China
| | - Hai He
- Department of Nutrition and Food Hygiene, School of Public Health, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, Hainan, China
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, China
| |
Collapse
|
18
|
Lei X, Xu J, Han H, Zhang X, Li Y, Wang S, Li Y, Ren Y. Fine molecular structure and digestibility changes of potato starch irradiated with electron beam and X-ray. Food Chem 2024; 439:138192. [PMID: 38091788 DOI: 10.1016/j.foodchem.2023.138192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/25/2023] [Accepted: 12/08/2023] [Indexed: 01/10/2024]
Abstract
The change of digestibility of starch irradiated with different types from the perspective of fine structure is not well understood. In this work, the change of internal structure, molecular weight and chain-length distribution, helical structure, lamellar structure, fractal structure and digestibility of native and treated potato starch with electron beam and X-ray was analyzed. Two irradiations caused the destruction of internal structure, the disappearance of growth rings and increase of pores. Irradiation degraded starch to produce short chains and to decrease molecular weight. Irradiation increased double helical content and the thickness and peak area of lamellar structure, resulting in the reorganization of amylopectin and increase of structure order degree. The protected glycosidic linkages increased starch resistance to hydrolase attack, thereby enhancing the anti-digestibility of irradiated starch. Pearson correlation matrix also verified the above-mentioned results. Moreover, X-ray more increased the anti-digestibility of starch by enhancing ability to change fine structure.
Collapse
Affiliation(s)
- Xiaoqing Lei
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Jiayi Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Hui Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiaolu Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yihan Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Shuo Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yali Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yamei Ren
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, PR China.
| |
Collapse
|
19
|
Qiao J, Jia M, Niu J, Zhang Z, Xing B, Liang Y, Li H, Zhang Y, Ren G, Qin P, Zhang L. Amylopectin chain length distributions and amylose content are determinants of viscoelasticity and digestibility differences in mung bean starch and proso millet starch. Int J Biol Macromol 2024; 267:131488. [PMID: 38615862 DOI: 10.1016/j.ijbiomac.2024.131488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/23/2024] [Accepted: 04/07/2024] [Indexed: 04/16/2024]
Abstract
This study aimed to reveal the underlying mechanisms of the differences in viscoelasticity and digestibility between mung bean starch (MBS) and proso millet starch (PMS) from the viewpoint of starch fine molecular structure. The contents of amylopectin B2 chains (14.94-15.09 %), amylopectin B3 chains (14.48-15.07 %) and amylose long chains (183.55-198.84) in MBS were significantly higher than PMS (10.45-10.76 %, 12.48-14.07 % and 70.59-88.03, respectively). MBS with higher amylose content (AC, 28.45-31.80 %) not only exhibited a lower weight-average molar mass (91,750.65-128,120.44 kDa) and R1047/1022 (1.1520-1.1904), but also was significantly lower than PMS in relative crystallinity (15.22-23.18 %, p < 0.05). MBS displayed a higher storage modulus (G') and loss modulus (G'') than PMS. Although only MBS-1 showed two distinct and discontinuous phases, MBS exhibited a higher resistant starch (RS) content than PMS (31.63-39.23 %), with MBS-3 having the highest RS content (56.15 %). Correlation analysis suggested that the amylopectin chain length distributions and AC played an important role in affecting the crystal structure, viscoelastic properties and in vitro starch digestibility of MBS and PMS. These results will provide a theoretical and scientific basis for the development of starch science and industrial production of low glycemic index starchy food.
Collapse
Affiliation(s)
- Jiawei Qiao
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Min Jia
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jiahui Niu
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Zhuo Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Bao Xing
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yongqiang Liang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Hai Li
- Institute of the High Latitude Crops, Shanxi Agricultural University, Datong 037008, China
| | - Yaowen Zhang
- Institute of Crop Sciences, Shanxi Agricultural University, Taiyuan 030012, China
| | - Guixing Ren
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Peiyou Qin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Lizhen Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
20
|
Zhang Y, Wang D, Zhang Z, Guan H, Zhang Y, Xu D, Xu X, Li D. Improvement on wheat bread quality by in situ produced dextran-A comprehensive review from the viewpoint of starch and gluten. Compr Rev Food Sci Food Saf 2024; 23:e13353. [PMID: 38660747 DOI: 10.1111/1541-4337.13353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/12/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
Deterioration of bread quality, characterized by the staling of bread crumb, the softening of bread crust and the loss of aroma, has caused a huge food waste and economic loss, which is a bottleneck restriction to the development of the breadmaking industry. Various bread improvers have been widely used to alleviate the issue. However, it is noteworthy that the sourdough technology has emerged as a pivotal factor in this regard. In sourdough, the metabolic breakdown of carbohydrates, proteins, and lipids leads to the production of exopolysaccharides, organic acids, aroma compounds, or prebiotics, which contributes to the preeminent ability of sourdough to enhance bread attributes. Moreover, sourdough exhibits a "green-label" feature, which satisfies the consumers' increasing demand for additive-free food products. In the past two decades, there has been a significant focus on sourdough with in situ produced dextran due to its exceptional performance. In this review, the behaviors of bread crucial compositions (i.e., starch and gluten) during dough mixing, proofing, baking and bread storing, as well as alterations induced by the acidic environment and the presence of dextran are systemically summarized. From the viewpoint of starch and gluten, results obtained confirm the synergistic amelioration on bread quality by the coadministration of acidity and dextran, and also highlight the central role of acidification. This review contributes to establishing a theoretical foundation for more effectively enhancing the quality of wheat breads through the application of in situ produced dextran.
Collapse
Affiliation(s)
- Yao Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Postdoctoral Research Program of Materials Science and Engineering, School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
- Postdoctoral Programme of Juxiangyuan Health Food (Zhongshan) Co., Ltd., Zhongshan, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhihong Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Huanan Guan
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yanjie Zhang
- Postdoctoral Programme of Juxiangyuan Health Food (Zhongshan) Co., Ltd., Zhongshan, China
| | - Dan Xu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xueming Xu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Dandan Li
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
21
|
Shen M, Huang K, Cao H, Zhang Y, Sun Z, Yu Z, Guan X. Rheological, thermal, and in vitro starch digestibility properties of oat starch-lipid complexes. Int J Biol Macromol 2024; 268:131550. [PMID: 38631591 DOI: 10.1016/j.ijbiomac.2024.131550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
The influence of oat lipids on the structural, thermal, rheological, and in vitro digestibility properties of oat starch under heat processing conditions was investigated. X-ray diffraction, fourier infrared spectroscopy, and differential scanning calorimetry revealed the formation of a V-shaped crystal structure between starch and lipid, resulting in enhanced orderliness and enthalpy. Oat lipids decreased the final viscosity and gel strength of oat starch while weakening the trend towards gel network formation. Additionally, oat lipids exhibited enhanced resistance to starch hydrolase, leading to elevated contents of slowly digestible starch and resistant starch. Consequently, this leads to an augmentation in the rate constants for the rapid digestion fraction (k1) and the slow digestion fraction (k2). When the lipid content reached 7.50 %, a significant increase of 42.20 % was observed in the maximum digestibility of slow digestion fraction (C∞2), while a notable decrease of 44.06 % was noted in the maximum digestibility of rapid digestion fraction (C∞1). The correlation analysis revealed that lipid content, final viscosity, and enthalpy exerted significant influences on in vitro starch digestion. These results demonstrate the substantial impact of lipid content on oat starch structure, subsequently affecting its thermal, rheological, and digestive properties.
Collapse
Affiliation(s)
- Meng Shen
- School of Health Science and Engineering, the University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Kai Huang
- School of Health Science and Engineering, the University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Hongwei Cao
- School of Health Science and Engineering, the University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Yu Zhang
- School of Health Science and Engineering, the University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Zhu Sun
- Inner Mongolia Yangufang Ecological Agricultural Science and Technology (Group) Co., Ltd, Inner Mongolia, PR China
| | - Zhiquan Yu
- Inner Mongolia Yangufang Ecological Agricultural Science and Technology (Group) Co., Ltd, Inner Mongolia, PR China
| | - Xiao Guan
- School of Health Science and Engineering, the University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China.
| |
Collapse
|
22
|
Shen M, Huang K, Sun Z, Yu Z, Cao H, Zhang Y, Guan X. Effect of milling and defatting treatment on texture and digestion properties of oat rice. Food Chem X 2024; 21:101135. [PMID: 38304051 PMCID: PMC10831495 DOI: 10.1016/j.fochx.2024.101135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/19/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
Oat rice with great sensory acceptance was developed based on the combination method of milling and defatting (petroleum ether) treatment. In this study, the effect of milling and defatting treatment on the texture and digestion properties of oat rice was investigated. Results showed that milling and defatting treatment enhanced stickiness, enthalpy, and starch digestibility. The pasting temperature and hardness of oat rice were reduced. The lipid content of oat rice was significantly reduced by milling and defatting treatment, leading to a decrease in the formation of starch-lipid complex. Fourier transform infrared spectroscopy and X-ray diffraction analyses revealed that the application of milling and defatting treatments led to a reduction in the content of starch-lipid complexes in oats during the cooking process. Milling and defatting significantly enhanced both the rapid and slow digestion rates of oat rice. Specifically, the rapid digestion rate was found to be 2.5 times higher than the slow digestion rate. The nutritive components of oat rice were properly preserved, and the viscosity and elasticity of oat rice reached the maximum when milling for 40 s and defatting. This study provides a theoretical basis for oat products.
Collapse
Affiliation(s)
- Meng Shen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Zhu Sun
- Inner Mongolia Yangufang Ecological Agricultural Science and Technology (Group) Co., Ltd, Inner Mongolia, PR China
| | - Zhiquan Yu
- Inner Mongolia Yangufang Ecological Agricultural Science and Technology (Group) Co., Ltd, Inner Mongolia, PR China
| | - Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| |
Collapse
|
23
|
Lei X, Wang S, Li Y, Han H, Zhang X, Mao X, Ren Y. The multi-scale structure changes of γ-ray irradiated potato starch to mitigate pasting/digestion properties. Food Res Int 2024; 178:113931. [PMID: 38309903 DOI: 10.1016/j.foodres.2024.113931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
The comprehensive understanding of multi-scale structure of starch and how the structure regulates the pasting/digestion properties remain unclear. This work investigated the effects of γ-ray irradiation with different doses on multi-scale structure and pasting/digestion properties of potato starch. Results indicated that γ-ray at lower doses (<20 kGy) had little effect on micromorphology of starch, increased mainly the amylose content and the thickness of amorphous region while decreased crystallinity, double helix content and lamellar ordering. With the increase of dose, the internal structure of large granules was destroyed, resulting in the depolymerization of starch to form more short-chains and to reduce molecular weight. Meanwhile, amylose content decreased due to the depolymerization of amylose. The enhanced double helix content, crystallinity, lamellar ordering and structural compactness manifested the formation of the thicker and denser starch structure. These structure changes resulted in the decreased viscosity, the increased stability and anti- digestibility of paste.
Collapse
Affiliation(s)
- Xiaoqing Lei
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Shuo Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yali Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Hui Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xinying Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiaoyun Mao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yamei Ren
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, PR China; College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
24
|
Wang N, Li C, Miao D, Dai Y, Zhang H, Zhang Y, Hou H, Ding X, Wang W, Li C, Wang B. Effect of improved extrusion cooking technology (IECT) on structure, physical properties and in vitro digestibility of starch. Int J Biol Macromol 2023; 252:126436. [PMID: 37604420 DOI: 10.1016/j.ijbiomac.2023.126436] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Extrusion can modify the structure and physical properties of starch, while the extent of improved extrusion cooking technology (IECT) affects the starch with high moisture content and different crystal types remaining unclear. Therefore, the influence of IECT at different screw speeds on the structure, physical properties and in vitro digestibility of corn (A-type), potato (B-type) and pea (C-type) starches with high moisture content (42 %) was explored. Results indicated that IECT treatment caused similar variations on structure, physical properties, and in vitro digestibility of the 3 types of starches. The contents of slowly digestible starch (SDS) and resistant starch (RS) decreased by IECT treatment, accompanied by a reduction of crystallinity, enthalpy of gelatinization, gelatinization temperature and viscosity, while the content of rapidly digestible starch (RDS) and the ratio of bound water increased. And the changes in in vitro digestibility of starch were closely related to the damage to starch structure caused by IECT. Furthermore, most of starch granules were in the agglomeration stage by appropriate IECT treatment, which induced the exposure of a great quantity of enzyme binding sites to enhance the in vitro digestibility.
Collapse
Affiliation(s)
- Ning Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Chen Li
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Di Miao
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yangyong Dai
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China.
| | - Hong Zhang
- College of Life Science, Dezhou University, Dezhou, Shandong 253023, China
| | - Yong Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Hanxue Hou
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Xiuzhen Ding
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Wentao Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Cheng Li
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Bin Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| |
Collapse
|
25
|
Li D, Liu R, Tao Y, Shi Y, Wang P, Han Y. Enhancement of the carboxymethylation of corn starch via induced electric field. Carbohydr Polym 2023; 319:121137. [PMID: 37567727 DOI: 10.1016/j.carbpol.2023.121137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 08/13/2023]
Abstract
This study aimed to enhance the synthesis of carboxymethyl starch (CMS) by induced electric field (IEF). Corn starch was alkalized, pumped into IEF system, and then reacted with monochloroacetic acid at excitation voltages of 0-400 V. IEF enhanced the carboxymethylation by accelerating the rate of OH- and ClCH2COO- attacking starch particles and slightly intensifying the thermal effect by ~7.1 °C (30 min). Compared with the control (0 V), IEF increased the degree of substitution and reaction efficiency by 0.056-0.148 and 9.37-24.56 %, caused more destruction in starch granular and crystal structure, and thus increased its water solubility, swelling power, and paste transparency. Furthermore, some new crystals were formed during IEF treatment, which enhanced the thermostability of CMS, showing an increase of the maximum decomposition temperature by 16-26 °C. Overall, the results classified that IEF could improve the carboxymethylation and enhance the thermostability of products, which provided guides for the applications of electro-techniques in starch modification involving charged species.
Collapse
Affiliation(s)
- Dandan Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Ruyuan Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yaning Shi
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Pei Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yongbin Han
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|
26
|
Qiu Z, Chen L, Rao C, Zheng B. Starch-guar gum-ferulic acid molecular interactions alter the ordered structure and ultimate retrogradation properties and in vitro digestibility of chestnut starch under extrusion treatment. Food Chem 2023; 416:135803. [PMID: 36881961 DOI: 10.1016/j.foodchem.2023.135803] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/10/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023]
Abstract
Molecular interactions among starch and multiple-components during food processing determine the retrogradation properties and digestibility of starch. Here, the effects of starch-guar gum (GG)-ferulic acid (FA) molecular interactions on retrogradation properties, digestibility and ordered structural changes of chestnut starch (CS) under extrusion treatment (ET) were investigated by structural analysis and quantum chemistry. Due to the entanglement behaviors and hydrogen bond interactions, GG could inhibit the formation of helical and crystalline structures of CS. When FA was introduced simultaneously, FA could weaken the interactions between GG and CS as well as enter the spiral cavity of starch to increase the single/double helix and V-type crystalline structures while reducing A-type crystalline. Based on the above structural changes, ET with starch-GG-FA molecular interactions resulted in resistant starch content of 20.31% and anti-retrogradation rate of 42.98% for 21-day storage. Overall, the results could provide basic data for creation of chestnut-based food with higher value.
Collapse
Affiliation(s)
- Zhipeng Qiu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| | - Chenlu Rao
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Bo Zheng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
27
|
Zhang S, Zhao K, Xu F, Chen X, Zhu K, Zhang Y, Xia G. Study of unripe and inferior banana flours pre-gelatinized by four different physical methods. Front Nutr 2023; 10:1201106. [PMID: 37404857 PMCID: PMC10315463 DOI: 10.3389/fnut.2023.1201106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
This study aimed to prepare the pre-gelatinized banana flours and compare the effects of four physical treatment methods (autoclaving, microwave, ultrasound, and heat-moisture) on the digestive and structural characteristics of unripe and inferior banana flours. After the four physical treatments, the resistant starch (RS) content values of unripe and inferior banana flours were decreased from 96.85% (RS2) to 28.99-48.37% (RS2 + RS3), while C∞ and k values were increased from 5.90% and 0.039 min-1 to 56.22-74.58% and 0.040-0.059 min-1, respectively. The gelatinization enthalpy (ΔHg) and I1047/1022 ratio (short-range ordered crystalline structures) were decreased from 15.19 J/g and 1.0139 to 12.01-13.72 J/g, 0.9275-0.9811, respectively. The relative crystallinity decreased from 36.25% to 21.69-26.30%, and the XRD patterns of ultrasound (UT) and heat-moisture (HMT) treatment flours maintained the C-type, but those samples pre-gelatinized by autoclave (AT) and microwave (MT) treatment were changed to C + V-type, and heat-moisture (HMT) treatment was changed to A-type. The surface of pre-gelatinized samples was rough, and MT and HMT showed large amorphous holes. The above changes in structure further confirmed the results of digestibility. According to the experimental results, UT was more suitable for processing unripe and inferior banana flours as UT had a higher RS content and thermal gelatinization temperatures, a lower degree and rate of hydrolysis, and a more crystalline structure. The study can provide a theoretical basis for developing and utilizing unripe and inferior banana flours.
Collapse
Affiliation(s)
- Siwei Zhang
- College of Food Science and Engineering, Hainan University, Haikou, Hainan, China
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, China
| | - Kangyun Zhao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, China
| | - Fei Xu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan, China
| | - Xiaoai Chen
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan, China
| | - Kexue Zhu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan, China
| | - Yanjun Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan, China
| | - Guanghua Xia
- College of Food Science and Engineering, Hainan University, Haikou, Hainan, China
| |
Collapse
|
28
|
Lin J, Li C. Influence of instant rice characteristics and processing conditions on starch digestibility-A review. J Food Sci 2023. [PMID: 37326341 DOI: 10.1111/1750-3841.16627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/02/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023]
Abstract
Instant rice is increasingly popular around the world due to its convenience, but it commonly has a high glycemic index, and a frequent consumption might contribute to the occurrence of many chronic diseases. In this review, the main factors determining starch digestibility of instant rice were comprehensively evaluated, aiming to help the rice industry develop instant rice with slow starch digestibility. Starch digestibility in instant rice can be reduced by manipulating its intrinsic and extrinsic nutrients. Processing conditions, including pre-gelatinization, storage, and reheating are also important for the starch digestibility of instant rice. Individual differences in terms of glycemic response to the same carbohydrate-based diet should be considered when knowledge is transformed from in vitro method to human conditions. This review contains important information that has the potential to reduce the starch digestibility of instant rice and improve public health.
Collapse
Affiliation(s)
- Jiakang Lin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
29
|
Li C. Structural basis for rice starch multi-digestible fractions revealed by consecutive reaction kinetics model. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4203-4210. [PMID: 36641546 DOI: 10.1002/jsfa.12451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/18/2022] [Accepted: 01/15/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Starch-based foods (e.g. rice) usually contain multiple starch fractions with distinct digestion rate constants, although their nature is currently unknown. The present study applied the recently developed consecutive reaction kinetics model to fit the in vitro digestion curves for starch fractions deconvoluted from the overall digestograms to differentiate their binding and catalysis rates to starch digestive enzymes. The fitting parameters were then correlated with starch molecular structures obtained from published data to understand starch structural features determining the binding and catalytic rate constants. RESULTS Binding and catalysis rates for the rapidly (RDF) and slowly digestible starch fraction (SDF) were controlled by distinct starch structural features. Typically, (i) the binding rate constant for RDF was negatively correlated with the amount of amylose short to intermediate chains, whereas it was positively correlated with the relative length of amylopectin intermediate chains; (ii) the catalysis rate constant for RDF was negatively correlated with the amount of amylose short to intermediate chains, relative length of amylose intermediate chains and amount of amylopectin long chains, whereas it was positively correlated with starch molecular size as well as relative length of amylopectin intermediate chains; (iii) and the catalysis rate constant for SDF was negatively correlated with the amount of amylopectin long chains, whereas it was positively correlated with starch molecular size. CONCLUSION These results provide a better understanding of the nature of different starch digestible fractions and the development of foods such as rice with slow starch digestibility. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
30
|
Zhang Z, Ying Y, Zhang L, Dai G, Deng G, Bao J, Xu F. Starch structural reasons for the effects of SSIIIa deficiency on the textural and digestive properties of cooked rice. J Cereal Sci 2023. [DOI: 10.1016/j.jcs.2023.103671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
31
|
Li C, Li S. A procedure for determining the number and pattern of digestible starch fractions in multiphasic food digestograms. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1651-1659. [PMID: 36326592 DOI: 10.1002/jsfa.12311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/23/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Plant-based foods are frequently heterogenous systems, containing multiple starch fractions with distinct digestion rate constants. An unbiased determination of the number and digestion pattern of these fractions is a prerequisite for understanding the digestive characteristics of food. RESULTS A non-linear least-squares procedure based on a conditional selection of simple first-order kinetics or a combination of parallel and sequential kinetics models was developed. The procedure gave robust results fitting manually generated data, and was applied to in vitro experimental digestion data of retrograded rice starches. By correlating fitting parameters with starch structural parameters, it showed that rice starches with a lower amylose content, longer amylose chains, and amylopectin intermediate chains had more digestible starch fractions after long-term retrogradation. CONCLUSION This procedure enables the structural basis of starch digestibility and the development of food products with slow starch digestibility to be better understood. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Joint International Research Laboratory of Agriculture Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Songnan Li
- Joint International Research Laboratory of Agriculture Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
32
|
The Role of Amylose in Gel Forming of Rice Flour. Foods 2023; 12:foods12061210. [PMID: 36981139 PMCID: PMC10047920 DOI: 10.3390/foods12061210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
In this study, Glutinous rice (GR), Japonica rice (JR), and Indica rice (IR), with amylose contents at 1.57 ± 0.18%, 15.88 ± 1.16%, and 26.14 ± 0.25%, respectively, were selected to reveal the role of amylose in the gel forming of rice flours. The strength and elasticity of the associated gels were found in an ascendant order with the increase in amylose content. For the retrograded gels (at 4 °C for 7 days), the peak temperature (Trp) was positively related to the amylose content. In general, Trp of IR increased to 63.21 ± 0.13 °C, and the relative crystallinities of IR were in the top ranking at 10.67 ± 0.16%, followed by those of JR and GR. The relative amounts of short-range ordered structures to amorphous regions in JR and IR were also higher than that of GR, and the number of compact network structure were positively related to the amylose content. These results indicated that amylose can enhance the strength and elasticity of gels by facilitating the formation of crystalline, short-range ordered, and compact network structures. These results can provide a reference for the development of rice products.
Collapse
|
33
|
Li C, Hu Y, Li S, Yi X, Shao S, Yu W, Li E. Biological factors controlling starch digestibility in human digestive system. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Wang H, Peng X, Zhang K, Li X, Zhao P, Liu H, Yu W. A more general approach for predicting the glycemic index (GI) values of commercial noodles. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
35
|
Peng X, Liu H, Li X, Wang H, Zhang K, Li S, Bao X, Zou W, Yu W. Predicting the Glycemic Index of Biscuits Using Static In Vitro Digestion Protocols. Foods 2023; 12:404. [PMID: 36673499 PMCID: PMC9858452 DOI: 10.3390/foods12020404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/02/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
In vitro digestion methods that can accurately predict the estimated GI (eGI) values of complex carbohydrate foods, including biscuits, are worth exploring. In the current study, standard commercial biscuits with varied clinical GI values between 9~30 were digested using both the INFOGEST and single-enzyme digestion protocols. The digestion kinetic parameters were acquired through mathematical fitting by mathematical kinetics models. The results showed that compared with the INFOGEST protocol, the AUR180 deduced from digesting using either porcine pancreatin or α-amylase showed the best potential in predicting the eGI values. Accordingly, mathematical equations were established based on the relations between the AUR180 and the GI values. When digesting using porcine pancreatin, GI= 1.834 + 0.009 ×AUCR180 (R2= 0.952), and when digesting using only α-amylase, GI= 6.101 + 0.009 ×AUCR180 (R2=0.902). The AUR180 represents the area under the curve of the reducing-sugar content normalized to the total carbohydrates versus the digestion time in 180 min. The in vitro method presented enabled the rapid and accurate prediction of the eGI values of biscuits, and the validity of the formula was verified by another batch of biscuits with a known GI, and the error rate of most samples was less than 30%.
Collapse
Affiliation(s)
- Xingguang Peng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510000, China
| | - Hongsheng Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510000, China
| | - Xuying Li
- College of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Huaibin Wang
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou 510632, China
| | - Kejia Zhang
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou 510632, China
| | - Shuangqi Li
- Longping Agricultural Science and Technology Huangpu Research Institute, Guangzhou 510700, China
- Guangzhou Fine Nutrition Research Center, Guangzhou 510700, China
| | - Xianyang Bao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510000, China
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Wei Zou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510000, China
| | - Wenwen Yu
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou 510632, China
| |
Collapse
|
36
|
Molecular weight, chain length distribution and long-term retrogradation of cassava starch modified by amylomaltase. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Zhang Z, Liang Y, Zou L, Xu Y, Li M, Xing B, Zhu M, Hu Y, Ren G, Zhang L, Qin P. Individual or mixing extrusion of Tartary buckwheat and adzuki bean: Effect on quality properties and starch digestibility of instant powder. Front Nutr 2023; 10:1113327. [PMID: 37025611 PMCID: PMC10070833 DOI: 10.3389/fnut.2023.1113327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/02/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction Tartary buckwheat and adzuki bean, which are classified as coarse grain, has attracted increasing attention as potential functional ingredient or food source because of their high levels of bioactive components and various health benefits. Methods This work investigated the effect of two different extrusion modes including individual extrusion and mixing extrusion on the phytochemical compositions, physicochemical properties and in vitro starch digestibility of instant powder which consists mainly of Tartary buckwheat and adzuki bean flour. Results Compared to mixing extrusion, instant powder obtained with individual extrusion retained higher levels of protein, resistant starch, polyphenols, flavonoids and lower gelatinization degree and estimated glycemic index. The α-glucosidase inhibitory activity (35.45%) of the instant powder obtained with individual extrusion was stronger than that obtained with mixing extrusion (26.58%). Lower levels of digestibility (39.65%) and slower digestion rate coefficient (0.25 min-1) were observed in the instant powder obtained with individual extrusion than in mixing extrusion (50.40%, 0.40 min-1) by logarithm-of-slope analysis. Moreover, two extrusion modes had no significant impact on the sensory quality of instant powder. Correlation analysis showed that the flavonoids were significantly correlated with physicochemical properties and starch digestibility of the instant powder. Discussion These findings suggest that the instant powder obtained with individual extrusion could be used as an ideal functional food resource with anti-diabetic potential.
Collapse
Affiliation(s)
- Zhuo Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, School of Life Science, Shanxi University, Taiyuan, China
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongqiang Liang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, School of Life Science, Shanxi University, Taiyuan, China
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yunan Xu
- Seed Administration Station of Shijiazhuang, Shijiazhuang, China
| | - Mengzhuo Li
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bao Xing
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, School of Life Science, Shanxi University, Taiyuan, China
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Manli Zhu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, School of Life Science, Shanxi University, Taiyuan, China
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Guixing Ren
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
- *Correspondence: Guixing Ren,
| | - Lizhen Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, School of Life Science, Shanxi University, Taiyuan, China
- Lizhen Zhang,
| | - Peiyou Qin
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Peiyou Qin,
| |
Collapse
|
38
|
Arora L, Aggarwal R, Dhaliwal I, Gupta OP, Kaushik P. Assessment of sensory and nutritional attributes of foxtail millet-based food products. Front Nutr 2023; 10:1146545. [PMID: 37139445 PMCID: PMC10149725 DOI: 10.3389/fnut.2023.1146545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
Millets are a rich source of many health-promoting nutrients as well as bioactive compounds such as dietary fibers, antioxidants, macro and micronutrients etc., compared to other staple cereals such as rice, wheat and maize. These nutrients play a central role in the world nutritional security. Despite the inbuilt nutritional benefits, the production of millets has witnessed sharp decline owing to taste preferences, keeping quality and challenges associated with food preparation from millets. To sensitize the consumers about the nutritional benefits of foxtail millet, the present study was planned to formulate and nutritionally evaluate eight diversified foxtail millet-based food products namely rusk, kheer, pinni, sattu, vegetable dalia, cookies, bar and papad by replacing commonly used cereals such as wheat and rice. The products prepared from Foxtail millet were found to have high acceptability with mean score of more than 8.00. These diversified food products showed higher protein content ranging from 10.98 to 16.10 g/100 g, with the highest protein found in Foxtail millet kheer (16.01 g/100 g). The resistant starch content and predicted glycemic index (PGI) of these products ranged between 13.67 to 22.61 g/100 g and 46.12 to 57.55, respectively, with the highest resistant starch (22.61 ± 0.69 g/100 g) and lowest PGI (48.42 ± 0.20) found in millet bar. The high resistant starch and low PGI in foxtail millet products suggest that they could serve as an excellent food source suitable for diabetics. The obtained results suggest that all the Foxtail millet-based value-added products have superior nutrient profile and are highly acceptable than the traditional products. Inclusion of these foods in the diets of the population may help in the prevention of malnutrition and type 2 diabetes.
Collapse
Affiliation(s)
- Laghima Arora
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Renuka Aggarwal
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, Punjab, India
- *Correspondence: Renuka Aggarwal, ; Prashant Kaushik,
| | - Inderpreet Dhaliwal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Om Prakash Gupta
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Prashant Kaushik
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
- *Correspondence: Renuka Aggarwal, ; Prashant Kaushik,
| |
Collapse
|
39
|
Li C. Starch fine molecular structures: The basis for designer rice with slower digestibility and desirable texture properties. Carbohydr Polym 2023; 299:120217. [PMID: 36876819 DOI: 10.1016/j.carbpol.2022.120217] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/27/2022] [Accepted: 10/08/2022] [Indexed: 11/09/2022]
Abstract
Development of whole rice with low glycaemic index has been achieved, however, these rices are frequently associated with a poor texture property. Recent advances in terms of understanding the importance of starch fine molecular structures on the starch digestibility/texture of cooked whole rice have shed new insights on mechanisms of starch digestibility and texture from molecular levels. With an extensive discussion on the correlative and causal relationships among starch molecular structure, texture and starch digestibility of cooked whole rice, this review identified desirable starch fine molecular structures contributing to both slow starch digestibility and preferable textures. For instance, the selection of rice variety having more amylopectin intermediate chains while less amylopectin long chains might help develop cooked whole rice with both slower starch digestibility and softer texture. The information could help rice industry transform cooked whole rice into a healthier food product with slow starch digestibility and desirable texture.
Collapse
Affiliation(s)
- Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
40
|
Endogenous protein and lipid facilitate the digestion process of starch in cooked quinoa flours. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
The Effects of Starch Molecular Fine Structure on Thermal and Digestion Properties of Rice Starch. Foods 2022; 11:foods11244012. [PMID: 36553754 PMCID: PMC9778140 DOI: 10.3390/foods11244012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Whole white rice is a major staple food for human consumption, with its starch digestion rate and location in the gastrointestinal tract having a critical role for human health. Starch has a multi-scale structure, which undergoes order-disorder transitions during rice cooking, and this structure is a major determinant of its digestibility. The length distributions of amylose and amylopectin chains are important determinants of rice starch gelatinization properties. Starch chain-length and molecular-size distributions are important determinants of nucleation and crystal growth rates, as well as of intra- and intermolecular interactions during retrogradation. A number of first-order kinetics models have been developed to fit starch digestograms, producing new information on the structural basis for starch digestive characteristics of cooked whole rice. Different starch digestible fractions with distinct digestion patterns have been found for the digestion of rice starch in fully gelatinized and retrograded states, the digestion kinetics of which are largely determined by starch fine molecular structures. Current insights and future directions to better understand digestibility of starch in whole cooked rice are summarized, pointing to ways of developing whole rice into a healthier food by way of having slower starch digestibility.
Collapse
|
42
|
Li C, Li E. Relations between in vitro starch digestibility of commercial baked products and their macronutrients. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:7363-7369. [PMID: 35780331 DOI: 10.1002/jsfa.12103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/17/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Baked products such as biscuits and breads are the staple foods for a large population, with the starch digestion rate having a crucial effect on human health. Currently, there is a lack of information on general starch digestibility in commercial baked products and its correlation with macronutrient content. RESULTS The present study investigated the starch digestibility of 35 commercial baked products, ranging from low to high moisture contents. Biscuits generally had a slower starch digestion rate than mini-breads, whereas breads including whole wheat bread had the fastest digestion rate. Additionally, starch digestibility was negatively correlated with the calorie (R2 = 0.71) and fat content (R2 = 0.56) in per serving size, possibly because of the formation of amylose-lipid complex. CONCLUSION The present study provides a database for the in vitro starch digestibility of a large number of food items, which gives general indications on the performance of starch components of commercial products in the human gastrointestinal tract. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- 2Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Enpeng Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
43
|
Shao S, Yi X, Li C. Main factors affecting the starch digestibility in Chinese steamed bread. Food Chem 2022; 393:133448. [PMID: 35751217 DOI: 10.1016/j.foodchem.2022.133448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/15/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022]
Abstract
Chinese steamed bread (CSB) is one of the staple foods in China, although it has a high glycemic index (GI) value. Development of CSB with a slower starch digestibility is thus of great importance for the improvement of human health. Many factors are related to the starch digestibility in CSB. Most currently available strategies are focusing on the incorporation of other whole flours with high dietary fiber or polyphenols to reduce the starch digestibility. Although successful in reducing starch digestibility, the incorporation of these flours also deteriorated textural attributes and sensory characteristics of CSB. Much more strategies have been applied for the reduction of starch digestibility in breads, which should be further explored to confirm if they are applicable for CSB. This review contains important information, that could potentially turn CSB into a much healthier food product with slower starch digestibility.
Collapse
Affiliation(s)
- Shuaibo Shao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xueer Yi
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
44
|
Li C, Li E, Gong B. Main starch molecular structures controlling the textural attributes of cooked instant rice. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Huang R, Huang K, Guan X, Zhang J, Zhang P. Incorporation of defatted quinoa flour affects in vitro starch digestion, cooking and rheological properties of wheat noodles. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
46
|
Addition of amino acids modulates the in vitro digestibility of corn starch. Carbohydr Polym 2022; 293:119745. [DOI: 10.1016/j.carbpol.2022.119745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/30/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022]
|
47
|
Zhang Z, Zhu M, Xing B, Liang Y, Zou L, Li M, Fan X, Ren G, Zhang L, Qin P. Effects of extrusion on structural properties, physicochemical properties and in vitro starch digestibility of Tartary buckwheat flour. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
48
|
Cao H, Huang Q, Wang C, Guan X, Huang K, Zhang Y. Effect of compositional interaction on in vitro digestion of starch during the milling process of quinoa. Food Chem 2022; 403:134372. [DOI: 10.1016/j.foodchem.2022.134372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
|
49
|
Li J, Kong X, Ai Y. Modification of granular waxy, normal and high-amylose maize starches by maltogenic α-amylase to improve functionality. Carbohydr Polym 2022; 290:119503. [DOI: 10.1016/j.carbpol.2022.119503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/19/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022]
|
50
|
Li C, Yu W, Zhang X, Zou W, Liu H. Definition of starch components in foods by first-order kinetics to better understand their physical basis. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|