1
|
Kim D, Lee YY, Kim HJ, Choi M, Lee S, Kim HE, Kim E, Jo M, Choi YJ. Enhanced storage and gastrointestinal stability of spray-dried whey protein emulsions with chitosan and gum Arabic. Int J Biol Macromol 2025; 299:140260. [PMID: 39855532 DOI: 10.1016/j.ijbiomac.2025.140260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 01/03/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Protein-based emulsions are widely utilized for delivering bioactives but suffer from thermodynamic instability, microbial spoilage, and gastrointestinal instability, necessitating enhancement strategies. This study explores the improvement of whey protein isolate (WPI) emulsions through chitosan (CS) coating and spray drying with maltodextrin (MD) or gum Arabic (GA). Canola oil droplets were stabilized with WPI, electrostatic coated with CS, and spray-dried. CS addition significantly increased entrapment efficiency from ∼75-78 % to ∼95-98 %, correlating with enhanced storage and gastrointestinal stability. During a 2-h gastric digestion study, CS/GA-protected powders demonstrated only 3.6 % lipolysis compared to 27.1 % for unprotected WPI emulsions, exhibiting superior gastric resistance. Under small intestinal conditions, their digestion rate constant was one-fifth of that for unprotected WPI emulsions. Furthermore, CS/GA-protected powders maintained excellent storage stability for one year. These findings highlight the potential of WPI-based emulsion powders as effective oral delivery systems for lipophilic bioactives, offering improved storage and gastrointestinal stability.
Collapse
Affiliation(s)
- Dayeong Kim
- Department of Agricultural Biotechnology, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - You Young Lee
- Department of Agricultural Biotechnology, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyeong Jeong Kim
- Department of Agricultural Biotechnology, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Minji Choi
- Department of Agricultural Biotechnology, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Suyoon Lee
- Department of Agricultural Biotechnology, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ha Eun Kim
- Department of Agricultural Biotechnology, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Eunghee Kim
- Center for Food and Bioconvergence, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Myeongsu Jo
- Center for Food and Bioconvergence, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Young Jin Choi
- Department of Agricultural Biotechnology, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Science, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Hernandez-Rodriguez G, Tenorio-Garcia E, Ettelaie R, Lishchuk SV, Harbottle D, Murray BS, Sarkar A. Demulsification of Pickering emulsions: advances in understanding mechanisms to applications. SOFT MATTER 2024; 20:7344-7356. [PMID: 39258321 DOI: 10.1039/d4sm00600c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Pickering emulsions are ultra-stable dispersions of two immiscible fluids stabilized by solid or microgel particles rather than molecular surfactants. Although their ultra-stability is a signature performance indicator, often such high stability hinders their demulsification, i.e., prevents the droplet coalescence that is needed for phase separation on demand, or release of the active ingredients encapsulated within droplets and/or to recover the particles themselves, which may be catalysts, for example. This review aims to provide theoretical and experimental insights on demulsification of Pickering emulsions, in particular identifying the mechanisms of particle dislodgment from the interface in biological and non-biological applications. Even though the adhesion of particles to the interface can appear irreversible, it is possible to detach particles via (1) alteration of particle wettability, and/or (2) particle dissolution, affecting the particle radius by introducing a range of physical conditions: pH, temperature, heat, shear, or magnetic fields; or via treatment with chemical/biochemical additives, including surfactants, enzymes, salts, or bacteria. Many of these changes ultimately influence the interfacial rheology of the particle-laden interface, which is sometimes underestimated. There is increasing momentum to create responsive Pickering particles such that they offer switchable wettability (demulsification and re-emulsification) when these conditions are changed. Demulsification via wettability alteration seems like the modus operandi whilst particle dissolution remains only partially explored, largely dominated by food digestion-related studies where Pickering particles are digested using gastrointestinal enzymes. Overall, this review aims to stimulate new thinking about the control of demulsification of Pickering emulsions for release of active ingredients associated with these ultra-stable emulsions.
Collapse
Affiliation(s)
- Gloria Hernandez-Rodriguez
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
- School of Chemical and Process Engineering, University of Leeds, UK
| | - Elizabeth Tenorio-Garcia
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| | - Rammile Ettelaie
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| | - Sergey V Lishchuk
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
- Thermodynamics and Process Engineering, Technische Universität Berlin, 10587 Berlin, Germany
| | - David Harbottle
- School of Chemical and Process Engineering, University of Leeds, UK
| | - Brent S Murray
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| | - Anwesha Sarkar
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
3
|
He X, Yang W, Zhao Q, Qin X. Controlled oxidation and digestion of Pickering emulsions stabilized by quinoa protein and (-)-epigallocatechin-3-gallate (EGCG) hybrid particles. Int J Biol Macromol 2023; 253:126755. [PMID: 37678683 DOI: 10.1016/j.ijbiomac.2023.126755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
In this study, we prepared Pickering emulsions stabilized by quinoa protein isolate (QPI) and (-)-epigallocatechin-3-gallate (EGCG) non-covalent hybrid particles using ultrasonic emulsification technique and demonstrated lipid oxidation and in vitro digestion process of Pickering emulsions. The interaction forces between QPI and EGCG were characterized using fluorescence spectroscopy, isothermal titration calorimetry, and Fourier transform infrared spectroscopy. Results indicated that the non-covalent QPI/EGCG hybrid particles were formed mainly via hydrophobic interactions, hydrogen bonds, and electrostatic interactions at pH 5. Then, the QPI/EGCG non-covalent hybrid particles were applied to modify the Pickering emulsion with ultrasonic homogenization. The rheological experimental results showed that the energy storage modulus (G') was higher than the loss modulus (G″), indicating that the emulsion had solid-like properties. As a physical barrier, interfacial layer fabricated by antioxidant QPI/EGCG hybrid particles limited lipid oxidation at 60 °C for 15 days. At 37 °C, the QPI/EGCG hybrid particles stabilized Pickering emulsions with robust antioxidant interfacial structure limited the lipid digestion under simulated gastrointestinal tract (gastric, small intestine phases). Thus, EGCG and quinoa proteins were more resistant to free radical oxidation and gastrointestinal digestion with the assistance of ultrasound. It provides a basis for better development of food and drug delivery systems by fully utilizing the antioxidant properties of plant polyphenols.
Collapse
Affiliation(s)
- Xian He
- Department of Nutrition and Food Hygiene, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Wanshui Yang
- Department of Nutrition and Food Hygiene, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Qihong Zhao
- Department of Nutrition and Food Hygiene, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China.
| | - Xinsheng Qin
- Department of Nutrition and Food Hygiene, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
4
|
Ji C, Wang Y. Nanocellulose-stabilized Pickering emulsions: Fabrication, stabilization, and food applications. Adv Colloid Interface Sci 2023; 318:102970. [PMID: 37523998 DOI: 10.1016/j.cis.2023.102970] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/13/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Pickering emulsions have been widely studied due to their good stability and potential applications. Nanocellulose including cellulose nanocrystals (CNCs), cellulose nanofibrils (CNFs), and bacterial cellulose nanofibrils (BCNFs) has emerged as sustainable stabilizers/emulsifiers in food-related Pickering emulsions due to their favorable properties such as renewability, low toxicity, amphiphilicity, biocompatibility, and high aspect ratio. Nanocellulose can be widely obtained from different sources and extraction methods and can effectively stabilize Pickering emulsions via the irreversible adsorption onto oil-water interface. The synergistic effects of nanocellulose and other substances can further enhance the interfacial networks. The nanocellulose-based Pickering emulsions have potential food-related applications in delivery systems, food packaging materials, and fat substitutes. Nanocellulose-based Pickering emulsions as 3D printing inks exhibit good injectable and gelling properties and are promising to print spatial architectures. In the future, the utilization of biomass waste and the development of "green" and facile extraction methods for nanocellulose production deserve more attention. The stability of nanocellulose-based Pickering emulsions in multi-component food systems and at various conditions is an utmost challenge. Moreover, the case-by-case studies on the potential safety issues of nanocellulose-based Pickering emulsions need to be carried out with the standardized assessment procedures. In this review, we highlight key fundamental work and recent reports on nanocellulose-based Pickering emulsion systems. The sources and extraction of nanocellulose and the fabrication of nanocellulose-based Pickering emulsions are briefly summarized. Furthermore, the synergistic stability and food-related applications of nanocellulose-stabilized Pickering emulsions are spotlighted.
Collapse
Affiliation(s)
- Chuye Ji
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Yixiang Wang
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec H9X 3V9, Canada.
| |
Collapse
|
5
|
Lee S, Jo K, Jeong SKC, Choi YS, Jung S. Strategies for modulating the lipid digestion of emulsions in the gastrointestinal tract. Crit Rev Food Sci Nutr 2023; 64:9740-9755. [PMID: 37267158 DOI: 10.1080/10408398.2023.2215873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The structural changes in emulsion products can be used to control the bioavailability of fatty acids and lipophilic compounds. After ingestion, lipid droplets undergo breakdown and structural changes as they pass through the gastrointestinal tract. The oil-water interface plays a critical role in modulating the digestive behavior of lipid droplets because changes in the interfacial layer control the adsorption of lipase and bile salts and determine the overall rate and extent of lipid digestion. Therefore, lipid digestibility can be tuned by selecting the appropriate types and levels of stabilizers. The stabilizer can change the lipase accessibility and exposure of lipid substrates, resulting in variable digestion rates. However, emulsified lipids are not only added to food matrixes but are also co-ingested from other dietary components. Therefore, overall consumption behaviors can affect the digestion rate and digestibility of emulsified lipids. Although designing an emulsion structure is challenging, controlling lipid digestion can improve the health benefits of products. Therefore, a thorough understanding of the process of emulsified lipid digestion is required to develop food products that enable specific physiological responses. The targeted or delayed release of lipophilic molecules and fatty acids through emulsion systems has significant applications in healthcare and pharmaceuticals.
Collapse
Affiliation(s)
- Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Seul-Ki-Chan Jeong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju, Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| |
Collapse
|
6
|
Wang Y, Wusigale, Luo Y. Colloidal nanoparticles prepared from zein and casein: interactions, characterizations and emerging food applications. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Yang D, Feng Y, Yao X, Zhao B, Li D, Liu N, Fang Y, Midgley A, Liu D, Katsuyoshi N. Recent advances in bioactive nanocrystal-stabilized Pickering emulsions: Fabrication, characterization, and biological assessment. Compr Rev Food Sci Food Saf 2023; 22:946-970. [PMID: 36546411 DOI: 10.1111/1541-4337.13096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/07/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
Numerous literatures have shown the advantages of Pickering emulsion (PE) for the delivery of bioactive ingredients in the fields of food, medicine, and cosmetics, among others. On this basis, the multi-loading mode of bioactives (internal phase encapsulation and/or loading at the interface) in small molecular bioactives nanocrystal-stabilized PE (BNC-PE) enables them higher loading efficiencies, controlled release, and synergistic or superimposed effects. Therefore, BNC-PE offers an efficacious delivery system. In this review, we briefly summarize BNC-PE fabrication and characterization, with a focus on the processes of possible evolution and absorption of differentially applied BNC-PE when interacting with the body. In addition, methods of monitoring changes and absorption of BNC-PE in vivo, from the nanomaterial perspective, are also introduced. The purpose of this review is to provide an accessible and comprehensive methodology for the characterization and evaluation of BNC-PE after formulation and preparation, especially in relation to biological assessment and detailed mechanisms throughout the absorption process of BNC-PE in vivo.
Collapse
Affiliation(s)
- Dan Yang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
- School of Biomedical and Pharmaceutical Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Yuqi Feng
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
- School of Biomedical and Pharmaceutical Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Xiaolin Yao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
- School of Biomedical and Pharmaceutical Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Baofu Zhao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
- School of Biomedical and Pharmaceutical Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Dan Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
- School of Biomedical and Pharmaceutical Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Ning Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
- School of Biomedical and Pharmaceutical Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Yapeng Fang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Adam Midgley
- Key Laboratory of Bioactive Materials (MoE), College of Life Sciences, Nankai University, Tianjin, China
| | - Dechun Liu
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Nishinari Katsuyoshi
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, China
| |
Collapse
|
8
|
Nagasawa A, Watanabe K, Suga K, Nagao D. Independent control over sizes and surface properties of polystyrene-based particles using multiple comonomers. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Jie Y, Chen F. Progress in the Application of Food-Grade Emulsions. Foods 2022; 11:2883. [PMID: 36141011 PMCID: PMC9498284 DOI: 10.3390/foods11182883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The detailed investigation of food-grade emulsions, which possess considerable structural and functional advantages, remains ongoing to enhance our understanding of these dispersion systems and to expand their application scope. This work reviews the applications of food-grade emulsions on the dispersed phase, interface structure, and macroscopic scales; further, it discusses the corresponding factors of influence, the selection and design of food dispersion systems, and the expansion of their application scope. Specifically, applications on the dispersed-phase scale mainly include delivery by soft matter carriers and auxiliary extraction/separation, while applications on the scale of the interface structure involve biphasic systems for enzymatic catalysis and systems that can influence substance digestion/absorption, washing, and disinfection. Future research on these scales should therefore focus on surface-active substances, real interface structure compositions, and the design of interface layers with antioxidant properties. By contrast, applications on the macroscopic scale mainly include the design of soft materials for structured food, in addition to various material applications and other emerging uses. In this case, future research should focus on the interactions between emulsion systems and food ingredients, the effects of food process engineering, safety, nutrition, and metabolism. Considering the ongoing research in this field, we believe that this review will be useful for researchers aiming to explore the applications of food-grade emulsions.
Collapse
Affiliation(s)
| | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
10
|
Zhang M, Zhu J, Zhou L, Kan J, Zhao M, Huang R, Liu J, Marchioni E. Antarctic krill oil high internal phase Pickering emulsion stabilized by bamboo protein gels and the anti-inflammatory effect in vitro and in vivo. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
11
|
Jia H, He J, Xu Y, Wang T, Zhang L, Wang B, Jiang X, Li X, Zhang X, Lv K. Synergistic effects of AlOOH and sodium benzenesulfonate on the generation of Pickering emulsions and their application for enhanced oil recovery. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Lin C, Li Y, Tang W, Zhou S, Rao X. Facile Construction of Bio-Based Supramolecular Hydrogels from Dehydroabietic Acid with a Tricyclic Hydrophenanthrene Skeleton and Stabilized Gel Emulsions. Molecules 2021; 26:molecules26216526. [PMID: 34770933 PMCID: PMC8586928 DOI: 10.3390/molecules26216526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 01/16/2023] Open
Abstract
Supramolecular hydrogels have attracted great attention due to their special properties. In this research, bio-based supramolecular hydrogels were conveniently constructed by heating and ultrasounding two components of dehydroabietic acid with a rigid tricyclic hydrophenanthrene skeleton and morpholine. The microstructures and properties of hydrogels were investigated by DSC, rheology, SAXS, CD spectroscopy, and cryo-TEM, respectively. The critical gel concentration (CGC) of the hydrogel was 0.3 mol·L−1 and the gel temperature was 115 °C. In addition, the hydrogel showed good stability and mechanical properties according to rheology results. Cryo-TEM images reveal that the microstructure of hydrogel is fibrous meshes; its corresponding mechanism has been studied using FT-IR spectra. Additionally, oil-in-water gel emulsions were prepared by the hydrogel at a concentration above its CGC, and the oil mass fraction of the oil-in-water gel emulsions could be freely adjusted between 5% and 70%. This work provides a convenient way to prepare bio-based supramolecular hydrogels and provides a new method for the application of rosin.
Collapse
|