1
|
Yu H, Zhang J. Emulsion co-stabilized with high methoxyl pectin and myofibrillar protein: Used to enhance the application in emulsified gel. Food Chem 2025; 475:143359. [PMID: 39956068 DOI: 10.1016/j.foodchem.2025.143359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/19/2025] [Accepted: 02/09/2025] [Indexed: 02/18/2025]
Abstract
This study evaluates the effects of high methoxyl pectin on the emulsion and gel properties of silver carp myofibrillar protein. An optimal concentration of pectin (3 mg/mL) enhances protein adsorption at the oil-water interface, forming a thermally induced oil-in-water emulsion gel with a denser and more robust fibrous network. The resulting gel exhibits a 3.8-fold increase in hardness and a 1.35-fold increase in water-holding capacity compared to the control. However, higher pectin concentrations (4-5 mg/mL) degrade emulsion-gel quality. By adjusting the ratio of myofibrillar protein to pectin, the emulsion's texture can transition from a fluid to a semi-solid state at room temperature, and the gel quality under heat treatment can be controlled. These findings offer a pathway to broaden the design and application of myofibrillar protein emulsions in multifunctional food products.
Collapse
Affiliation(s)
- Han Yu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
2
|
Xie Y, Zhao K, Peng J, Jiang L, Shu W, Huang Y, Liu Q, Luo W, Yuan Y. Effect of β-glucan on the gelling properties of unwashed silver carp surimi gel: Insights into molecular interactions between different sources of β-glucan and myofibrillar protein. Food Res Int 2025; 208:116248. [PMID: 40263807 DOI: 10.1016/j.foodres.2025.116248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/18/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
Gel property is one of the most important abilities to surimi products. In this research, the β-glucan from yeast and oat were applied in enhancing the gel properties of unwashed surimi gel. The texture profile analysis (TPA), storage modulus (G'), loss modulus (G") of unwashed surimi gel, and β-glucan linking with myofibrillar protein were investigated, at the addition of 0 %-1.5 % β-glucan. The β-glucan from yeast and oat could induce more unfolding and promoted cross-linking of myofibrillar protein, improving the hardness and gel strength of unwashed surimi gel. At the 1.0 % addition of yeast β-glucan (YG) or oat β-glucan (OG), the gel strength of unwashed surimi gel increased by 434.30 g·mm and 314.39 g·mm, respectively, compared with the control. In addition, YG with a branched-chain structure was more likely to crosslink with myofibrillar protein (MHC) through hydrogen bond, and YG-MHC CDOCKER energy lower than OG-MHC, proved by molecular docking analysis. The grafting degree and intermolecular interactions in the YG treated surimi gel are stronger than those in the OG one, enhancing the physical properties and WHC of unwashed surimi gel. However, as the added amount β-glucan increased 1.5 %, the pores in the network became excessively expansive, the continuous structure of the myofibrillar protein was gradually destroyed, leading to the decreasing gel properties and rheological properties. In conclusion, 1.0 % YG treatment can effectively improve the gel properties of unwashed surimi gel, providing a practical method for the processing of myofibrillar protein based gel products.
Collapse
Affiliation(s)
- Yisha Xie
- Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China.
| | - Kangyu Zhao
- Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
| | - Jing Peng
- Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
| | - Li Jiang
- Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
| | - Wenjing Shu
- Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
| | - Yizhen Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qingqing Liu
- Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
| | - Wei Luo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, Fujian Province, China
| | - Yongjun Yuan
- Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China.
| |
Collapse
|
3
|
Wang Y, Liu NN, Li K, Chen B, Wang JL, Li JG, Bai YH. Assessing how the partial substitution of phosphate by modified chickpea protein affects the technofunctional, rheological, and structural characteristics of pork meat emulsions. Meat Sci 2025; 225:109812. [PMID: 40132326 DOI: 10.1016/j.meatsci.2025.109812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/01/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
The effects of high-pressure homogenization (HPH, 80 MPa, two cycles) and/or heat-treatment (80 °C, 30 min) modified chickpea protein (CP) on water- and fat-binding capacities, texture, color, and flavor attributes of reduced-phosphate (0.2 % sodium tripolyphosphate, STPP, w/w) pork meat emulsions (RPMEs) were evaluated. The results showed that either HPH or heat-treatment modified CP exhibited a considerable improvement in emulsion stability, textural attributes (hardness, cohesiveness, and chewiness), and b⁎ values (P < 0.05), promoted the formation of inorganic and organic sulfide compounds, and enhanced the umami, richness, and saltiness of RPMEs. Moreover, HPH + heat-treatment dual-modified CP showed superior enhancement effects on most technofunctional properties, thereby imparting the meat emulsion with quality characteristics comparable with high-phosphate control (0.4 % STPP, w/w). Hierarchical cluster analysis and partial least squares regression analysis suggested that the changes in technofunctional traits of RPMEs containing modified CP could be associated with rheological and structural modifications in meat emulsions. Theses alterations included enhanced viscoelasticity, elevated stabilization of internal water, reinforced aliphatic-residue hydrophobic interactions, strengthened intermolecular hydrogen and disulfide bonding, the uncoiling of α-helices concurrent with the formation of β-sheets and random coils, and an increased fractal dimension and decreased porosity of the gel networks. Therefore, HPH combined with heat-treatment modified CP is an intriguing phosphate substitute for developing reduced-phosphate meat products.
Collapse
Affiliation(s)
- Yu Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou, Henan 450000, China
| | - Ning-Ning Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, China
| | - Ke Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou, Henan 450000, China
| | - Bo Chen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou, Henan 450000, China
| | - Jia-le Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, China
| | - Jun-Guang Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou, Henan 450000, China
| | - Yan-Hong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou, Henan 450000, China.
| |
Collapse
|
4
|
Li M, Jiang L, Guo Z, Lin J, Zheng H, Lin W, Zeng H, Wu J, Lei H, Wu S. Exploring the gelation potentials of chicken heart batter: From by-product to product. Food Chem 2025; 468:142316. [PMID: 39689491 DOI: 10.1016/j.foodchem.2024.142316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/08/2024] [Accepted: 11/30/2024] [Indexed: 12/19/2024]
Abstract
Chicken heart is the by-product of great amount in poultry industry owing to concentrated slaughter development, however, whose potential in food application is unclear. The gelation of chicken heart has great difficulties due to the muscle structure and protein structure of the heart. Therefore, different levels of sodium alginate (SA) were added into chicken heart batter (CHB) to investigate the gelation strategies. The results showed that the cooking loss of chicken heart gel (CHG) decreased by increasing SA level (0.12 %-0.48 %),along with improved hardness, gumminess and chewiness. The G' and G" of CHB increased along with the SA addition, which mainly relates to hydrophobic interactions and disulfide bonds, followed by ionic bond and hydrogen bond. SA induced increased percentage of immobilized water and bound water. Moreover, the protein-SA interpenetrating network became denser and more uniform along with increased SA in CLSM and SEM images until CHG of 0.48 % SA. To the best of our knowledge, this is the first time that chicken heart is processed into gelation food, which endeavors to promote feed to food by a sustainable proposal.
Collapse
Affiliation(s)
- Mingxia Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Langye Jiang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Zonglin Guo
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Jie Lin
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Hua Zheng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Wencheng Lin
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Haili Zeng
- Guangzhou Dublin International College of Life Sciences and Technology, South China Agricultural University, Guangzhou 510642, PR China
| | - Jiankun Wu
- Wuzhou Aquatic Technology Promotion Station, PR China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Shaozong Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China; Universite Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120 Palaiseau, France.
| |
Collapse
|
5
|
Shi H, Li Y, Zheng J, Yao X, Wang W, Tomasevic I, Sun W. How chloride salt mixtures affect the final gel properties of low-sodium myofibrillar protein: Underlining the perspective of gelation process. Meat Sci 2025; 221:109735. [PMID: 39721208 DOI: 10.1016/j.meatsci.2024.109735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/30/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
This study aimed to investigate the performance differences of low-sodium myofibrillar protein (MP) gels substituted by different chloride salt mixtures from the perspective of gelation process. The results revealed that low-sodium MP substituted by KCl/CaCl2 exhibited higher turbidity and particle size at 40 % substitution, and formed protein aggregates earlier at 53 °C. During the gelation process, KCl/CaCl2 increased the extent of cross-linking as the substitution level increased from 10 % to 40 %, which was prone to forming final gels with poor palatability. Microstructural and binarization results visually indicated that an irregular reticular structure composed of partial clusters formed when the temperature heated over 53 °C, and the cross-linked cluster blocks further shrunk from 53 °C to 73 °C. Rheological amplitude sweeps revealed that KCl/CaCl2-substitued MP displayed a faster fracture of the ductile structure, and this influenced the distribution of cluster blocks inside the network. The introduction of salt mixtures altered protein conformation, and more unordered structures were found in low-sodium MP containing CaCl2, rather than MP containing MgCl2. Additionally, Ca2+ ions increased the thermo-denatured temperature of MP, and extended the relaxation time of bound water at 53 °C, and Mg2+ ions slowed down the degree of liquid loss at 53 °C. As a result, the low-sodium MP containing CaCl2 exhibited a lower expansion of protein structure accompanied by the involvement of less proteins in gel formation and more liquid loss in the final gel.
Collapse
Affiliation(s)
- Haibo Shi
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yongjie Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jiabao Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xianqi Yao
- Linyi Jinluo Win Ray Food Co. Ltd., Linyi 276036, China
| | - Wei Wang
- Linyi Jinluo Win Ray Food Co. Ltd., Linyi 276036, China
| | - Igor Tomasevic
- University of Belgrade, Faculty of Agriculture, Nemanjina 6, 11080 Belgrade, Serbia; German Institute of Food Technologies (DIL), 49610 Quakenbrück, Germany
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
6
|
Zhao L, Yan W, Wang Z, Wu J, Li L, Yun S, Zhao W, Feng C. Influence of Pleurotus eryngii Protein on Myofibrillar Protein Gelation and Application in Chicken Mince Products. Foods 2025; 14:752. [PMID: 40077455 PMCID: PMC11899181 DOI: 10.3390/foods14050752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/12/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Pleurotus eryngii is rich in essential proteins, and is recognized for its medicinal and nutritional attributes. This study investigated the effects of P. eryngii protein (PEP) incorporation (0-7%) on the gel characteristics of chicken myofibrillar protein (MP) to develop a chicken mince product, providing theoretical supports for the development of functional restructured meat products. PEP incorporation improved the rheological and textual properties of the composite gels, enhancing hydrophobic interaction and disulfide bond formation, and thereby strengthening the gel characteristics. The optimal chicken mince quality was achieved with the incorporation of 3% P. eryngii powder. These findings highlight that PEP contributes to the MP gel functionality by modifying the gel structure and strengthening the molecular bonds, laying a foundation for applying PEP in food processing.
Collapse
Affiliation(s)
- Li Zhao
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Weiwei Yan
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Zheming Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Jiaman Wu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Liang Li
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Shaojun Yun
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Wenfei Zhao
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
7
|
Qi X, Wang S, Yu H, Sun J, Chai X, Sun X, Feng X. Influence of dietary resveratrol supplementation on integrity and colloidal characteristics of Myofibrillar proteins in broiler chicken breast meat. Food Chem 2025; 464:141771. [PMID: 39486363 DOI: 10.1016/j.foodchem.2024.141771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
Abstracts This study was designed to elucidate the impact of dietary resveratrol (RES) supplementation on the free radical activity within the breast muscle of broiler chickens and to assess its effects on the structural and colloidal attributes of myofibrillar proteins (MPs). A total of 180 1-day-old male AA broiler chickens was divided to 2 groups (a CON group fed a control diet and a RES group fed the control diet supplemented with 400 mg/kg RES), each with 6 replicates and 15 chickens per replicate. The feeding test lasted for 6 weeks. The findings indicate that RES, recognized for its potent antioxidant properties, markedly diminished free radical activity, thereby curtailing the oxidative degradation of MPs and augmenting the integrity of their conformational structure. The intricate MP conformation is pivotal in dictating the functional attributes of the protein colloid. RES supplementation was observed to diminish the mobility of water molecules, thereby enhancing the stability of the colloidal system and improving the water-holding capacity and the visual appeal in terms of whiteness of colloid. Concurrently, the stabilization of the protein structure facilitated an increase in the intermolecular cohesive forces within the colloid, resulting in a denser and more stable microstructure, which significantly bolstered the mechanical strength of the colloid. In summary, the incorporation of RES as a dietary supplement in poultry feed presents a promising strategy to fortify the stabilization of proteins in chicken breast meat, offering a valuable alternative for the production of high-quality poultry meat products.
Collapse
Affiliation(s)
- Xueyan Qi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Shenao Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Hao Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Jing Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xuehong Chai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xue Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xingjun Feng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
8
|
Chen J, Chen Q, Shu Q, Liu Y. The dual role of mannosylerythritol lipid-A: Improving gelling property and exerting antibacterial activity in chicken and beef gel. Food Chem 2025; 464:141835. [PMID: 39504896 DOI: 10.1016/j.foodchem.2024.141835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/24/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
Gel meat products are important in the meat market. To develop high-quality meat gel products, mannosylerythritol lipid-A (MEL-A) was added to chicken and beef gels, and their physicochemical and biological properties of the composite gel formed by heating were determined in this study. The results of texture analysis showed that MEL-A could significantly improve the hardness, gumminess and chewiness of meat gels and reduce water loss (P < 0.05). In addition, rheological and differential scanning calorimetry (DSC) analysis showed that MEL-A not only improved the rheological properties of meat gel, but also improved its thermal stability. The results of dynamic rheological analysis also showed that MEL-A improved the gel strength of meat gel, and the gel strength of chicken was the highest after adding 1.5 % MEL-A while the gel strength of beef was the highest after adding 2 % MEL-A. The image of scanning electron microscopy (SEM) and protein molecular weight distribution measurement indicated that MEL-A induced protein aggregation, resulting in fewer pores in the meat gels and a more compact network structure. These results suggest that different meat gels show good gel properties, so MEL-A has a lot of potential for gel product development.
Collapse
Affiliation(s)
- Jiayu Chen
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Qin Shu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| |
Collapse
|
9
|
Wan Z, Wei R, Yang M, Xu X, Tian X. Mechanism of brittleness deterioration of pork meatballs induced by freeze-thaw cycles based on ice crystals and molecular conformation. Food Res Int 2025; 202:115711. [PMID: 39967164 DOI: 10.1016/j.foodres.2025.115711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 02/20/2025]
Abstract
This study investigated the mechanism behind the gradual disappearance of the unique brittle texture of pork meatballs during multiple freeze-thaw (FT) cycles. The results showed that meatball brittleness decreased with increasing numbers of FT cycles. However, unexpected partial recovery occurred at FT3 and FT5, with the water holding capacity decreasing (74 %/81 %), and the fractal dimension (1.4502/1.6592) and size (76.9 µm2/414.7 µm2) of ice crystals increasing. During the FT cycles, tiny ice crystals and salt-ion crystals remaining from the previous FT process gradually increased in size under the influence of the Ostwald effect. By FT3, the ice crystals had transformed from relatively regular spheres to irregular dendritic structures, which pierced and disrupted the three-dimensional gel network, triggering new protein cross-linking driven by ionic bonding and hydrophobic interactions. By FT5, after multiple degradations and re-aggregations, the proteins formed heterogeneous aggregates with heavy chains of actin and myosin as the main components, bound by hydrogen and disulfide bonds, which was a partial reversion to the degree of cross-linking of the gelatinized network structure of the meatballs. This study revealed the effects of changes in the ice crystal state, protein aggregation morphology, and molecular conformation on the brittleness of meatballs during FT cycles, providing a theoretical foundation for developing freezing protection technologies.
Collapse
Affiliation(s)
- Zicong Wan
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, Guangzhou 510642 China
| | - Ran Wei
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, Guangzhou 510642 China
| | - Mingyue Yang
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, Guangzhou 510642 China
| | - Xiaoyan Xu
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, Guangzhou 510642 China; Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642 China.
| | - Xingguo Tian
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, Guangzhou 510642 China; Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642 China.
| |
Collapse
|
10
|
Zhang H, Li X, Zhang Z, Jiang A, Bai Q. Effect of chitosan on thermal gelling properties of pork myofibrillar protein and its mechanism. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1546-1555. [PMID: 39324370 DOI: 10.1002/jsfa.13929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Previous studies have demonstrated that the addition of chitosan can improve the quality and functional properties of meat products. However, the underlying mechanism remains unclear. In this study, the effect and mechanism of the addition of chitosan on the gel properties of myofibrillar protein (MP) were investigated. RESULTS The results indicated that the gel strength and the water-holding capacity of MP-chitosan gel increased significantly when chitosan was added at 2.5-10 mg mL-1. Myofibrillar protein samples with 10 mg mL-1 added chitosan exhibited the highest elasticity and viscosity during gel formation and strengthening. The addition of chitosan also caused a modification in both the secondary and tertiary structure of MP, resulting in an enhanced exposure of hydrophobic and sulfhydryl groups in comparison with the control. Chitosan inhibited the conversion of immobilized water into free water and the formation of water channels during the thermal gelation process of MP. The denaturation enthalpy (ΔH) of myosin decreased as the concentration of chitosan exceeded 5 mg mL-1. The microstructure showed that the incorporation of chitosan (5-10 mg mL-1) facilitated the formation of compact and well organized MP gel networks. CONCLUSION The addition of chitosan can enhance the functional properties of meat protein and facilitate heat-induced gelation, making it a promising ingredient for improving the quality of processed meat products. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huiyun Zhang
- School of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Xinling Li
- School of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Ziye Zhang
- School of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - An Jiang
- School of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - QiaoQiao Bai
- School of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
11
|
Wang Y, Wang JL, Li K, Yuan JJ, Chen B, Wang YT, Li JG, Bai YH. Effect of chickpea protein modified with combined heating and high-pressure homogenization on enhancing the gelation of reduced phosphate myofibrillar protein. Food Chem 2025; 463:141180. [PMID: 39276541 DOI: 10.1016/j.foodchem.2024.141180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/08/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
The effects of chickpea protein (CP) modified by heating and/or high-pressure homogenization (HPH) on the gelling properties of myofibrillar protein under reduced phosphate conditions (5 mM sodium triphosphate, STPP) were investigated. The results showed that heating and HPH dual-modified CP could decrease the cooking loss by 29.57 %, elevate the water holding capacity by 17.08 %, and increase the gel strength by 126.88 %, which conferred myofibrillar protein with gelation performance comparable with, or even surpassing, that of the high-phosphate (10 mM STPP) control. This gelation behavior improvement could be attributed to enhanced myosin tail-tail interactions, decreased myosin thermal stability, elevated trans-gauche-trans disulfide conformation, strengthened hydrophobic interactions and hydrogen bonding, the uncoiling of α-helical structures, the formation of well-networked myofibrillar protein gel, and the disulfide linkages between the myosin heavy chain, actin, and CP subunits. Therefore, the dual-modified CP could be a promising phosphate alternative to develop healthier meat products.
Collapse
Affiliation(s)
- Yu Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Jia-le Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Ke Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Jing-Jing Yuan
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Bo Chen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Yun-Tao Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Jun-Guang Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Yan-Hong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou, 450001, China.
| |
Collapse
|
12
|
Wang Y, Xiong Z, Huang Q, Xiong K, Wang Z, Lu H, Peng L, Zhang Y, Yang Y, Wang H. Impacts of kappa-selenocarrageenan on the muscle quality of pork: Novel insights into myofibrillar protein and lipid oxidation. J Food Sci 2025; 90:e17629. [PMID: 39731724 DOI: 10.1111/1750-3841.17629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024]
Abstract
Excessive oxidation of protein and lipids in pork leads to quality degradation and loss of nutrients. Kappa-selenocarrageenan (Se-K) can not only be used as a selenium enhancer but also as an antioxidant. To explore potential antioxidants that could be applied to pork, the effect of Se-K on myofibrillar protein (MP) and lipid oxidation was investigated. The results demonstrated that Se-K could scavenge hydroxyl radicals, DPPH radicals, and ABTS radicals. It was found that Se-K inhibited the formation of carbonyls and decreased the loss of sulfhydryl groups of MP. Se-K also inhibited cross-linking, aggregation, unfolding, and structural transformation of MP and repressed the increase in surface hydrophobicity. Additionally, Se-K enhanced the emulsibility, textural properties, and water-holding capacity of MP. We also found that Se-K delayed the increase in acid value, peroxide value, and thiobarbituric acid reactive substances value. Furthermore, Se-K inhibited the degradation of unsaturated fatty acids, especially linoleic acid. Overall, Se-K was effective in inhibiting MP and lipid oxidation and could be a potential antioxidant for pork.
Collapse
Affiliation(s)
- Yuanyuan Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Zhemin Xiong
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Qinghuo Huang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Kexin Xiong
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Ziling Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Hongyan Lu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Lijuan Peng
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yinping Zhang
- Qingdao Pengyang Biological Engineering Co., Ltd., Qingdao, China
| | - Ying Yang
- Qingdao Pengyang Biological Engineering Co., Ltd., Qingdao, China
| | - Haibin Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- National R & D Center for Se-rich Agricultural Products Processing Technology, Wuhan, China
| |
Collapse
|
13
|
Li J, Rao W, Sun Y, Zhou C, Xia Q, He J, Pan D, Du L. Structural and gel property changes in chicken myofibrillar protein induced by argon cold plasma-activated water: With a molecular docking perspective. Food Res Int 2024; 197:115271. [PMID: 39593348 DOI: 10.1016/j.foodres.2024.115271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Abstract
This study investigated the effects of plasma-activated water (PAW) generated with argon at discharge times of 0, 4, 8, 12, and 16 min on the gel properties and structures of chicken myofibrillar protein (MP). Under treatments of 8, 12, and 16 min, both the gel strength and water retention capacity of MP significantly improved, with the gel strength (0.53 N) peaking at 16 min and the lowest cooking loss(30.38 %). As the treatment time increased from 0 to 16 min, the storage modulus also gradually increased. Results from low-field nuclear magnetic resonance indicated a slowing of water proton mobility, with the proportion of bound water rising from 0.26 % (0 min) to 0.52 % at 16 min. Fourier transform infrared spectroscopy, endogenous fluorescence spectroscopy and scanning electron microscopy confirmed PAW's alteration of MP's secondary and tertiary structures and gel microstructure. Additionally, this study explored the influence of argon PAW's primary active species on MP from a molecular docking perspective·H2O2 could form hydrogen bonds with MP, while O3 and NO2‾could interact via both hydrogen bonds and electrostatic interactions. Thus, PAW can alter protein structure and enhance MP's functional properties, providing insights for applying cold plasma in processing chicken gel products.
Collapse
Affiliation(s)
- Junqi Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Wei Rao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Changyu Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Qiang Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Jun He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Lihui Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China.
| |
Collapse
|
14
|
Cao R, Wang B, Bai T, Zhu Y, Cheng J, Zhang J. Structural and functional impacts of glycosylation-induced modifications in rabbit myofibrillar proteins. Int J Biol Macromol 2024; 283:137583. [PMID: 39577516 DOI: 10.1016/j.ijbiomac.2024.137583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
Rabbit meat, recognized for its nutritional value, is gaining global attention. However, the inferior functional properties of rabbit myofibrillar proteins lead to quality degradation during the production process. Glycosylation represents an effective method for enhancing protein functionality. This study investigated the glycosylation modification of rabbit myofibrillar proteins. The results demonstrated that solubility of glucose-glycosylated products increased by 34 %, while the reduction capacity improved from 0.15 mg/mL to 1.6 mg/mL. The·OH free radical scavenging ability increased from 63.94 % to 94.21 %. β-Glucan-glycosylated products exhibited the highest thermal stability, and their DPPH free radical scavenging rate increased from 19.68 % to 76.21 %. Glycosylation also induced changes in protein conformation, characterized by a 10-30 °C increase in thermal denaturation peak temperature, gradual attenuation of endogenous fluorescence intensity, gradual enhancement of λmax redshift, and a 30-40 % decrease in surface hydrophobicity. Molecular docking simulations revealed that the primary interactions between glucose, lactose, and β-Glucan with myofibrillar proteins involve hydrogen bonds and van der Waals forces. In conclusion, glycosylation can effectively improve the functional properties of proteins, contributing to the development and production of high-quality, stable, and nutritious rabbit meat products.
Collapse
Affiliation(s)
- Ruiqi Cao
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Bangxu Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Ting Bai
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Yan Zhu
- Chongqing General Station of Animal Husbandry Technology Extension, Chongqing 401331, PR China
| | - Jie Cheng
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China.
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China.
| |
Collapse
|
15
|
Sawant S, Alvarez VB, Heldman DR. Limited enzymatically hydrolyzed pea protein-inulin interactions in gel systems. J Food Sci 2024; 89:9243-9256. [PMID: 39617827 DOI: 10.1111/1750-3841.17581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/01/2024] [Accepted: 11/14/2024] [Indexed: 12/28/2024]
Abstract
Gelation of protein-polysaccharide mixtures can help create a variety of distinctive gel systems as compared to single polysaccharide or protein gels. The properties of these functional gels are heavily reliant upon the nature of protein-polysaccharides interactions, their gelling compatibility, and mechanism. Pea protein isolate dispersions (7.5%) were subjected to limited enzymatic hydrolysis using the enzyme Alcalase® at three hydrolysis times (0, 3, and 6 min). Inulin was added according to three ratios (0, 1:4, and 2:4) with pea protein. Viscoelastic properties of the gels formed were measured using amplitude sweep and frequency sweep. Storage modulus (G') measurements from the amplitude sweep indicated that samples hydrolyzed for 3 min with 1:4 ratio of inulin to pea protein had maximum gel strength, exhibiting G' values of ∼307 Pa. G' values for samples hydrolyzed for 0 and 6 min with different inulin ratios averaged ∼13 and ∼144 Pa, respectively. Confocal laser scanning microscopy showed that gels developed by samples hydrolyzed for 3 min showed a dense network as compared to an open network in gels formed by samples hydrolyzed for 6 min, whereas large random aggregates were observed in gels formed by samples hydrolyzed for 0 min. The study confirmed that inulin promotes noncovalent bond formation in samples hydrolyzed for 3 min with a 1:4 inulin ratio, shown by an ∼18% increased protein solubility in urea. Additionally, collaboration between noncovalent bonds and disulfide linkages stabilized the gel structure, as indicated by further increase in solubility in combination of urea and Dithiothreitol. PRACTICAL APPLICATION: Plant proteins are gaining attention as alternatives to animal proteins. However, they have inferior functionality, which affects their applicability in food products. This investigation aimed to evaluate enzymatic hydrolysis to enhance the structural and functional properties of pea proteins, thus increasing their applicability in the food industry. Inulin is an oligosaccharide and soluble fiber, which promotes gut health. Thus, gels combining hydrolyzed pea protein and inulin can serve as a model mixed food system of interest to both the industry and consumers.
Collapse
Affiliation(s)
- Sanjana Sawant
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
| | - Valente B Alvarez
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
- Department of Food Science and Technology, The Wilbur A. Gould Food Industries Center, The Ohio State University, Ohio, USA
| | - Dennis R Heldman
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
16
|
Chen Y, Huang J, Chen J, Zhao Y, Deng S, Yang H. Gelatinous quality and quantitative proteomic analyses of snakehead (Channa argus) surimi treated by atmospheric cold plasma. Food Chem 2024; 459:140412. [PMID: 39024885 DOI: 10.1016/j.foodchem.2024.140412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/16/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
In this study, the comprehensive quality characteristics and proteome changes of snakehead (Channa argus) surimi gel under different atmospheric cold plasma (ACP) treatment times were systematically analyzed and compared. The results showed that the ubiquitin-associated proteins and heat shock proteins were activated after ACP treatment for 90 s (ACP90), thus inducing rearrangement of surimi structural proteins. Meanwhile, the increased hydrophobic interactions and disulfide bonds might strengthen the interactions among the myofibrillar protein, keratin, and type-I collagen, which led to the formation of a dense gel network. Moreover, the high nodality between actin and myosin promoted the regulation of muscle contraction by changing the spatial obstruction of their binding sites. These beneficial effects obviously contributed to the superior water-holding capacity (76.13%), gel strength (285.6 g·cm) and viscoelasticity of snakehead surimi in the ACP90 group. These results would provide some useful information for the in-depth and efficient processing of surimi products.
Collapse
Affiliation(s)
- Yingyun Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Jiabao Huang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Jing Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan, 316022, China.
| | - Yadong Zhao
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Shanggui Deng
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan, 316022, China
| | - Hongli Yang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| |
Collapse
|
17
|
Yuan D, Li C, Zhang J, Kong B, Sun F, Zhang H, Liu Q, Cao C. Abelmoschus manihot gum improves the water retention capacity of low-salt myofibrillar protein gels: Perspective on aggregation behaviour and conformational changes during heating. Int J Biol Macromol 2024; 282:137483. [PMID: 39528197 DOI: 10.1016/j.ijbiomac.2024.137483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/31/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
This study aimed to investigate the effect of Abelmoschus manihot gum (AMG) on the water retention capacity of low-salt myofibrillar protein (MP) gel by analysing its aggregation behaviour and conformational changes during heating (30-80 °C). The results revealed that AMG significantly increased the water holding capacity and facilitated the formation of a more uniform gel network structure in low-salt MP gel (P < 0.05). During the heat-induced gelation process, the solubility of low-salt MP significantly decreased, whereas its turbidity evidently increased as the level of added AMG increased (P < 0.05). Furthermore, the dynamic rheological behaviours indicated that low-salt MP-AMG gels underwent early denaturation and unfolded at 58 °C, finally forming an irreversible three-dimensional network at 80 °C. Moreover, adding AMG promoted α-helix-to-β-sheet transition in low-salt MP and decreased its fluorescence intensity during the heating process. Hydrophobic interactions and disulfide bonds were the two dominant forces governing the formation and maintenance of low-salt MP gel. The present study provides theoretical guidance for the production of novel low-salt healthy meat products.
Collapse
Affiliation(s)
- Dongxue Yuan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Cheng Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jingming Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hongwei Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang 150028, China.
| | - Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
18
|
Gu Y, Xu W, Guo Y, Gao Y, Zhu J. Development and characterization of tilapia skin collagen-inulin oleogel as the potential fat substitute in beef patty formulations. Int J Biol Macromol 2024; 280:135785. [PMID: 39304057 DOI: 10.1016/j.ijbiomac.2024.135785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/01/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
The effects of inulin addition, olive oil content, and ultrasonic treatment on the rheological, texture, and structural properties of collagen-based oleogels were investigated in this study. Furthermore, the fat substitution ability of the oleogel in low-fat beef patties was evaluated. Initially, a uniform and dense network cross-linked structure was found when the ratio of collagen to inulin complex was 1:5. The oleogel sample exhibited good stability and oil binding ability with an additional amount of 50 % olive oil. Ultrasonic treatment improved the stability of the oleogel structure in all samples. Additionally, the addition of inulin reduced cooking loss in beef patties. Beef patties prepared at a 50 % fat substitution level showed physical properties that were the least different from those of pure adipose tissue (control group), which could significantly reduce the content of saturated fatty acids and improve the storage stability of beef patties. This study provided guidance for the application of collagen-inulin oleogel in food processing.
Collapse
Affiliation(s)
- Yingying Gu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Professional Graduate Program of Food Engineering, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Meat Quality Analysis and Products Development, Ningxia Xihaigu Institute of High-end Cattle Industry, Haiyuan, Ningxia 755299, China
| | - Weiwei Xu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanjie Guo
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Professional Graduate Program of Food Engineering, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Meat Quality Analysis and Products Development, Ningxia Xihaigu Institute of High-end Cattle Industry, Haiyuan, Ningxia 755299, China
| | - Yongfang Gao
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Professional Graduate Program of Food Engineering, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Meat Quality Analysis and Products Development, Ningxia Xihaigu Institute of High-end Cattle Industry, Haiyuan, Ningxia 755299, China.
| |
Collapse
|
19
|
Zhang R, Zhou L, Zhang W. Insight into the effects of ultrasound-assisted intermittent tumbling on the gelation properties of myofibrillar proteins: Conformational modifications, intermolecular interactions, rheological properties and microstructure. ULTRASONICS SONOCHEMISTRY 2024; 110:107059. [PMID: 39250863 DOI: 10.1016/j.ultsonch.2024.107059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
The aim of the present study was to evaluate the effects of ultrasound-assisted intermittent tumbling (UT) at 300 W, 20 kHz and 40 min on the conformation, intermolecular interactions and aggregation of myofibrillar proteins (MPs) and its induced gelation properties at various tumbling times (4 and 6 h). Raman results showed that all tumbling treatments led the helical structure of MPs to unfold. In comparison to the single intermittent tumbling treatment (ST), UT treatment exerted more pronounced effects on strengthening the intermolecular hydrogen bonds and facilitating the formation of an ordered β-sheet structure. When the tumbling time was the same, UT treatment caused higher surface hydrophobicity, fluorescence intensity and disulfide bond content in the MPs, inducing the occurrence of hydrophobic interaction and disulfide cross-linking between MPs molecules, thus forming the MPs aggregates. Additionally, results from the solubility, particle size, atomic force microscopy and SDS-PAGE further indicated that, relative to the ST treatment, UT treatment was more potent in promoting the polymerization of myosin heavy chain. The MPs aggregates in the UT group were more uniform than those in the ST group. During the gelation process, the pre-formed MPs aggregates in the UT treatment increased the thermal stability of myosin, rendering it more resistant to heat-induced unfolding of the myosin rod region. Furthermore, they improved the protein tail-tail interaction, resulting in the formation of a well-structured gel network with higher gel strength and cooking yield compared to the ST treatment.
Collapse
Affiliation(s)
- Ruyu Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangang Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
20
|
Wang Y, Niu Z, Li R, Wang S, Yang J. Effect of chitosan oligosaccharides with different molecular weight in alleviating textural deterioration of chicken myofibrillar protein gel with high-temperature treatment. Int J Biol Macromol 2024; 281:136253. [PMID: 39366621 DOI: 10.1016/j.ijbiomac.2024.136253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/22/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
The molecular weight (MW) of oligosaccharides on gel properties of myofibrillar protein (MP) at high temperature remains unclear. In this study, it was found that chitosan oligosaccharides (CO) with different MW all significantly alleviated the textural deterioration of MP gel with high-temperature treatment. Moreover, MP-CO gel with the largest MW had the highest breaking force and the lowest cooking loss. Low-field NMR results further indicated that MP-CO gel with larger MW of CO had gradually increased relaxation rate, thus binding water more tightly. Rheological and microrheological tests suggested the addition of CO with larger MW resulted in much tighter gel network. These results indicated that CO with larger MW improved the quality of MP gel more effectively, which was because CO with larger MW inhibited aggregation of MP to a larger extent, resulting in smaller MP aggregates. Then MP-CO gel with much denser and more homogeneous structure was formed. Besides, MP-CO gel with larger MW of CO had higher content of β-sheet, resulting in MP gel with more ordered structure and better gel quality. Therefore, this study provided theoretical guidance for choosing the appropriate CO in improving texture of high temperature meat products.
Collapse
Affiliation(s)
- Yuntao Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, China; Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, China
| | - Zijian Niu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, China; Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, China
| | - Rui Li
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Shasha Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, China; Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, China
| | - Jinchu Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China.
| |
Collapse
|
21
|
Jiang SS, Li Q, Wang T, Huang YT, Zong L, Meng XR. Effect of ultrasound combined with highland barley dietary fiber on gel properties of reduced-salt chicken breast myofibrillar protein. J Food Sci 2024; 89:7360-7371. [PMID: 39363217 DOI: 10.1111/1750-3841.17434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/30/2024] [Accepted: 09/15/2024] [Indexed: 10/05/2024]
Abstract
This study aimed to investigate the effect of ultrasound combined with highland barley dietary fiber (HBDF) on the quality of reduced-salt chicken breast myofibrillar protein (MP) gel. The molecular forces maintaining gel structure, the gelling formation process, and gel microstructure of different groups, two control groups (2% sodium chloride [NaCl] group, 1% NaCl group), and four treatment groups (0.3% HBDF+U5, 0.3% HBDF+U10, 0.5% HBDF+U5, and 0.5% HBDF+U10) were examined. Results indicated significant improvements (p < 0.05) in gel properties such as water-holding capacity, textural characteristics, and color of the MP gel of the four treatment groups compared to Control 2 (1% NaCl) group. Furthermore, the second structural alterations were characterized by increase β-sheet, β-turn, and random coil structure contents in treatment groups, especially in 0.3% HBDF+U5 and 0.5% HBDF+U5 groups; in addition, the exposure of more hydrophobic groups and the formation of disulfide bonds and hydrogen bonds were promoted in treatment groups, thus enhancing protein aggregation and gel quality. Finally, compared to Control 2 (1% NaCl) group, more compact and uniform gel network structures and pores inside the composite gels were observed in treatment groups. In conclusion, the findings demonstrated that the application of ultrasound in combination with HBDF improved the gelling characteristics of reduced-salt chicken breast MP gel, especially 0.3% HBDF+U5 and 0.5% HBDF+U5 groups.
Collapse
Affiliation(s)
- Song-Song Jiang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, P. R. China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, P. R. China
| | - Qian Li
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, P. R. China
| | - Tao Wang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, P. R. China
| | - Yu-Tong Huang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, P. R. China
| | - Lili Zong
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, P. R. China
| | - Xiang-Ren Meng
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, P. R. China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, P. R. China
| |
Collapse
|
22
|
Badar IH, Wang Z, Zhou Y, Jaspal MH, Liu H, Chen Q, Kong B. Influence of flaxseed-derived diglyceride-based high internal phase Pickering emulsions on the rheological and physicochemical properties of myofibrillar protein gels. Food Chem 2024; 456:139970. [PMID: 38850606 DOI: 10.1016/j.foodchem.2024.139970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
The study aimed to investigate the influence of flaxseed-derived diglyceride-based high internal phase Pickering emulsions (HIPPE) at different levels (0%, 10%, 20%, 30%, 40%, and 50%) on the rheological and physicochemical properties of myofibrillar protein (MPs) gels. The study indicated that with increasing HIPPE levels, there was a significant increase in whiteness while a decrease in water-holding capacity. The gels with 10% HIPPE levels had higher ionic bonds, while those with 40% and 50% HIPPE levels showed higher hydrogen bonds. By increasing HIPPE levels in the formation of MP gels, the T2 relaxation time was found to decrease. Additionally, in all MP gels, G' values were significantly higher than G" values over time. Adding lower contents of HIPPE levels resulted in a more compact microstructure. These findings indicate that flaxseed-derived diglyceride-based HIPPEs could be utilized as fat substitutes in meat products to enhance their nutritional quality.
Collapse
Affiliation(s)
- Iftikhar Hussain Badar
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Ziyi Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yafei Zhou
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Muhammad Hayat Jaspal
- Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
23
|
Li Q, Meng Z, Hu J, Li Q, Dong Y, Cai C, Zhu Y. Impact of Flammulina velutipes polysaccharide on properties and structural changes of pork myofibrillar protein during the gel process in the absence or presence of oxidation. Food Chem 2024; 450:139300. [PMID: 38640525 DOI: 10.1016/j.foodchem.2024.139300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/17/2024] [Accepted: 04/07/2024] [Indexed: 04/21/2024]
Abstract
The present study aimed to investigate the impact of Flammulina velutipes polysaccharide (FVSP) on the rheological properties and structural alterations of myofibrillar protein (MP) and oxidized MP (OMP), utilizing techniques such as rhehometer, fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In the unoxidized system, the addition of 5.00% FVSP significantly improved (p < 0.05) the storage and loss moduli of the composite gel and promoted the α-helix to β-sheet transformation. These effects enhanced the protein's gel strength and water-holding capacity (WHC). In the oxidation system, 5.00% FVSP had significant effects (p < 0.05) on repair and improvement of the oxidized MP. These effects inhibited the cross-linking aggregation and degradation of the protein. In addition, the addition of FVSP significantly improved the gel properties of MPs after oxidation (p < 0.05), hindered fracture of the protein gel network structure. In summary, polysaccharides have a substantial effect on the functional characteristics of MP, and FVSP could potentially be applied in meat products.
Collapse
Affiliation(s)
- Qi Li
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Zhiming Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jingrong Hu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Qiqiong Li
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Yingying Dong
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Chunbo Cai
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yingchun Zhu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
24
|
Li K, Wang LM, Cui BB, Chen B, Zhao DB, Bai YH. Effect of vegetable oils on the thermal gel properties of PSE-like chicken breast meat protein isolate-based emulsion gels. Food Chem 2024; 447:138904. [PMID: 38447238 DOI: 10.1016/j.foodchem.2024.138904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/11/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
To enhance the gel properties of PSE (pale, soft, and exudative)-like chicken meat protein isolate (PPI), the effect of peanut, corn, soybean, and sunflower oils on the gel properties of PPI emulsion gels was investigated. Vegetable oils improved emulsion stability and gel strength and enhanced viscosity and elasticity. The gel strength of the PPI-sunflower oil emulsion gel increased by 163.30 %. The thermal denaturation temperature and enthalpy values were increased. They decreased the particle size of PPI emulsion (P < 0.05) and changed the three-dimensional network structure of PPI emulsion gels from reticular to sheet with a smooth surface and pore-reduced lamellar. They elevated the content of immobile water PPI emulsion gels, decreased the α-helix and β-turn, and increased the β-sheet and random coil. Vegetable oil improved the gel properties of PPI in the following order: sunflower oil > soybean oil > corn oil ≈ peanut oil > control group.
Collapse
Affiliation(s)
- Ke Li
- College of Food and Bioengineering, Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Ke Xue Road No. 136, Zhengzhou 450001, PR China.
| | - Lin-Meng Wang
- College of Food and Bioengineering, Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Ke Xue Road No. 136, Zhengzhou 450001, PR China
| | - Bing-Bing Cui
- College of Food and Bioengineering, Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Ke Xue Road No. 136, Zhengzhou 450001, PR China
| | - Bo Chen
- College of Food and Bioengineering, Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Ke Xue Road No. 136, Zhengzhou 450001, PR China
| | - Dian-Bo Zhao
- College of Food and Bioengineering, Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Ke Xue Road No. 136, Zhengzhou 450001, PR China
| | - Yan-Hong Bai
- College of Food and Bioengineering, Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Ke Xue Road No. 136, Zhengzhou 450001, PR China.
| |
Collapse
|
25
|
Wang X, Li M, Shi T, Monto AR, Yuan L, Jin W, Gao R. Enhancement of the gelling properties of Aristichthys nobilis: Insights into intermolecular interactions between okra polysaccharide and myofibrillar protein. Curr Res Food Sci 2024; 9:100814. [PMID: 39156984 PMCID: PMC11327547 DOI: 10.1016/j.crfs.2024.100814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/08/2024] [Accepted: 07/20/2024] [Indexed: 08/20/2024] Open
Abstract
The effects of various contents of okra polysaccharide (OP) (0%-1%) on myofibrillar protein (MP) gelation and the interaction mechanism between OP and MP were investigated. OP improved the gelling properties of MP with an additive limitation of 0.75%. Rheological analysis demonstrated that the addition of OP enhanced the interactions between MPs, resulting in a denser intermolecular gel network structure. The addition of OP shifted the I850/I830 of Fourier transform infrared spectroscopy, indicating that hydrogen bonds were formed between OP and MP. Adding OP promoted the transition from α-helix to β-sheet in the MP. OP exposed the hydrophobic groups of MPs and increased the number of hydrophobic interactions between them, favoring the formation of a dense gel network. Molecular docking predicted that hydrogen bonds were the main force involved in the binding of OP and MP. Moderate OP promoted the aggregation of MPs and improved their functional properties, facilitating heat-induced gelation.
Collapse
Affiliation(s)
- Xin Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Mengzhe Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Tong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Abdul Razak Monto
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Wengang Jin
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
| |
Collapse
|
26
|
Chen Q, Wang X, Wang Y, Guo T, Guan P, Hou J, Chen Z. Effects of inulin with different polymerization degrees on the structural and gelation properties of potato protein. Food Chem X 2024; 22:101405. [PMID: 38694543 PMCID: PMC11061243 DOI: 10.1016/j.fochx.2024.101405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/04/2024] Open
Abstract
This study investigated the effect of inulin with different polymerization degrees (DP), including L-inulin (DP 2-6), M-inulin (DP 10-23) and H-inulin (DP 23-46), on the structural and gelation properties of potato protein isolate (PPI). Results revealed that textural properties (hardness, cohesiveness, springiness and chewiness) and water-holding capacity (WHC) of PPI-inulin composite gels were positively correlated with the inulin DP and addition content at 0-1.5% (w/v), but deteriorated at 2% due to phase separation. The addition of 1.5% H-inulin showed the most significant increment effects on the WHC (18.65%) and hardness (2.84 N) of PPI gel. Furthermore, M-/H-inulin were more effective in increasing the whiteness and surface hydrophobicity, as well as in strengthening hydrogen bonds and hydrophobic interactions than L-inulin. Fourier transform infrared spectroscopy analysis and microstructural observation indicated that inulin with higher DP promoted more generation of β-sheet structures, and leading to the formation of stronger and finer network structures.
Collapse
Affiliation(s)
- Qiongling Chen
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xiaowen Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yu Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Tianqi Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Peihan Guan
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jinyu Hou
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Zhenjia Chen
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| |
Collapse
|
27
|
Sun H, Zhao Y, Li X, Huang M, Qiao C, Sun J. Properties of co-gel between Tenebrio Molitor larvae protein and myofibrillar protein induced by transglutaminase. Food Chem 2024; 443:138609. [PMID: 38295569 DOI: 10.1016/j.foodchem.2024.138609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/29/2023] [Accepted: 01/26/2024] [Indexed: 02/02/2024]
Abstract
This study explored the effect of adding transglutaminase (TGase) to a co-gel of Tenebrio Molitor larvae protein (TMLP) and myofibrillar protein (MP). Different concentrations of TGase (0-90 U/g) were added to the co-gel. The results showed that 60 U/g TGase treatment significantly improved the gel strength and water holding capacity (WHC) by 26.51 g and 9.2 %, respectively. TGase promoted the rheological properties and accelerated the three-dimensional network structure of the co-gel. Moreover, TGase significantly increased (P < 0.05) the tyrosine residues, tryptophan residues content and hydrophobic interactions of the aliphatic groups. The chemical forces between the protein molecules changed. TGase promoted the transition of α-helix to β-sheet and free water to immobilized water, thereby improving the WHC of co-gel. The principal component analysis reflected the links among indicators. This study illustrated that TGase might be an effective strategy to improve the co-gel of TMLP and MP and emulsified meat products with insects.
Collapse
Affiliation(s)
- Hailei Sun
- College of Food Science & Engineering, Shandong Research Center for Meat Food Quality Control, Qingdao Agricultural University, Qingdao 266109, China
| | - Yaqi Zhao
- College of Food Science & Engineering, Shandong Research Center for Meat Food Quality Control, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaolong Li
- College of Food Science & Engineering, Shandong Research Center for Meat Food Quality Control, Qingdao Agricultural University, Qingdao 266109, China
| | - Ming Huang
- National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | | | - Jingxin Sun
- College of Food Science & Engineering, Shandong Research Center for Meat Food Quality Control, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
28
|
Yu H, Zhao Y, Li R, Guo X, Liu P, Zhang J. Effect of apple high-methoxyl pectin on heat-induced gelation of silver carp myofibrillar protein. Food Chem 2024; 441:138366. [PMID: 38199110 DOI: 10.1016/j.foodchem.2024.138366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
The effect of adding apple high-methoxy pectin (HMP) (0-3 mg∙mL-1) on heat-induced gel characteristics of low concentration silver carp myofibrillar protein (MP) (15 mg∙mL-1) was studied. It was found that the hardness of gel increased by 20.6 times with adding 2 mg∙mL-1 HMP. Besides, HMP aided in the development of disulfide bonds and the aggregation of hydrophobic groups. During gel formation, the maximal storage modulus (G') of samples supplemented with 2 mg·mL-1 HMP was raised by a factor of 2.7. Of note, the images of SEM showed that protein and water were tightly combined with a proper amount of HMP and made its pores more uniform and dense. Meantime, the addition of moderate amounts of HMP enabled the formation of gels with favorable texture and performance at low concentration of MP was identified, which could provide a theoretical reference for the design and production of flesh low-calorie food gel.
Collapse
Affiliation(s)
- Han Yu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yunfeng Zhao
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Runze Li
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xin Guo
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Pingping Liu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
29
|
Liu J, Yang K, Wu D, Gong H, Guo L, Ma J, Sun W. Study on the interaction and gel properties of pork myofibrillar protein with konjac polysaccharides. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2284-2293. [PMID: 37950529 DOI: 10.1002/jsfa.13116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/16/2023] [Accepted: 11/11/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Natural myofibrillar protein (MP) is sensitive to changes in the microenvironment, such as pH and ionic strength, and therefore can adversely affect the final quality of meat products. The aim of this study was to modify natural MP as well as to improve its functional properties. Therefore, the quality improvement effect of konjac polysaccharides with different concentrations (0, 1.5, 3, 4.5 and 6 g kg-1 protein) on MP gels was investigated. RESULTS With a concentration of konjac polysaccharides of 6 g kg-1 protein, the composite gel obtained exhibited a significant improvement of water binding (water holding capacity increased by 7.71%) and textural performance (strength increased from 29.12 to 37.55 N mm, an increase of 8.43 N mm). Meanwhile, konjac polysaccharides could help to form more disulfide bonds and non-disulfide covalent bonds, which enhanced the crosslinking of MP and maintained the MP gel network structure. Then, with the preservation of α-helix structure (a significant increase of 8.11%), slower protein aggregation and formation of small aggregates, this supported the formation of a fine and homogeneous network structure and allowed a reduction in water mobility. CONCLUSION During the heating process, konjac polysaccharides could absorb the surrounding water and fill the gel system, which resulted in an increase in the water content of the gel network and enhanced the gel-forming ability of the gel. Meanwhile, konjac polysaccharides might inhibit irregular aggregation of proteins and promote the formation of small aggregates, which in turn form a homogeneous and continuous gel matrix by orderly arrangement. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingyang Liu
- College of Life Science, Yangtze University, Jingzhou, China
| | - Kun Yang
- College of Life Science, Yangtze University, Jingzhou, China
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Di Wu
- College of Life Science, Yangtze University, Jingzhou, China
| | - Honghong Gong
- College of Life Science, Yangtze University, Jingzhou, China
| | - Linxiao Guo
- College of Marxism, Yangtze University, Jingzhou, China
| | - Jing Ma
- College of Life Science, Yangtze University, Jingzhou, China
| | - Weiqing Sun
- College of Life Science, Yangtze University, Jingzhou, China
| |
Collapse
|
30
|
Du Y, Lan J, Zhong R, Shi F, Yang Q, Liang P. Insight into the effect of large yellow croaker roe phospholipids on the physical properties of surimi gel and their interaction mechanism with myofibrillar protein. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1347-1356. [PMID: 37814156 DOI: 10.1002/jsfa.13029] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/23/2023] [Accepted: 10/10/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND The present study aimed to investigate the effects of large yellow croaker roe phospholipids (LYCRPLs) on the physical properties of surimi gels and to clarify their interaction mechanism with myofibrillar proteins (MPs) in terms of chemical forces and the spatial conformation. RESULTS LYCRPLs could improve the gel strength, textural properties, rheological properties and water-holding capacity of surimi gels. Moreover, the interaction mechanism between LYCRPLs with MPs was revealed through intermolecular forces, Fourier transform infrared spectroscopy and ultraviolet visible absorption spectroscopy. The findings demonstrated that LYCRPLs enhanced the surface hydrophobicity and particle size of MPs, facilitating expansion and cross-linking of MPs. CONCLUSION These results provide a theoretical basis for improving the characteristics of surimi gels and thus facilitate the application of LYCRPLs in the aquatic food industry. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanyu Du
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministry Education, Engineering Research Center Fujian Taiwan Special Marine Food Processing & Nutrition, Fuzhou, China
| | - Jiaojiao Lan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministry Education, Engineering Research Center Fujian Taiwan Special Marine Food Processing & Nutrition, Fuzhou, China
| | - Rongbin Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministry Education, Engineering Research Center Fujian Taiwan Special Marine Food Processing & Nutrition, Fuzhou, China
| | - Feifei Shi
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministry Education, Engineering Research Center Fujian Taiwan Special Marine Food Processing & Nutrition, Fuzhou, China
| | - Qian Yang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministry Education, Engineering Research Center Fujian Taiwan Special Marine Food Processing & Nutrition, Fuzhou, China
| | - Peng Liang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministry Education, Engineering Research Center Fujian Taiwan Special Marine Food Processing & Nutrition, Fuzhou, China
| |
Collapse
|
31
|
Zhang M, He L, Wang Y, Li C, Jin Y, Jin G, Tang X. Excessive free radical grafting interferes with the macromolecular association and crystallization of brined porcine myofibrils during heat-set gelatinization. Food Res Int 2024; 175:113709. [PMID: 38129033 DOI: 10.1016/j.foodres.2023.113709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/30/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023]
Abstract
Free radical grafting and oxidative modification show superiority in myofibrillar protein (MP) aggregation patterns during salting process, but their consequent formation mechanisms of protein hydration network require further evaluation. Herein, we explored the effect of salt-curing (0, 1, 3 and 5 %) on MP protein polymer substrate, water-protein interaction, crystallization events and thermal stability under H2O2/ascorbate-based hydroxyl radical (•OH)-generating system (HRGS) (1, 10, 20 mM H2O2). Results showed that moderate salting (≤3%) favored the water binding of MP gels during the oxidation course. Accordingly, the maximum thermal stability (Tm) of MP gels was obtained at 3 % salting could be greatly attributed to the protein chain solubilization and refolding process. However, 5 % salt synergized with •OH oxidation intensified diffraction peak 2 (the most striking diffraction feature). Microstructural analysis validated a maximum compactness of MP gel following brining with 5 % salt at potent oxidation strength (20 mM H2O2). This study maybe promises efficient strategy to the myogenetic fibril products and biomaterials.
Collapse
Affiliation(s)
- Min Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lichao He
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yanbo Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Chengliang Li
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongguo Jin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guofeng Jin
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Xiaoyan Tang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
32
|
Zhang Q, Sun P, Xu Z, Qu W, Zhang Y, Sui X. Chitin nanocrystals as natural gel modifier for yielding stronger acid-induced soy protein isolate gel. Carbohydr Polym 2024; 323:121446. [PMID: 37940308 DOI: 10.1016/j.carbpol.2023.121446] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 11/10/2023]
Abstract
This study aimed to enhance the rheological properties and thermal stability of acid-induced soy protein isolate (SPI) gels by incorporating chitin nanocrystals (ChNCs) and proposing a gelation mechanism. SPI gels exhibited pseudo-plastic behavior. Increasing ChNCs concentration from 0.00 % to 1.00 % improved G' values, recovery rate, and initial degradation temperature: from 75.6 Pa to 1024.3 Pa, 80.27 % to 85.47 %, and 261.5 °C to 275.8 °C, respectively. FTIR analysis confirmed electrostatic and hydrogen bonding interactions between SPI and ChNCs. Adding 1.00 % ChNCs reduced α-helix content from 19.7 % to 12.1 % while increasing β-sheet content from 46.5 % to 52.6 %. This led to protein unfolding, exposure of Trp residues, and orderly aggregation, forming a dense cross-linked gel network. Gel particle size increased from 185.5 nm (no ChNCs) to 504.4 nm (1.00 % ChNCs), with reduced surface charges. Hydrophobic and electrostatic interactions were key forces stabilizing SPI-ChNCs gels. These findings offer a practical approach to enhancing traditional acid-induced protein gel-based functional foods using naturally sourced chitin nanocrystals.
Collapse
Affiliation(s)
- Qin Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ping Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zejian Xu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Wenwen Qu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
33
|
He S, Li M, Sun Y, Pan D, Zhou C, Lan H. Effects of limited enzymatic hydrolysis and polysaccharide addition on the physicochemical properties of emulsions stabilized with duck myofibrillar protein under low-salt conditions. Food Chem 2024; 430:137053. [PMID: 37549626 DOI: 10.1016/j.foodchem.2023.137053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 07/11/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
This study aimed to investigate the role of hydrolysis and guar gum (GG) participation on the emulsification of the duck myofibrillar protein (MP) and the related stability of oil-in-water emulsion in low-salt condition. Emulsions were prepared using one of each or both treatments, and that prepared with trypsin hydrolysis and GG (T-GG) exhibited the highest stability. FTIR analysis confirmed the hydrogen bond interactions between the system components. T-GG treatment improved emulsion properties and decreased oil droplet size. Moreover, CLSM indicated that aggregation of T-GG oil droplets was prevented. Physical stability was assessed such as Turbiscan stability index, creaming index, and rheological properties. The adsorbed percentage for T-GG was the lowest. However, interfacial tension, droplet size, stability, and peroxide value analyses indicated that a denser interfacial membrane structure is formed with T-GG. Thus, T-GG treatment could be applied in the food industry, such as in nutrient delivery systems and fat mimetics.
Collapse
Affiliation(s)
- Shufeng He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China
| | - Mengmeng Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China.
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China.
| | - Changyu Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China
| | - Hangzhen Lan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China
| |
Collapse
|
34
|
Wang M, Li Y, Liu Q, Zhang Z, Huang M, Shao J, Sun J. Ameliorating the stability of native/thermally denatured chicken-derived myofibrillar proteins particles in an aqueous system: The synergistic effect of acidification combined with inulin and inulin/sodium alginate. Int J Biol Macromol 2023; 253:127383. [PMID: 37838125 DOI: 10.1016/j.ijbiomac.2023.127383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
The effect of acidification through hydrochloric acid combined with inulin (In), and inulin/sodium alginate (In/SA) on the stability of native/thermally denatured myofibrillar proteins (MPs/TMPs) particles in an aqueous system was investigated. At the same pH, MPs-In and TMPs-In particles were smaller and had higher absolute potentials than MPs-In/SA and TMPs-In/SA particles. Additionally, the size of MPs-In particles reached 1 μm, and the solubility increased from 21.73 ± 0.57 % to 76.26 ± 1.27 % when the pH was reduced from 5.0 to 3.0. The absolute potential of TMPs 3-In particles increased from 15.77 ± 0.72 to 28.20 ± 0.30 mV, and the solubility increased from 18.65 ± 0.72 % to 74.53 ± 0.74 %. Confocal laser microscopy revealed that, compared with pH 5.0 or 4.0, MPs-In/TMPs-In particles dispersed more evenly at pH 3.0 compared with pH 5.0 or 4.0. This further confirmed that electrostatic repulsion between particles maximally contributed to particle stability. Furthermore, the α-helix content in TMPs-In particles at pH 3.0 decreased from 41.51 ± 1.09 % (TMPs control) to 16.61 ± 1.87 %. This decrement of an up to 60 % led to decreased intramolecular hydrogen bonds and improved surface hydrophobicity. Therefore, a single polysaccharide (In) combined with MPs/TMPs particles exhibited higher dispersion and stability at pH 3.0. These findings could provide new insights into chicken-derived protein beverage processing.
Collapse
Affiliation(s)
- Mengman Wang
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Yan Li
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qing Liu
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhiguo Zhang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250353, China
| | - Ming Huang
- National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China; National R&D Branch Center for Poultry Meat Processing Technology, Nanjing Huangjiaoshou Food Sci. & Tech. Co., Ltd., Nanjing 210095, China
| | - Junhua Shao
- College of Food Science, Shenyang Agricultural University, Liaoning 110000, China
| | - Jingxin Sun
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China; Shandong Research Center for Meat Food Quality Control, Qingdao Agricultural University and Zhucheng Waimao Co., Ltd., Qingdao 266109, China.
| |
Collapse
|
35
|
Teng H, He Y, Fu L, Xiong H, Lu M, Zhang C, Ai C, Cao H, Zhong S, Chen L. Effects of blackberry ( Rubus spp.) polysaccharide on the structure and thermal behavior of the myofibrillar protein of chicken breast meat. Food Chem X 2023; 20:100914. [PMID: 38144761 PMCID: PMC10739915 DOI: 10.1016/j.fochx.2023.100914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/22/2023] [Accepted: 09/29/2023] [Indexed: 12/26/2023] Open
Abstract
Blackberry crude polysaccharides (BCP) was added to chicken breast to inspect the intermolecular interaction with myofibrillar protein (MP). The influence of BCP on the thermal transformation behavior and protein micro-structure during temperature rise period was studied. The results showed that the interaction between BCP and MP was mainly affected by the concentration of BCP and heating temperature. The results of infrared spectrophotometer and nano-particle/zeta potentiometer showed that a BCP-MP complex was generated through hydrogen bond and electrostatic interaction, which could promote the transformation of MP from β-folding to β-Angle transformation. The fluorescence spectra showed that the BCP was helped to the spread of protein structure of the MP. Moreover, synchronous thermal analyzer and rheometer results revealed that the BCP increased the enthalpy value and elastic modulus of MP. Scanning electron microscope verified pores inside the BCP-MP complex are more evenly distributed and smaller, which led to the high cross-linking of network and good stability of water distribution for the MP. The addition of BCP enhances the hydrogen bonds and disulfide bonds of MP molecules, which can strengthen the network structure and ultimately improve the performance of meat products.
Collapse
Affiliation(s)
- Hui Teng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Centre of Technology, Fujian Zhengda Food Company Limited, Longyan 364000, China
| | - Yuanju He
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Lingyun Fu
- Centre of Technology, Fujian Zhengda Food Company Limited, Longyan 364000, China
| | - Huaxing Xiong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Minxin Lu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Chang Zhang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Chao Ai
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Hui Cao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Lei Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| |
Collapse
|
36
|
Shen R, Tian X, Yang Q, Zhang K, Zhang H, Wang X, Bai L, Wang W. Using nanocellulose to improve heat-induced cull cow meat myofibrillar protein gels: effects of particle morphology and content. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7550-7559. [PMID: 37410998 DOI: 10.1002/jsfa.12834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/20/2023] [Accepted: 07/07/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Enhancing protein gel properties is essential to improve the texture of meat products. In this study, the improvement effects of three types of nanocellulose, i.e. rod-like cellulose nanocrystals (CNC), long-chain cellulose nanofibers (CNF) and spherical cellulose nanospheres (CNS) with different concentrations (1, 3, 5, 10, 15 and 20 g kg-1 ), on cull cow meat myofibrillar protein (MP) gel were investigated. RESULTS Compared with needle-shaped CNC and spherical CNS, the addition of 10 and 20 g kg-1 long-chain CNF had the most significant improvement effect on gel hardness and water-holding capacity, respectively (P < 0.05), increasing to 160.1 g and 97.8%, respectively. In addition, the incorporation of long-chain CNF shortened the T2 relaxation time and induced the formation of the densest network structure and promoted the phase transition of the gel. However, excessive filling of nanocellulose would destroy the structure of the gel, which was not conducive to the improvement of gel properties. Fourier transform infrared results showed that there was no chemical reaction between the three nanocellulose types and MP, but the addition of nanocellulose was conducive to gel formation. CONCLUSION The improvement of MP gel properties by adding nanocellulose mainly depends on its morphology and concentration. Nanocellulose with higher aspect ratio is more beneficial to the improvement of gel properties. For each nanocellulose type, there is an optimal addition amount for MP gel improvement. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ruixi Shen
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaojing Tian
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Qinghua Yang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Kai Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Huan Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xinhua Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Lei Bai
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Wenhang Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
37
|
Chen H, Zhang J, Dai H, Fu Y, Ma L, Zhang Y. Mechanism on the Synergistic Gelation of the Myofibrillar Protein Composite Gel Enhanced by "Clean-Label" Skin Functional Protein Powders. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16777-16786. [PMID: 37885230 DOI: 10.1021/acs.jafc.3c05352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The concept of healthiness and sustainability has promoted the innovation and development of "clean-label" products. Herein, this study aims to explore the influence mechanism of "clean label" skin protein powder (FPP) on the gelation properties of myofibrillar proteins (MPs). Specifically, the addition of FPP (0.2-4.0%) can improve the water holding capability and texture properties of MP composite gels. When the FPP concentration is over 1.0%, the composite gels exhibit no significant water loss during centrifugation. Dynamic rheology and sodium-dodecyl sulfate-polyacrylamide gel electrophoresis results revealed that FPP can slow the aggregation and denaturation of myosin and promote the formation of disulfide bonds between myofibril proteins, thus forming a stable network structure. Structural observation revealed that FPP can fill into the MP gel and lead to the formation of compact gel structures. Besides, with the increase of FPP concentration, the chemical forces involved in structural stabilization change significantly. Specifically, hydrophobic interaction and hydrogen bonding are the dominant forces at a lower FPP concentration (0.2 and 0.4%), while the ionic bond and disulfide bond are the dominant forces at a higher concentration. Overall, this work demonstrated that FPP can significantly improve the gel functionality of MP by altering the gel structure and strengthening the molecular forces.
Collapse
Affiliation(s)
- Hai Chen
- College of Food Science, Southwest University, Chongqing 400715, China
- Ministry of Education, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Ju Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China
- Ministry of Education, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
- Ministry of Education, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, China
- Ministry of Education, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
- Ministry of Education, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| |
Collapse
|
38
|
Gao Y, Wang S, Liu H, Gu Y, Zhu J. Design and characterization of low salt myofibrillar protein-sugar beet pectin double-crosslinked gels pretreated by ultrasound and konjac glucomannan: Conformational and gelling properties. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
39
|
Hu Z, Wang Y, Ma Z, Cheng T, Guo Z, Zhou L, Wang Z. Impacts of Industrial Modification on the Structure and Gel Features of Soy Protein Isolate and its Composite Gel with Myofibrillar Protein. Foods 2023; 12:foods12101982. [PMID: 37238801 DOI: 10.3390/foods12101982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Native soy protein isolate (N-SPI) has a low denaturation point and low solubility, limiting its industrial application. The influence of different industrial modification methods (heat (H), alkaline (A), glycosylation (G), and oxidation (O)) on the structure of SPI, the properties of the gel, and the gel properties of soy protein isolate (SPI) in myofibril protein (MP) was evaluated. The study found that four industrial modifications did not influence the subunit composition of SPI. However, the four industrial modifications altered SPI's secondary structure and disulfide bond conformation content. A-SPI exhibits the highest surface hydrophobicity and I850/830 ratio but the lowest thermal stability. G-SPI exhibits the highest disulfide bond content and the best gel properties. Compared with MP gel, the addition of H-SPI, A-SPI, G-SPI, and O-SPI components significantly improved the properties of the gel. Additionally, MP-ASPI gel exhibits the best properties and microstructure. Overall, the four industrial modification effects may impact SPI's structure and gel properties in different ways. A-SPI could be a potential functionality-enhanced soy protein ingredient in comminuted meat products. The present study results will provide a theoretical basis for the industrialized production of SPI.
Collapse
Affiliation(s)
- Zhaodong Hu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- College of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yichang Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zihan Ma
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tianfu Cheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Linyi Zhou
- College of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
40
|
He X, Zhao H, Xu Y, Yi S, Li J, Li X. Synergistic effects of oat β-glucan combined with ultrasound treatment on gel properties of silver carp surimi. ULTRASONICS SONOCHEMISTRY 2023; 95:106406. [PMID: 37088028 PMCID: PMC10457573 DOI: 10.1016/j.ultsonch.2023.106406] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/26/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
The effect of oat β-glucan (OG) combined with ultrasound treatment on the gelation properties of silver carp surimi with different salt contents was investigated. The results demonstrated that the gelation properties of surimi gels at high salt concentration were superior than those at low salt level. The addition of OG or ultrasound treatment could significantly enhance the texture properties, gel strength and water holding capacity (WHC) of gel samples, regardless of salt contents. The ultrasound treatment improved the whiteness of surimi gels, whereas the OG addition slightly declined the whiteness. Both OG addition and ultrasound treatment markedly reduced the total sulfhydryl content (total SH) and strengthened the hydrophobic interactions, forming the more uniform and denser gel network structures, hence more water was captured in network structures and became immobilized. Moreover, the combined treatment of OG and ultrasound showed synergic action on the gelation properties of surimi, and the gel strength and WHC of low-salt surimi gel treated by the combination of OG and ultrasound were even superior than that of high-salt gel without OG by traditional heating.
Collapse
Affiliation(s)
- Xueli He
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China
| | - Honglei Zhao
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China
| | - Yongxia Xu
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China.
| | - Shumin Yi
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
41
|
Cen K, Huang C, Yu X, Gao C, Yang Y, Tang X, Feng X. Quinoa protein Pickering emulsion: A promising cryoprotectant to enhance the freeze-thaw stability of fish myofibril gels. Food Chem 2023; 407:135139. [PMID: 36512908 DOI: 10.1016/j.foodchem.2022.135139] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/17/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
In this work, the effects of different QPE addition on the freeze-thaw (F-T) stability of fish myofibrillar protein (MP) gels were revealed. During freezing process, QPE decreased the freezing point of MP gels and shortened the time to pass through the maximum-ice-crystal-formation zone. The occurrence of thermal hysteresis effect led to the formation of small ice crystals and alleviated the damage to MP gel network. The incorporation of 7.5% QPE also reduced the free water amount to 19.23% and improved the water holding capacity of MP gels. Furthermore, the incorporation of QPE decreased the carbonyl content of MP gels after F-T cycles and delayed the protein oxidation. Meanwhile, QPE addition maintained the stability of the tertiary structure of MP gels via stabilizing the microenvironment of tyrosine and tryptophan. Overall, QPE shows the potential as a new cryoprotectant to improve the F-T stability of MP gel products.
Collapse
Affiliation(s)
- Kaiyue Cen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau
| | - Chengcheng Gao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yuling Yang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Xiao Feng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
42
|
Wang Y, Yuan JJ, Li K, Wang JL, Li JG, Chen B, Bai YH. Effects of combined chickpea protein isolate and chitosan on the improvement of technological quality in phosphate-free pork meat emulsions: Its relation to modifications on protein thermal and structural properties. Meat Sci 2023; 201:109194. [PMID: 37087874 DOI: 10.1016/j.meatsci.2023.109194] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/22/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023]
Abstract
The effects of combined chickpea protein isolate (CPI, 1%, w/w) and chitosan (CHI, 1%, w/w) on the technological, thermal, and structural properties of phosphate-free pork meat emulsions (PPMEs) were investigated. The results showed that CPI + CHI significantly improved the emulsion stability (P < 0.05), synergistically elevated the hardness and chewiness, and did not negatively impact the color attributes, which endowed the PPMEs with similar or even better technological performances compared to the high-phosphate control. These alterations were related to the reduced myosin enthalpy values, the rearrangement of free water into immobilized water, the synergistic reduction in α-helical structure and increase in β-sheet structure, the increased trans-gauche-trans SS conformation intensity of the Raman bands, and the formation of interactive protein gel networks where small-sized fat particles were evenly dispersed in the protein matrix. Therefore, combined CPI and CHI shows promise as a phosphate replacer for meat products.
Collapse
Affiliation(s)
- Yu Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, Henan 450000, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Jing-Jing Yuan
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, China
| | - Ke Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, Henan 450000, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Jia-le Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, China
| | - Jun-Guang Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, Henan 450000, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Bo Chen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, Henan 450000, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Yan-Hong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, Henan 450000, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China.
| |
Collapse
|
43
|
Yuan D, Liang X, Kong B, Sun F, Li X, Cao C, Liu Q. In-Depth Insight into the Mechanism of Incorporation of Abelmoschus manihot Gum on the Enhancement of Gel Properties and In Vitro Digestibility of Frankfurters. Foods 2023; 12:foods12071507. [PMID: 37048328 PMCID: PMC10094229 DOI: 10.3390/foods12071507] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023] Open
Abstract
This study aimed to investigate the effects of different concentrations (0.1, 0.2, 0.3, 0.4, and 0.5% w/w) of Abelmoschus manihot gum (AMG) on the gel properties and in vitro digestibility of frankfurters. The results indicated that AMG incorporation significantly enhanced the emulsion stability and texture of frankfurters, as well as the dynamic rheological characteristics of raw meat batter, with the optimal concentration being 0.3% (p < 0.05). Furthermore, hydrogen bonds and disulphide bonds were the main molecular forces of the frankfurters in the presence of AMG. Microstructural images showed that more uniform and dense microstructures of frankfurters were formed due to AMG supplementation. In addition, AMG incorporation significantly increased the in vitro protein digestibility of frankfurters as the level of addition increased (p < 0.05). In conclusion, our results provided critical information for the practical application of AMG in the production of emulsified meat products.
Collapse
Affiliation(s)
- Dongxue Yuan
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xue Liang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xin Li
- Sharable Platform of Large-Scale Instruments & Equipments, Northeast Agricultural University, Harbin 150030, China
| | - Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Green Food Science & Research Institute, Harbin 150028, China
| |
Collapse
|
44
|
Sherpa K, Priyadarshini MB, Mehta NK, Waikhom G, Surasani VKR, Tenali DR, Vaishnav A, Sharma S, Debbarma S. Blue agave inulin-soluble dietary fiber: effect on technological quality properties of pangasius mince emulsion-type sausage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37005347 DOI: 10.1002/jsfa.12594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The aim of the work was to investigate the influence of supplementing pangasius mince-based emulsion sausages with blue agave-derived inulin at 1% (T1), 2% (T2), 3% (T3), 4% (T4), and 5% (T5) on its technological quality attributes and acceptability. RESULTS The cooking yield of T-2, T-3, and T-4 sausages (96-97%) exhibited no significant difference (P > 0.05), which was higher than the other lots. The T-2 batter exhibited a significant difference with all other treatments, showing the lowest total expressible fluid (12.20%) value, indicating the highest emulsion stability of the batter. There was a significant effect on the diameter reduction of the cooked sausages as the level of inulin increased. Sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed the proteolysis of raw mince without inulin and new bands in cooked sausage samples were observed. Increasing inulin content increased the hardness of the sausages from 2510.81 ± 114.31 g to 3415.54 ± 75.88. The differential scanning calorimetry melting temperatures of peak 2 of the T-1, T-2, T-3, and T-4 increased as the inulin content increased from 1 to 4%. The scanning electron microscope images exhibited a smooth appearance on the surface as the inulin level increased. CONCLUSION The sausages incorporated with the 2% and 3% blue agave plant-derived inulin (T-2 and T-3) showed better sensory overall acceptability scores than the control. The results suggested that the blue agave plant-derived inulin could be efficiently utilized at the 2% and 3% levels to enhance the quality of emulsion-type pangasius sausage. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kusang Sherpa
- Department of Fish Processing Technology and Engineering, College of Fisheries, West Tripura, India
| | | | - Naresh Kumar Mehta
- Department of Fish Processing Technology and Engineering, College of Fisheries, West Tripura, India
| | | | | | | | - Anand Vaishnav
- Department of Fish Processing Technology and Engineering, College of Fisheries, West Tripura, India
| | - Sanjeev Sharma
- Department of Fish Processing Technology and Engineering, College of Fisheries, West Tripura, India
| | - Sourabh Debbarma
- Department of Aquatic Health & Environment, College of Fisheries, West Tripura, India
| |
Collapse
|
45
|
Piao X, Huang J, Sun Y, Zhao Y, Zheng B, Zhou Y, Yu H, Zhou R, Cullen PJ. Inulin for surimi gel fortification: Performance and molecular weight-dependent effects. Carbohydr Polym 2023; 305:120550. [PMID: 36737199 DOI: 10.1016/j.carbpol.2023.120550] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Inulin is a prebiotic carbohydrate widely used in food industry due to its health benefits and unique rheological properties. For the first time, this study explores the potential of natural inulin as a sustainable food additive to enhance surimi gel characteristics, specifically focusing on understanding its molecular weight effects. The good solubility of inulin facilitates the conversion of α-helix to other secondary conformations which are favorable for protein denaturation and aggregation during gelation. Moreover, the abundant -OH groups at the surface of inulin can boost the chemical forces within surimi proteins to reinforce the gel network. Compared to short-chain inulin, long-chain inulin can alleviate proteolysis, enhance hydrophobic interactions and intertwine with myosin molecules, thereby reinforcing the gel network. A more viscous long-chain inulin solution formed within surimi gels fills the space between aggregated proteins and facilitates the lock of water molecules, improving the water-holding capacity (WHC). Thus, an addition of 12 % long-chain inulin leads to an enhanced hardness of surimi gel from 943 to 1593 and improved WHC from 72 % to 85 %. A new inulin-myosin interaction mechanism model is also proposed to provide useful guidelines for surimi processing and expanding the application of inulin within the food industries.
Collapse
Affiliation(s)
- Xinyue Piao
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jiabao Huang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yu Sun
- School of Nursing, Zhejiang Pharmaceutical University, Ningbo 315500, China
| | - Yadong Zhao
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm 10044, Sweden.
| | - Bin Zheng
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yufang Zhou
- Zhejiang Marine Development Research Institute, Zhoushan 316021, China
| | - Haixia Yu
- Ocean Research Center of Zhoushan, Zhejiang University, Zhoushan 316021, China
| | - Rusen Zhou
- School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia.
| | - Patrick J Cullen
- School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
46
|
Effects of an inulin and microcrystalline cellulose hybrid hydrogel on the short-term low temperature storage characteristics of pork sausage models. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
47
|
Effects of conjugates of ε-polylysine-dextran created through Maillard reaction on quality and storage stability of the chicken gel. Food Res Int 2023; 164:112360. [PMID: 36737948 DOI: 10.1016/j.foodres.2022.112360] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
The present study mainly focused on the effects of the conjugates of PL-dextran produced through the Maillard reaction on the quality and storage stability of chicken gel for 5 days at 4 ℃. According to the results of the texture profile, water retention capacity (WRC), low-field nuclear magnetic resonance (LF NMR), aerobic plate count (APC), and total volatile basic nitrogen (TVBN), ε-polylysine (PL) could improve chicken gel storage stability while decreasing the quality of protein gels (p < 0.05). Additionally, adding dextran with high or low molecular weight could significantly increase the quality of gel during storage (p < 0.05), whereas decreased storage stability could be obtained (p < 0.05). In general, conjugates formed by PL and dextran with high molecular weight were beneficial for quality maintenance. In comparison, the polymers produced from the low molecular weight of dextran could modify the storage stability of gels. Adding conjugates of dextran and PL benefited the structure formation of protein gel, while PL would retain part of antibacterial activity when crosslinked with dextran. Therefore, it could be concluded that the quality improvement effect of PL-dextran addition on gel quality was greater than its antibacterial effect, which would impact the formulation design of novel emulsion-type meat products.
Collapse
|
48
|
Han K, Feng X, Yang Y, Tang X, Gao C. Changes in the physicochemical, structural and emulsifying properties of chicken myofibrillar protein via microfluidization. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Recent advances in oral delivery of bioactive molecules: Focus on prebiotic carbohydrates as vehicle matrices. Carbohydr Polym 2022; 298:120074. [DOI: 10.1016/j.carbpol.2022.120074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/18/2022]
|