1
|
Zhang RY, Yang YJ, Zhang WJ, Li JH, Su YJ, Gu LP, Chang CH. Explore the synergistic effects of Lactobacillus plantarum fermentation and tea polyphenols on the deodorization of egg white powder from the perspective of protein site competition. Food Chem 2025; 481:144128. [PMID: 40179491 DOI: 10.1016/j.foodchem.2025.144128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/10/2025] [Accepted: 03/28/2025] [Indexed: 04/05/2025]
Abstract
Spray drying often induces off-odors and diminishes the rehydration capacity of egg white powder (EWP), restricting its utility in food applications. In this study, the synergistic effects of the Lactobacillus plantarum fermentation treatment and the tea polyphenols (TP) addition on the flavor variations, protein structure, microstructure, and dispersion properties of EWP were investigated. The flavor results suggested that fermentation and TP reduced undesirable flavor substances (e.g. nonanal, decanal, and 3-methylbutanal), while the interaction between some volatile organic compounds produced by fermentation and protein flavor-binding sites was enhanced. Fermentation unfolded protein structures, increasing binding sites for TP and improving flavor-binding efficiency. Additionally, strong electrostatic repulsion introduced by fermentation improved the dispersion and stability of the EWP system. This approach provides a promising strategy for deodorizing and solubilizing EWP, advancing its potential in food processing.
Collapse
Affiliation(s)
- Ru-Yi Zhang
- State key laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yan-Jun Yang
- State key laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei-Jian Zhang
- State key laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jun-Hua Li
- State key laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yu-Jie Su
- State key laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lu-Ping Gu
- State key laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cui-Hua Chang
- State key laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Lv X, Xia Z, Yao X, Shan Y, Wang N, Zeng Q, Liu X, Huang X, Fu X, Jin Y, Ma M. Modification Effects of Microorganisms and Enzymes on Egg Components: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25462-25480. [PMID: 39526490 DOI: 10.1021/acs.jafc.4c08536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In eggs, there are several components: eggshell (ES), eggshell membrane (ESM), egg white (EW), and egg yolk (EY). Many modification methods exist, such as thermal treatment, high pressure, freeze-thaw cycles, ultrasonic treatment, ozonation, phosphorylation, and acylation, all aimed at improving the functional properties of EW and EY. Additionally, microorganism and enzyme modifications have proven effective in enhancing the functional properties of EW and EY. ES and ESM are unique components of eggs. The eggshell is rich in calcium carbonate, while the eggshell membrane is rich in protein. The effective utilization of ES and ESM can help promote economic income in the poultry industry and benefit the environment. Research on the modification of ES and ESM has shown that microorganisms and enzymes have the potential to improve their functional properties. After modification, egg components can be utilized in the production of egg-based and other food products for improved performance. Furthermore, enzyme modification of egg components can produce bioactive peptides, which have the potential to treat specific diseases and may even be used in the biomedical field. This review primarily focuses on the effects of microorganisms and enzymes on the modification of egg components and summarizes the roles of microbial and enzymatic modifications in this context.
Collapse
Affiliation(s)
- Xiaohui Lv
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Zhijun Xia
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xuan Yao
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yumeng Shan
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Nannan Wang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Qi Zeng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiaoli Liu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xi Huang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xing Fu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yongguo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Meihu Ma
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|
3
|
Chen J, Wang J, Xu L, Lv Y, Tang T, Zhang M, Li J, Su Y, Gu L, Yang Y, Chang C. Study on gel properties of lysozyme-free egg white before and after Lactiplantibacillus plantarum fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5618-5627. [PMID: 35340026 DOI: 10.1002/jsfa.11897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Isolation of lysozyme from egg white (EW) using ion exchange resin adsorption method generates large quantities of lysozyme-free egg white (LFEW) with poor gelling property. To maximize the applications of LFEW, the effect of Lactiplantibacillus plantarum fermentation on the gel properties of LFEW was investigated in this study. RESULTS The fermentation efficiency of LFEW with lysozyme removed was significantly improved, and the sugar removal rate (2 g kg-1 Lactiplantibacillus plantarum, 37 °C, 7 h) was more than 90%. Removal of lysozyme resulted in increased stability and surface hydrophobicity of EW. After Lactiplantibacillus plantarum fermentation, the stability of EW decreased, and the average particle size and surface hydrophobicity increased. In addition, by comparing the gel properties of EW and LFEW before and after fermentation at different pH, it was found that the hardness, elasticity, and water holding capacity (WHC) of EW gel increased significantly. The removal of lysozyme effectively improved the WHC and springiness of the EW gel and promoted the formation of a denser network structure with smaller pores. After Lactiplantibacillus plantarum fermentation treatment, LFEW gel hardness decreased, with loose and porous network structure, no browning occurred after autoclaving. CONCLUSION This study provided the direction and theoretical basis for producing a fermented LFEW gel with pleasing texture and appearance. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Jing Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Lilan Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Yuanqi Lv
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Tingting Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Ming Zhang
- Guangzhou Beile Food Co., Ltd., Guangzhou, P. R. China
| | - Junhua Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Yujie Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Luping Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
4
|
Gazme B, Rezaei K, Udenigwe CC. Epitope mapping and the effects of various factors on the immunoreactivity of main allergens in egg white. Food Funct 2022; 13:38-51. [PMID: 34908097 DOI: 10.1039/d1fo01867a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Egg white has high protein content and numerous biological/functional properties. However, reported allergenicity for some of the proteins in egg white is an issue that needs to be paid exclusive attention. A consideration of the structure of IgE epitopes and their sequences, as well as a comprehensive understanding of the effects of various processes on epitopes and the impact of the gastrointestinal tract on them, can help target such issues. The current study focuses on the identified IgE epitopes in egg white proteins and evaluation of the effects of the gastrointestinal digestion, carbohydrate moiety, food matrix, microbial fermentation, recombinant allergen, heat treatment, Maillard reaction and combination of various processes and gastrointestinal digestion on egg white allergenicity. Although the gastrointestinal tract reduces the immunoreactivity of native egg white proteins, some of the IgE epitope-containing fragments remain intact during the digestion process. It has been found that the gastrointestinal tract can have both positive and negative impacts on the IgE binding activities of egg white proteins. Elimination of the carbohydrate moiety leads to a reduction in the immunoreactivity of ovalbumin. But, such effects from the carbohydrate parts in the IgE binding activity need to be explored further. In addition, the interaction between the egg white proteins and the food matrix leads to various effects from the gastrointestinal tract on the digestion of egg white proteins and their subsequent immunoreactivity. Further on this matter, studies have shown that both microbial fermentation and Maillard reaction can reduce the IgE binding activities of egg white proteins. Also, as an alternate approach, the thermal process can be used to treat the egg white proteins, which may result in the reduction or increase in their IgE binding activities depending on the conditions used in the process. Overall, based on the reported data, the allergenicity levels of egg white proteins can be mitigated or escalated depending on the conditions applied in the processing of the food products containing egg white. So far, no practical solutions have been reported to eliminate such allergenicity.
Collapse
Affiliation(s)
- Behzad Gazme
- Department of Food Science, Engineering, and Technology, University of Tehran, 31587-77871 Karaj, Iran.
| | - Karamatollah Rezaei
- Department of Food Science, Engineering, and Technology, University of Tehran, 31587-77871 Karaj, Iran.
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, 415 Smyth Road, University of Ottawa, Ottawa, Ontario, K1H 8L1, Canada. .,Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
5
|
Wang J, Xu L, Lv Y, Su Y, Gu L, Chang C, Zhang M, Yang Y, Li J. To improve the gel properties of liquid whole egg by short-term lactic acid bacteria fermentation. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2021.102873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
6
|
Pi X, Yang Y, Sun Y, Cui Q, Wan Y, Fu G, Chen H, Cheng J. Recent advances in alleviating food allergenicity through fermentation. Crit Rev Food Sci Nutr 2021; 62:7255-7268. [PMID: 33951963 DOI: 10.1080/10408398.2021.1913093] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The increasing prevalence of food allergies is a significant challenge to global food health and safety. Various strategies have been deployed to decrease the allergenicity of food for preventing and reducing related disorders. Compared to other methods, fermentation has unique advantages in reducing the allergenicity of food and may represent a new trend in preventing food-induced allergies. This review introduces the characteristics of allergens in various foods, including shellfish, soy, peanut, milk, tree nut, egg, wheat, and fish. The mechanism and pathological symptoms of allergic reactions are then summarized. Furthermore, the advantages of fermentation for reducing the allergenicity of these foods and preventing allergies are evaluated. Fermentation is an efficient approach for reducing or eliminating food allergenicity. Simultaneously, it improved the nutritional value and physicochemical properties of food materials. It is conceivable that a combination of mixed strain fermentation with additional processing, such as heat treatment, pulsed light, and ultrasonication, will efficiently reduce the allergenicity of various foods and preserve their unique taste and nutritional components, providing significance for patients with allergies.
Collapse
Affiliation(s)
- Xiaowen Pi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yili Yang
- Suzhou Institute of Systems Medicine, Center for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, Jiangsu, China
| | - Yuxue Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qiang Cui
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yin Wan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Guiming Fu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
7
|
Pi X, Yang Y, Sun Y, Wang X, Wan Y, Fu G, Li X, Cheng J. Food irradiation: a promising technology to produce hypoallergenic food with high quality. Crit Rev Food Sci Nutr 2021; 62:6698-6713. [PMID: 33775183 DOI: 10.1080/10408398.2021.1904822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The increasing incidence of food allergy cases is a public health problem of global concern. Producing hypoallergenic foods with high quality, low cost, and eco-friendly is a new trend for the food industry in the coming decades. Food irradiation, a non-thermal food processing technology, is a powerful tool to reduce the allergenicity with the above advantages. This review presents a summary of recent studies about food irradiation to reduce the allergenicity of food, including shellfish, soy, peanut, milk, tree nut, egg, wheat and fish. Principles of food irradiation, including mechanisms of allergenicity-reduction, irradiation types and characteristics, are discussed. Specific effects of food irradiation are also evaluated, involving microbial decontamination, improvement or preservation of nutritional value, harmful substances reduction of food products. Furthermore, the advantages, disadvantages and limitations of food irradiation are analyzed. It is concluded that food irradiation is a safety tool to reduce the allergenicity of food effectively, with high nutritional value and long shelf-life, making it a competitive alternative technology to traditional techniques such as heating treatments. Of note, a combination of irradiation with additional processing may be a trend for food irradiation.
Collapse
Affiliation(s)
- Xiaowen Pi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yili Yang
- Suzhou Institute of Systems Medicine, Center for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, Jiangsu, China
| | - Yuxue Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xibo Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yin Wan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Guiming Fu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Xin Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
8
|
Jia J, Ji B, Tian L, Li M, Lu M, Ding L, Liu X, Duan X. Mechanism study on enhanced foaming properties of individual albumen proteins by Lactobacillus fermentation. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106218] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Sun X, Acquah C, Gazme B, Boachie RT, Nwachukwu ID, Udenigwe CC. Mechanisms of plastein formation influence the IgE-binding activity of egg white protein hydrolysates after simulated static digestion. Food Chem 2020; 345:128783. [PMID: 33316714 DOI: 10.1016/j.foodchem.2020.128783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/19/2020] [Accepted: 11/29/2020] [Indexed: 10/22/2022]
Abstract
Egg is the second most common food allergen among infants and young children. This work investigated the influence of plastein reaction on immunoglobulin E (IgE)-binding activities of egg white protein hydrolysates after simulated gastrointestinal (GIT) digestion. Compared to hydrolysate precursors, the IgE-binding activity of Pepsin-Plastein significantly decreased from 35 ± 7% to 8 ± 2% (P < 0.05), and Papain-Plastein from 70 ± 5% to 59 ± 4%. Further GIT hydrolysis of Pepsin-Plastein maintained the reduced IgE-binding activity (7 ± 3%) whereas Papain-Plastein digestion restored the IgE-binding reactivity to 66 ± 7%. This discrepancy is related to the different mechanisms of plastein formation. Covalent modifications (decreased free amino nitrogen and sulfhydryl contents) provided biostability for Pepsin-Plastein, whereas hydrophobic interactions (increased surface hydrophobicity) mainly contributed to Papain-Plastein formation. The latter can be destroyed during GIT digestion leading to re-exposure of hidden IgE-binding epitopes. Taken together, plastein reaction is a promising strategy for inducing structural modifications that reduce the immune reactivity of allergenic proteins.
Collapse
Affiliation(s)
- Xiaohong Sun
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; College of Food and Biological Engineering, Qiqihar University, Qiqihar, Heilongjiang 161006, China
| | - Caleb Acquah
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Behzad Gazme
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Food Science, Engineering, and Technology, University of Tehran, 31587-77871 Karaj, Iran
| | - Ruth T Boachie
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Ifeanyi D Nwachukwu
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; School of Public Health, Loma Linda University, Loma Linda, CA, United States
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
10
|
Zhu Y, Gao L, Xie G, Yang F, Gao P, Yu D, Yu P, Jiang Q, Xu Y, Xia W. Effect of fermentation on immunological properties of allergens from black carp (
Mylopharyngodon piceus
) sausages. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yidan Zhu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu214122China
| | - Ling Gao
- Children's Hospital of Nanjing Medical University Nanjing Jiangsu 210000 China
| | - Guojin Xie
- Children's Hospital of Nanjing Medical University Nanjing Jiangsu 210000 China
| | - Fang Yang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu214122China
| | - Pei Gao
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu214122China
| | - Dawei Yu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu214122China
| | - Peipei Yu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu214122China
| | - Qixing Jiang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu214122China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu214122China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu214122China
| |
Collapse
|
11
|
Jiang Y, Jia J, Xiong D, Xu X, Yang Y, Liu X, Duan X. Effects of short-term fermentation with lactic acid bacteria on egg white: Characterization, rheological and foaming activities. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105507] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Gazme B, Rezaei K, Udenigwe CC. Effect of enzyme immobilization and in vitro digestion on the immune-reactivity and sequence of IgE epitopes in egg white proteins. Food Funct 2020; 11:6632-6642. [DOI: 10.1039/d0fo00938e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Immune-reactivity reduction of egg white proteins by free and immobilized enzymes and determination of degraded IgE epitopes.
Collapse
Affiliation(s)
- Behzad Gazme
- Department of Food Science
- Engineering
- and Technology
- University of Tehran
- 31587-77871 Karaj
| | - Karamatollah Rezaei
- Department of Food Science
- Engineering
- and Technology
- University of Tehran
- 31587-77871 Karaj
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences
- Faculty of Health Sciences
- Ottawa
- Canada
- Department of Chemistry and Biomolecular Sciences
| |
Collapse
|
13
|
Shiferaw Terefe N, Augustin MA. Fermentation for tailoring the technological and health related functionality of food products. Crit Rev Food Sci Nutr 2019; 60:2887-2913. [PMID: 31583891 DOI: 10.1080/10408398.2019.1666250] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fermented foods are experiencing a resurgence due to the consumers' growing interest in foods that are natural and health promoting. Microbial fermentation is a biotechnological process which transforms food raw materials into palatable, nutritious and healthy food products. Fermentation imparts unique aroma, flavor and texture to food, improves digestibility, degrades anti-nutritional factors, toxins and allergens, converts phytochemicals such as polyphenols into more bioactive and bioavailable forms, and enriches the nutritional quality of food. Fermentation also modifies the physical functional properties of food materials, rendering them differentiated ingredients for use in formulated foods. The science of fermentation and the technological and health functionality of fermented foods is reviewed considering the growing interest worldwide in fermented foods and beverages and the huge potential of the technology for reducing food loss and improving nutritional food security.
Collapse
|
14
|
Zhang Y, Wang W, Zhou R, Yang J, Sheng W, Guo J, Wang S. Effects of heating, autoclaving and ultra-high pressure on the solubility, immunoreactivity and structure of major allergens in egg. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1387520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Yan Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
| | - Wei Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
| | - Rourou Zhou
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
| | - Jian Yang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
| | - Wei Sheng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
| | - Jun Guo
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
| | - Shuo Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
| |
Collapse
|
15
|
Effect of proteolysis on the sialic acid content and bifidogenic activity of ovomucin hydrolysates. Food Chem 2016; 212:78-86. [DOI: 10.1016/j.foodchem.2016.05.153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/01/2016] [Accepted: 05/24/2016] [Indexed: 11/20/2022]
|
16
|
Li Z, You J, Luo Y, Wu J. Purification and characterization of parvalbumin isotypes from grass carp (Ctenopharyngodon idella). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:6212-6218. [PMID: 24866418 DOI: 10.1021/jf500817f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The prevalence of fish allergy is rapidly increasing because of a growing fish consumption driven mainly by a positive image of the fish and health relationship. The purpose of this study was to characterize parvalbumin isotypes from grass carp (Ctenopharyngodon idella), one of the most frequently consumed freshwater fish in China. Three parvalbumin isotypes were purified using consecutive gel filtration and reverse-phase chromatography and denoted as PVI, PVII, and PVIII. The molecular weights of the isotypes were determined to be 11.968, 11.430, and 11.512 kDa, respectively. PVI showed 74% matched amino acids sequence with PV isotype 4a from Danio rerio, while PVII and PVIII showed 46% matched amino acids sequence with PV isotypes from Hypophthalmichthys molitrix. PVII is the dominant allergen, but it was liable to gastrointestinal enzymes as PVIII; however, PVI was resistant to pepsin digestion. A further study is to characterize the epitopes of PVII, the dominant allergen.
Collapse
Affiliation(s)
- Zheng Li
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University , Beijing 100083, People's Republic of China
| | | | | | | |
Collapse
|