1
|
Mandal AK, Sahoo A, Almalki WH, Almujri SS, Alhamyani A, Aodah A, Alruwaili NK, Abdul Kadir SZBS, Mandal RK, Almalki RA, Lal JA, Rahman M. Phytoactives for Obesity Management: Integrating Nanomedicine for Its Effective Delivery. Nutr Rev 2024:nuae136. [PMID: 39331591 DOI: 10.1093/nutrit/nuae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024] Open
Abstract
Obesity is a global health concern that requires urgent investigation and management. While synthetic anti-obesity medications are available, they come with a high risk of side-effects and variability in their efficacy. Therefore, natural compounds are increasingly being used to treat obesity worldwide. The proposition that naturally occurring compounds, mainly polyphenols, can be effective and safer for obesity management through food and nutrient fortification is strongly supported by extensive experimental research. This review focuses on the pathogenesis of obesity while reviewing the efficacy of an array of phytoactives used for obesity treatment. It details mechanisms such as enzyme inhibition, energy expenditure, appetite suppression, adipocyte differentiation, lipid metabolism, and modulation of gut microbiota. Comprehensive in vitro, in vivo, and preclinical studies underscore the promise of phytoactives in combating obesity, which have been thoroughly reviewed. However, challenges, such as poor bioavailability and metabolism, limit their potential. Advances in nanomedicines may overcome these constraints, offering a new avenue for enhancing the efficacy of phytoactives. Nonetheless, rigorous and targeted clinical trials are essential before applying phytoactives as a primary treatment for obesity.
Collapse
Affiliation(s)
- Ashok Kumar Mandal
- Department of Pharmacology, Faculty of Medicine, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Ankit Sahoo
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh 211007, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Asir-Abha 61421, Saudi Arabia
| | - Abdulrahman Alhamyani
- Pharmaceuticals Chemistry Department, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65779, Saudi Arabia
| | - Alhussain Aodah
- College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Nabil K Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakakah 72341, Saudi Arabia
| | | | | | - Rami A Almalki
- Clinical Pharmacy Unit, Pharmaceutical Care Department, King Faisal Hospital, Makkah Health Cluster, Makkah 24382, Saudi Arabia
| | - Jonathan A Lal
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology, and Sciences, Prayagraj, Uttar Pradesh 211007, India
| | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh 211007, India
| |
Collapse
|
2
|
Lien HM, Lin HT, Huang SH, Chen YR, Huang CL, Chen CC, Chyau CC. Protective Effect of Hawthorn Fruit Extract against High Fructose-Induced Oxidative Stress and Endoplasmic Reticulum Stress in Pancreatic β-Cells. Foods 2023; 12:foods12061130. [PMID: 36981057 PMCID: PMC10047983 DOI: 10.3390/foods12061130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/15/2023] Open
Abstract
Hyperglycemia has deleterious effects on pancreatic β-cells, causing dysfunction and insulin resistance that lead to diabetes mellitus (DM). The possible causes of injury can be caused by glucose- or fructose-induced oxidative and endoplasmic reticulum (ER) stress. Hawthorn (Crataegus pinnatifida) fruit has been widely used as a hypolipidemic agent in traditional herbal medicine. The study aimed to investigate whether high fructose-induced pancreatic β-cell dysfunction could be reversed through amelioration of ER stress by the treatment of polyphenol-enriched extract (PEHE) from hawthorn fruit. The extract was partitioned using ethyl acetate as a solvent from crude water extract (WE) of hawthorn fruits, followed by column fractionation. The results showed that the contents of total polyphenols, flavonoids and triterpenoids in PEHE could be enhanced by 2.2-, 7.7- and 1.1-fold, respectively, in comparison to the original obtained WE from hawthorn fruit. In ER stress studies, a sharp increase in the inhibitory activity on the gene expression levels of GRP79, ATF6, IRE1α and CHOP involved in ER stress was evident when dosages of PEHE at 50–100 μg/mL were used against high-fructose (150 mM)-treated cells. HPLC–MS/MS analysis showed that polyphenols and flavonoids collectively accounted for 87.03% of the total content of PEHE.
Collapse
Affiliation(s)
- Hsiu-Man Lien
- Research Institute of Biotechnology, Hungkuang University, Shalu District, Taichung 43302, Taiwan
- SYi Biotek, 2F, No. 26, Keyuan Rd., Xitun District, Taichung 40763, Taiwan
- Correspondence: (H.-M.L.); (C.-C.C.)
| | - Hsin-Tang Lin
- Graduate Institute of Food Safety, National Chung Hsing University, 145, Xingda Road, Taichung 40227, Taiwan
| | - Shiau-Huei Huang
- Research Institute of Biotechnology, Hungkuang University, Shalu District, Taichung 43302, Taiwan
| | - Yìng-Ru Chen
- Research Institute of Biotechnology, Hungkuang University, Shalu District, Taichung 43302, Taiwan
| | - Chao-Lu Huang
- SYi Biotek, 2F, No. 26, Keyuan Rd., Xitun District, Taichung 40763, Taiwan
| | - Chia-Chang Chen
- SYi Biotek, 2F, No. 26, Keyuan Rd., Xitun District, Taichung 40763, Taiwan
| | - Charng-Cherng Chyau
- Research Institute of Biotechnology, Hungkuang University, Shalu District, Taichung 43302, Taiwan
- Correspondence: (H.-M.L.); (C.-C.C.)
| |
Collapse
|
3
|
Sut S, Dall’Acqua S, Zengin G, Senkardes I, Uba AI, Bouyahya A, Aktumsek A. Novel Signposts on the Road from Natural Sources to Pharmaceutical Applications: A Combinative Approach between LC-DAD-MS and Offline LC-NMR for the Biochemical Characterization of Two Hypericum Species (H. montbretii and H. origanifolium). PLANTS (BASEL, SWITZERLAND) 2023; 12:648. [PMID: 36771732 PMCID: PMC9921756 DOI: 10.3390/plants12030648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
The members of the genus Hypericum have great potential to develop functional uses in nutraceutical and pharmaceutical applications. With this in mind, we aimed to determine the chemical profiling and biological properties of different extracts (ethyl acetate, methanol and water) from two Hypericum species (H. montbretii and H. origanifolium). We combined two approaches (LC-DAD-MS and LC-NMR) to identify and quantify chemical compounds of the extracts. Antioxidant properties (free radical quenching, reducing power and metal chelating) and enzyme inhibitory effects (cholinesterase, tyrosinase, amylase and glucosidase) were determined as biological properties. The tested extracts were rich in caffeic acid derivatives and flavonoids, and among them, 3-caffeoyl quinic acid and myricetin-3-O-rhamnoside were found to be the main compounds. The total phenolic and flavonoid levels were determined to be 50.97-134.99 mg GAE/g and 9.87-82.63 mg RE/g, respectively. With the exception of metal chelating, the methanol and water extracts showed stronger antioxidant properties than the ethyl acetate extracts. However, different results were obtained for each enzyme inhibition assay, and in general, the ethyl acetate extracts present more enzyme-inhibiting properties than the water or methanol extracts. Results from chemical and biological analyses were combined using multivariate analysis, which allowed establishing relationships between composition and observed effects of the Hypericum extracts based on the extraction solvents. To gain more insights between chemical compounds and enzyme-inhibiting effects, we performed molecular docking analysis. We observed favorable interactions between certain compounds and the tested enzymes during our analysis, confirming the data obtained from the multivariate approach. In conclusion, the obtained results may shed light on the road from natural sources to functional applications, and the tested Hypericum species may be considered potential raw materials, with promising chemical constituents and biological activities.
Collapse
Affiliation(s)
- Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey
| | - Ismail Senkardes
- Department of Pharmaceutical Botany, Pharmacy Faculty, Marmara University, 34722 Istanbul, Turkey
| | | | - Abdelhakim Bouyahya
- Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 1014, Morocco
| | | |
Collapse
|
4
|
Dlamini BS, Chen CR, Chen YK, Hsu JL, Shih WL, Chang CI. Mechanistic insights into the inhibitory activities of chemical constituents from the fruits of Terminalia boivinii on α-glucosidase. Chem Biodivers 2022; 19:e202200137. [PMID: 35726787 DOI: 10.1002/cbdv.202200137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/21/2022] [Indexed: 11/09/2022]
Abstract
Regulation of key digestive enzymes is currently considered an effective remedy for diabetes mellitus. In this study, bioactive constituents were purified from Terminalia boivinii fruits and identified by 1 H NMR, 13 C NMR and EI-MS. In vitro and in silico methods were used to evaluate α-glucosidase, α-amylase, and lipase inhibition activities. Compounds 1 , 2 , and 4-7 with IC50 values between 89 and 445 µM showed stronger α-glucosidase inhibitory activities than the antihyperglycemic drug acarbose (IC 50 =1463.0 ± 29.5 µM). However, the compounds showed lower inhibitory effects against α-amylase and lipase with IC 50 values above 500 µM than acarbose (IC 50 = 16.7 ± 3.5 µM) and ursolic acid (IC 50 = 89.5 ± 5.6 µM), respectively. Lineweaver-Burk plots showed that compounds 1 , 2 , and 7 were non-competitive inhibitors, compounds 4 and 5 were competitive inhibitors and compound 6 was a mixed-type inhibitor. Fluorescence spectroscopic data showed that the compounds altered the microenvironment and conformation of α-glucosidase. Computer simulations indicated that the compounds and enzyme interacted primarily through hydrogen bonding. The findings indicated that the compounds were inhibitors of α-glucosidase and provided significant structural basis for understanding the binding activity of the compounds with α-glucosidase.
Collapse
Affiliation(s)
- Bongani Sicelo Dlamini
- National Pingtung University of Science and Technology, Department of Tropical Agriculture and International Cooperation, No. 1, Shuefu Road, Neipu Pingtung County 91201, Taiwan, 91201, Pingtung, TAIWAN
| | - Chiy-Rong Chen
- National Taitung University, Department of Life Science, Taitung 95002, Taiwan, Taitung, TAIWAN
| | - Yu-Kuo Chen
- National Pingtung University of Science and Technology, Department of Food Science, Pingtung 91201, Taiwan, Pingtung, TAIWAN
| | - Jue-Liang Hsu
- National Pingtung University of Science and Technology, Department of Biological Science and Technology, Pingtung 91201, Taiwan, Pingtung, TAIWAN
| | - Wen-Ling Shih
- National Pingtung University of Science and Technology, Department of Biological Science and Technology, Pingtung 91201, Taiwan, Pingtung, TAIWAN
| | - Chi-I Chang
- National Pingtung University of Science and Technology, Department of Biological Science and Technology, No.1, Shuehfu Road, Neipu, 91201, Pingtung, TAIWAN
| |
Collapse
|
5
|
Yue H, Wang L, Jiang S, Banma C, Jia W, Tao Y, Zhao X. Hypoglycemic effects of Rhodiola crenulata (HK. f. et. Thoms) H. Ohba in vitro and in vivo and its ingredient identification by UPLC-triple-TOF/MS. Food Funct 2022; 13:1659-1667. [PMID: 35080557 DOI: 10.1039/d1fo03436g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rhodiola crenulata (HK. f. et. Thoms) H. Ohba (RC), mainly distributed in the highly cold region of China, has long been used as a medicine/healthy food for eliminating fatigue and increasing blood circulation. This study aimed to evaluate the inhibitory effects of the RCRS extract on α-amylase and α-glucosidase (sucrase and maltase) in vitro and in vivo, and tentatively analyze and identify its chemical ingredients using UPLC-Triple-TOF/MS. The Rhodiola crenulata RCRS extract had strong inhibitory activities against α-amylase, sucrase and maltase with an IC50 of 0.031 mg mL-1, 0.142 mg mL-1 and 0.214 mg mL-1, respectively. Furthermore, the RCRS extract could significantly decrease the postprandial blood glucose (PBG) level of normal mice in a starch tolerance test, and reduce the PBG levels of diabetic mice in a starch/maltose/sucrose tolerance test. UHPLC-Triple-TOF-MS/MS analysis indicated that hydroxybenzoic acids, hydroxycinnamic acids, alcohol glycosides, flavonols and their derivatives were the main active ingredients in the RCRS extract. The results demonstrate that the RCRS extract of Rhodiola crenulata could be employed as a healthy food or medicine for controlling postprandial blood glucose levels.
Collapse
Affiliation(s)
- Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China.
| | - Luya Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China. .,University of Chinese Academy of Sciences, Beijing, China
| | - Sirong Jiang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China. .,University of Chinese Academy of Sciences, Beijing, China
| | - Cailang Banma
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China.
| | - Wenjing Jia
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China. .,University of Chinese Academy of Sciences, Beijing, China
| | - Yanduo Tao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China.
| | - Xiaohui Zhao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China.
| |
Collapse
|
6
|
Inhibitory Effect of Fisetin on α-Glucosidase Activity: Kinetic and Molecular Docking Studies. Molecules 2021; 26:molecules26175306. [PMID: 34500738 PMCID: PMC8434554 DOI: 10.3390/molecules26175306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 11/22/2022] Open
Abstract
The inhibition of α-glucosidase is a clinical strategy for the treatment of type 2 diabetes mellitus (T2DM), and many natural plant ingredients have been reported to be effective in alleviating hyperglycemia by inhibiting α-glucosidase. In this study, the α-glucosidase inhibitory activity of fisetin extracted from Cotinus coggygria Scop. was evaluated in vitro. The results showed that fisetin exhibited strong inhibitory activity with an IC50 value of 4.099 × 10−4 mM. Enzyme kinetic analysis revealed that fisetin is a non-competitive inhibitor of α-glucosidase, with an inhibition constant value of 0.01065 ± 0.003255 mM. Moreover, fluorescence spectrometric measurements indicated the presence of only one binding site between fisetin and α-glucosidase, with a binding constant (lgKa) of 5.896 L·mol−1. Further molecular docking studies were performed to evaluate the interaction of fisetin with several residues close to the inactive site of α-glucosidase. These studies showed that the structure of the complex was maintained by Pi-Sigma and Pi-Pi stacked interactions. These findings illustrate that fisetin extracted from Cotinus coggygria Scop. is a promising therapeutic agent for the treatment of T2DM.
Collapse
|
7
|
Chen K, Liu J, Ma Z, Duan F, Guo Z, Xiao H. Rapid identification of chemical constituents of Rhodiola crenulata using liquid chromatography-mass spectrometry pseudotargeted analysis. J Sep Sci 2021; 44:3747-3776. [PMID: 34407563 DOI: 10.1002/jssc.202100342] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/11/2022]
Abstract
Rhodiola crenulata (R. crenulata), is a famous traditional Chinese medicine, with observable effects such as anti-high-altitude illness and fatigue resistance. Nevertheless, comprehensive and systematic structural identification of its components remains a challenge. In this study, a pseudotargeted analytical method, involving key fragment filtering by ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry and ultra-high performance liquid chromatography-linear ion trap-Orbitrap mass spectrometry, was developed for rapid detection and identification of the chemical constituents of R. crenulata. The process consists of three steps: (i) acquiring sufficient mass spectral data, (ii) constructing a key fragments schedule and discovering the substructures rapidly by pseudotargeted key fragment filtering, and (iii) further identification of the compound structures based on accurate masses, fragment ions, related literatures, and authentic standards. As a result, 104 compounds were identified and divided into five categories, among which three potentially new and 59 ones were reported for the first time in R. crenulata. These results indicated that the major types of components are flavanols and gallic acid derivatives, organic acids, alcohols and their glycosides, flavonoids and their glycosides. This study enhances the understanding of R. crenulata and provides a reference for rapid and comprehensive identification of constituents in other herbal medicines.
Collapse
Affiliation(s)
- Kuikui Chen
- Research Center for Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, P. R. China.,School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, P. R. China
| | - Jie Liu
- Research Center for Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, P. R. China.,Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Zhaochen Ma
- Research Center for Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Feipeng Duan
- Research Center for Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Zhonghui Guo
- Research Center for Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, P. R. China.,School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, P. R. China
| | - Hongbin Xiao
- Research Center for Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, P. R. China.,Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, P. R. China
| |
Collapse
|
8
|
Simultaneous Determination of 78 Compounds of Rhodiola rosea Extract by Supercritical CO 2-Extraction and HPLC-ESI-MS/MS Spectrometry. Biochem Res Int 2021; 2021:9957490. [PMID: 34306755 PMCID: PMC8279876 DOI: 10.1155/2021/9957490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/11/2021] [Accepted: 06/23/2021] [Indexed: 11/18/2022] Open
Abstract
The plant Rhodiola rosea L. of family Crassulaceae was extracted using the supercritical CO2-extraction method. Several experimental conditions were investigated in the pressure range of 200–500 bar, with the used volume of cosolvent ethanol in the amount of 1% in the liquid phase at a temperature in the range of 31–70°C. The most effective extraction conditions are pressure 350 bar and temperature 60°C. The extracts were analyzed by HPLC with MS/MS identification. 78 target analytes were isolated from Rhodiola rosea (Russia) using a series of column chromatography and mass spectrometry experiments. The results of the analysis showed a spectrum of the main active ingredients Rh. rosea: salidroside, rhodiolosides (B and C), rhodiosin, luteolin, catechin, quercetin, quercitrin, herbacetin, sacranoside A, vimalin, and others. In addition to the reported metabolites, 29 metabolites were newly annotated in Rh. rosea. There were flavonols: dihydroquercetin, acacetin, mearnsetin, and taxifolin-O-pentoside; flavones: apigenin-O-hexoside derivative, tricetin trimethyl ether 7-O-hexosyl-hexoside, tricin 7-O-glucoronyl-O-hexoside, tricin O-pentoside, and tricin-O-dihexoside; flavanones: eriodictyol-7-O-glucoside; flavan-3-ols: gallocatechin, hydroxycinnamic acid caffeoylmalic acid, and di-O-caffeoylquinic acid; coumarins: esculetin; esculin: fraxin; and lignans: hinokinin, pinoresinol, L-ascorbic acid, glucaric acid, palmitic acid, and linolenic acid. The results of supercritical CO2-extraction from roots and rhizomes of Rh. rosea, in particular, indicate that the extract contained all biologically active components of the plant, as well as inert mixtures of extracted compositions.
Collapse
|
9
|
Synthesis of 2-(4-hydroxyphenyl)ethyl 3,4,5-Trihydroxybenzoate and Its Inhibitory Effect on Sucrase and Maltase. Processes (Basel) 2020. [DOI: 10.3390/pr8121603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We report on the synthesis of an active component, 2-(4-hydroxyphenyl)ethyl 3,4,5-trihydroxybenzoate (HETB), from Rhodiola crenulata. Subsequent analysis revealed that HETB exhibits α-glucosidase inhibitory activities on maltase and sucrase, with potency exceeding that of the known α-glucosidase inhibitors (voglibose and acarbose). An inhibition kinetics study revealed that HETB, acarbose, and voglibose bind to maltase and sucrase, and HETB was shown to be a strong competitive inhibitor of maltase and sucrase. In a molecular docking study based on the crystal structure of α-glucosidase from Saccharomyces cerevisiae, we revealed the HETB binding in the active site of maltase via hydrogen-bond interactions with five amino acid residues: Ser 240, Asp 242, Glu 277, Arg 315, and Asn 350. For HETB docked to the sucrase active site, seven hydrogen bonds (with Asn 114, Glu 148, Gln 201, Asn 228, Gln 381, Ile 383, and Ser 412) were shown.
Collapse
|
10
|
Sansenya S, Nanok K. α‐glucosidase, α‐amylase inhibitory potential and antioxidant activity of fragrant black rice (Thai coloured rice). FLAVOUR FRAG J 2020. [DOI: 10.1002/ffj.3572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sompong Sansenya
- Department of Chemistry Faculty of Science and Technology Rajamangala University of Technology Thanyaburi Pathum Thani Thailand
| | - Kesinee Nanok
- Department of Chemistry Faculty of Science and Technology Rajamangala University of Technology Thanyaburi Pathum Thani Thailand
| |
Collapse
|
11
|
Assefa ST, Yang EY, Chae SY, Song M, Lee J, Cho MC, Jang S. Alpha Glucosidase Inhibitory Activities of Plants with Focus on Common Vegetables. PLANTS 2019; 9:plants9010002. [PMID: 31861279 PMCID: PMC7020213 DOI: 10.3390/plants9010002] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 01/07/2023]
Abstract
Type-2 diabetes mellitus is one of the most prevalent metabolic diseases in the world, and is characterized by hyperglycemia (i.e., high levels of glucose in the blood). Alpha-glucosidases are enzymes in the digestive tract that hydrolyze carbohydrates into glucose. One strategy that has been developed to treat type-2 diabetes is inhibition of the activity of alpha-glucosidases using synthetic drugs. However, these inhibitors are usually associated with gastrointestinal side effects. Therefore, the development of inhibitors from natural products offers an alternative option for the control of hyperglycemia. In recent years, various studies have been conducted to identify alpha-glucosidases inhibitors from natural sources such as plants, and many candidates have transpired to be secondary metabolites including alkaloids, flavonoids, phenols, and terpenoids. In this review, we focus on the alpha-glucosidases inhibitors found in common vegetable crops and the major classes of phytochemicals responsible for the inhibitory activity, and also as potential/natural drug candidates for the treatment of type-2 diabetes mellitus. In addition, possible breeding strategies for production of improved vegetable crops with higher content of the inhibitors are also described.
Collapse
Affiliation(s)
- Samuel Tilahun Assefa
- National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA), Wanju-gun, Jellabuk-do 55365, Korea; (S.T.A.); (E.-Y.Y.); (S.-Y.C.); (M.-C.C.)
- Department of Horticulture, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju-si, Jeollabuk-do 54896, Korea;
| | - Eun-Young Yang
- National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA), Wanju-gun, Jellabuk-do 55365, Korea; (S.T.A.); (E.-Y.Y.); (S.-Y.C.); (M.-C.C.)
| | - Soo-Young Chae
- National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA), Wanju-gun, Jellabuk-do 55365, Korea; (S.T.A.); (E.-Y.Y.); (S.-Y.C.); (M.-C.C.)
| | - Mihye Song
- World Vegetable Center Korea Office (WKO), Wanju-gun, Jellabuk-do 55365, Korea;
| | - Jundae Lee
- Department of Horticulture, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju-si, Jeollabuk-do 54896, Korea;
| | - Myeong-Cheoul Cho
- National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA), Wanju-gun, Jellabuk-do 55365, Korea; (S.T.A.); (E.-Y.Y.); (S.-Y.C.); (M.-C.C.)
| | - Seonghoe Jang
- World Vegetable Center Korea Office (WKO), Wanju-gun, Jellabuk-do 55365, Korea;
- Correspondence: ; Tel.: +82-63-238-6677
| |
Collapse
|
12
|
Li WT, Chuang YH, Hsieh JF. Characterization of Maltase and Sucrase Inhibitory Constituents from Rhodiola crenulata. Foods 2019; 8:E540. [PMID: 31684079 PMCID: PMC6915683 DOI: 10.3390/foods8110540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 11/16/2022] Open
Abstract
The inhibitory properties of epicatechin-(4β,8)-epicatechingallate (B2-3'-O-gallate), epicatechin gallate (ECG), and epicatechin (EC) isolated from Rhodiola crenulata toward maltase and sucrase were investigated. The half-maximal inhibitory concentration (IC50) values for maltase were as follows: B2-3'-O-gallate (1.73 ± 1.37 μM), ECG (3.64 ± 2.99 μM), and EC (6.25 ± 1.84 μM). Inhibition kinetic assays revealed the inhibition constants (Ki) of the mixed-competitive inhibitors of maltase, as follows: B2-3'-O-gallate (1.99 ± 0.02 μM), ECG (3.14 ± 0.04 μM), and EC (7.02 ± 0.26 μM). These compounds also showed a strong inhibitory activity toward sucrase, and the IC50 values of B2-3'-O-gallate, ECG, and EC were 6.91 ± 3.41, 18.27 ± 3.99, and 18.91 ± 3.66 μM, respectively. Inhibition kinetic assays revealed the inhibition constants (Ki) of the mixed-competitive inhibitors of sucrase as follows: B2-3'-O-gallate (6.05 ± 0.04 μM), ECG (8.58 ± 0.08 μM), and EC (13.72 ± 0.15 μM). Overall, these results suggest that B2-3'-O-gallate, ECG, and EC are potent maltase and sucrase inhibitors.
Collapse
Affiliation(s)
- Wen-Tai Li
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan.
| | - Yu-Hsuan Chuang
- Department of Food Science, Fu Jen Catholic University, Taipei 242, Taiwan.
| | - Jung-Feng Hsieh
- Department of Food Science, Fu Jen Catholic University, Taipei 242, Taiwan.
| |
Collapse
|
13
|
Suo H, Tian R, Xu W, Li L, Cui Y, Zhang S, Sun B. Novel Catechin-Tiopronin Conjugates Derived from Grape Seed Proanthocyanidin Degradation: Process Optimization, High-Speed Counter-Current Chromatography Preparation, as Well as Antibacterial Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11508-11517. [PMID: 31538478 DOI: 10.1021/acs.jafc.9b04571] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tiopronin, as a novel thiol-containing nucleophile, was introduced for depolymerizing polymeric proanthocyanidins from grape seed into catechins and three new proanthocyanidin-tiopronin degradation products: (+)-catechin-4β-S-tiopronin methyl ester (CT), (-)-epicatechin-4β-S-tiopronin methyl ester (ECT), and (-)-epicatechin gallate-4β-S-tiopronin methyl ester (ECGT). A Box-Behnken design was employed to optimize degradation conditions based on single-factor experiments to obtain target products. Each of the new degradation compounds was isolated by the high-speed counter-current chromatography combined with semipreparative high performance liquid chromatography in large amounts, and then, their structures were identified by 1H NMR, 13C NMR, 2D-NMR, as well as mass spectrometry analysis. The absolute configurations were further confirmed by comparison between the calculated electronic circular dichroism and experimental spectra. Further evaluation of antibacterial activities of these compounds showed that CT and ECT possessed more inhibiting capacity against Staphylococcus aureus and Escherichia coli than parent compound catechin and epicatechin. However, ECGT has no bacteriostatic capacity against these two bacteria.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Baoshan Sun
- Instituto National de Investigação Agrária e Veterinária, I.P. , Pólo Dois Portos , Quinta da Almoinha , 2565-191 Dois Portos , Portugal
| |
Collapse
|
14
|
Wu X, Hu M, Hu X, Ding H, Gong D, Zhang G. Inhibitory mechanism of epicatechin gallate on α-amylase and α-glucosidase and its combinational effect with acarbose or epigallocatechin gallate. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111202] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Tao H, Wu X, Cao J, Peng Y, Wang A, Pei J, Xiao J, Wang S, Wang Y. Rhodiola species: A comprehensive review of traditional use, phytochemistry, pharmacology, toxicity, and clinical study. Med Res Rev 2019; 39:1779-1850. [PMID: 30652331 DOI: 10.1002/med.21564] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/23/2018] [Accepted: 12/31/2018] [Indexed: 02/05/2023]
Abstract
Rhodiola species, belonging to the family Crassulaceae, have long been used as an adaptogen, tonic, antidepressant, and antistress medicine or functional food in Asia and Europe. Due to the valuable application, the growing demand of Rhodiola species has led to a rapid decrease in resource content. This review aims to summarize the integrated research progress of seven mainstream Rhodiola species. We first outline both traditional and current use of Rhodiola for the treatment of various diseases. A detailed summary and comparison of chemical, pharmacological, toxicological, and clinical studies of various Rhodiola species highlight recent scientific advances and gaps, which gives insights into the understanding of Rhodiola application and would be helpful to improve the situation of biological resources and diversities of Rhodiola plants.
Collapse
Affiliation(s)
- Hongxun Tao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jiliang Cao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yu Peng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Anqi Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jin Pei
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Development and Utilization of Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jianbo Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
16
|
Hu JJ, Wang L, Chen BN, Chi GX, Zhao MJ, Li Y. Transition Metal Substituted Polyoxometalates as α-Glucosidase Inhibitors. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jing-Jing Hu
- College of Food and Biological Engineering; Jimei University; 361021 Xiamen P.R. China
| | - Li Wang
- College of Food and Biological Engineering; Jimei University; 361021 Xiamen P.R. China
| | | | - Guo-Xiang Chi
- College of Food and Biological Engineering; Jimei University; 361021 Xiamen P.R. China
| | - Mei-Juan Zhao
- College of Food and Biological Engineering; Jimei University; 361021 Xiamen P.R. China
| | - Yue Li
- College of Food and Biological Engineering; Jimei University; 361021 Xiamen P.R. China
| |
Collapse
|
17
|
Loo KY, Leong KH, Sivasothy Y, Ibrahim H, Awang K. Molecular Insight and Mode of Inhibition of α-Glucosidase and α-Amylase by Pahangensin A from Alpinia pahangensis Ridl. Chem Biodivers 2019; 16:e1900032. [PMID: 30957403 DOI: 10.1002/cbdv.201900032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/08/2019] [Indexed: 11/12/2022]
Abstract
The inhibition of carbohydrate-hydrolyzing enzymes in human digestive organs is crucial in controlling blood sugar levels, which is important in treating type 2 diabetes. In the current study, pahangensin A (1), a bis-labdanic diterpene characterized previously in the rhizomes of Alpinia pahangensis Ridl., was identified as an active dual inhibitor for α-amylase (IC50 =114.80 μm) and α-glucosidase (IC50 =153.87 μm). This is the first report on the dual α-amylase and α-glucosidase inhibitory activities of a bis-labdanic diterpene. The Lineweaver-Burk plots of compound 1 indicate that it is a mixed-type inhibitor with regard to both enzymes. Based on molecular docking studies, compound 1 docked in a non-active site of both enzymes. The dual inhibitory activity of compound 1 makes it a suitable natural alternative in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Kong Yong Loo
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kok Hoong Leong
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.,Center for Natural Product and Drug Discovery (CENAR), Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yasodha Sivasothy
- Research Center for Crystalline Materials, Faculty of Science and Technology, Sunway University, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Halijah Ibrahim
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Khalijah Awang
- Center for Natural Product and Drug Discovery (CENAR), Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.,Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Evaluation of the Enzyme Inhibitory and Antioxidant Activities of Entada spiralis Stem Bark and Isolation of the Active Constituents. Molecules 2019; 24:molecules24061006. [PMID: 30871172 PMCID: PMC6471705 DOI: 10.3390/molecules24061006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 12/23/2022] Open
Abstract
Digestive enzymes and free radical inhibitors are used to prevent complications resulting from diabetes. Entadaspiralis (family Leguminosae), which is a well-known medicinal plant in herbal medicine due to its various traditional and medicinal applications, was studied. Crude extracts were successively obtained from the stem bark using petroleum ether, chloroform and methanol as extracting solvents. The antioxidant activity of all the extracts, fractions and isolated compounds were estimated using 2,2-diphenyl-1-picrylhydrazyl (DPPH), β-carotene and 2,2′-azinobis(-3-ethylbenzothiazine-6-sulfonic acid) (ABTS) assays, while digestive enzymes inhibitory activity was assessed using α-amylase and α-glucosidase inhibitory methods. Structure elucidation of pure compounds was achieved through different spectroscopic analysis methods. Fractionation and purification of the most active methanol extract resulted in the isolation of a ferulic ester namely; (e)-hexyl 3-(4-hydroxy-3-methoxyphenyl) acrylate (FEQ-2) together with five known phenolic constituents, identified as kaempferol (FEQ-3), 5,4′-dihydroxy-3,7,3′-trimethoxyflavone (FEQ-2), gallic acid (FEQ-5), (+)-catechin (FEQ-7) and (−)-epicatechin (FEQ-8). FEQ-5 exhibited the strongest antioxidant and enzyme inhibitory activities followed by FEQ-3 and FEQ-4. FEQ-2 also displayed potent free radical scavenging activity with IC50 values of 13.79 ± 2.13 (DPPH) and 4.69 ± 1.25 (ABTS) µg/mL, respectively. All other compounds were found active either against free radicals or digestive enzymes.
Collapse
|
19
|
Mumtaz MW, Al-Zuaidy MH, Abdul Hamid A, Danish M, Akhtar MT, Mukhtar H. Metabolite profiling and inhibitory properties of leaf extracts of Ficus benjamina towards α-glucosidase and α-amylase. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1499112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Muhammad Waseem Mumtaz
- Department of Chemistry, Faculty of Science, University of Gujrat, Gujrat, Pakistan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Azizah Abdul Hamid
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Muhammad Danish
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Muhammad Tayyab Akhtar
- Institute of Bioscience, Laboratory of Natural Products, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Institute of Industrial Biotechnology, Government College University, Lahore, Punjab, Pakistan
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University, Lahore, Punjab, Pakistan
| |
Collapse
|
20
|
Cui C, Shi A, Bai S, Yan P, Li Q, Bi K. Novel Antihypertensive Prodrug from Grape Seed Proanthocyanidin Extract via Acid-Mediated Depolymerization in the Presence of Captopril: Synthesis, Process Optimization, and Metabolism in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3700-3707. [PMID: 29569905 DOI: 10.1021/acs.jafc.8b00373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Grape seed extract contains a high content of proanthocyanidins that can be depolymerized into C-4-substituted (epi)catechin derivatives in the presence of nucleophiles. However, the biological and medicinal values of depolymerization products have been rarely investigated. Recently, we developed a novel depolymerization product (-)-epicatechin-4β- S-captopril methyl ester (ECC) derived from the reaction of grape seed proanthocyanidin extract with captopril in the presence of acidified methanol. A central composite design was employed to select the most appropriate depolymerization temperature and time to obtain the target product ECC with a high yield. A total of 16 metabolites of ECC in rat urine, feces, and plasma were identified using liquid chromatography quadrupole time-of-flight tandem mass spectrometry. The in vivo results suggested that ECC could release captopril methyl ester and epicatechin, followed by the generation of further metabolites captopril and epicatechin sulfate conjugates. Therefore, ECC may be used as a potential prodrug with synergistic or additive hypotensive effects.
Collapse
|
21
|
Wang SL, Su YC, Nguyen VB, Nguyen AD. Reclamation of shrimp heads for the production of α-glucosidase inhibitors by Staphylococcus sp. TKU043. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3345-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Hsu CH, Nguyen VB, Nguyen AD, Wang SL. Conversion of shrimp heads to α-glucosidase inhibitors via co-culture of Bacillus mycoides TKU040 and Rhizobium sp. TKU041. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3266-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Han L, Fang C, Zhu R, Peng Q, Li D, Wang M. Inhibitory effect of phloretin on α-glucosidase: Kinetics, interaction mechanism and molecular docking. Int J Biol Macromol 2017; 95:520-527. [DOI: 10.1016/j.ijbiomac.2016.11.089] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 11/19/2016] [Accepted: 11/19/2016] [Indexed: 10/20/2022]
|
24
|
Wang H, Dong L, Ge JQ, Deng LN, Lan XZ, Liao ZH, Chen M. Rhobupcyanoside B, A new cyanoside from Rhodiola bupleuroides. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2016; 18:1108-1114. [PMID: 27248222 DOI: 10.1080/10286020.2016.1188806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/09/2016] [Indexed: 06/05/2023]
Abstract
One new cyanoside, rhobupcyanoside B (1), together with 7 known ones, was isolated from the 70% ethanol extract of the roots and rhizomes of Rhodiola bupleuroides. Their structures were determined by spectroscopic methods, including 2D NMR techniques. Compound 1 was evaluated for its inhibitory activity against α-glucosidase with IC50 value of 278.28 ± 0.55 μM by comparing with the positive control (acarbose) at 210.40 ± 0.32 μM.
Collapse
Affiliation(s)
- Hong Wang
- a Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education , College of Pharmaceutical Sciences, Southwest University , Chongqing 400715 , China
| | - Li Dong
- a Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education , College of Pharmaceutical Sciences, Southwest University , Chongqing 400715 , China
| | - Jing-Qiu Ge
- a Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education , College of Pharmaceutical Sciences, Southwest University , Chongqing 400715 , China
| | - Li-Na Deng
- a Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education , College of Pharmaceutical Sciences, Southwest University , Chongqing 400715 , China
| | - Xiao-Zhong Lan
- b Tibetan Collaborative Innovation Center of Agricultural and Animal Husbandry Resources, TAAHC-SWU Medicinal Plant R&D Center , Agriculture and Animal Husbandry College, Tibet University , Nyingchi 860000 , China
| | - Zhi-Hua Liao
- c TAAHC-SWU Medicinal Plant R&D Center, School of Life Sciences , Southwest University , Chongqing 400715 , China
| | - Min Chen
- a Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education , College of Pharmaceutical Sciences, Southwest University , Chongqing 400715 , China
| |
Collapse
|
25
|
Li PH, Lin YW, Lu WC, Hu JM, Huang DW. In Vitro Hypoglycemic Activity of the Phenolic Compounds in Longan Fruit (Dimocarpus longan var. Fen Ke) Shell Against α-Glucosidase and β-Galactosidase. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2015.1085398] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Po-Hsien Li
- Department of Medicinal Botanical and Health Applications, Da-Yeh University, Dacun, Changhua, Taiwan, Republic of China
| | - Yu-Wen Lin
- Department of Food and Beverage Management, China University of Science and Technology, Taipei, Taiwan, Republic of China
| | - Wen-Chien Lu
- Department of Food and Beverage Management, Chung-Jen Junior College of Nursing, Health Sciences and Management, Chia-Yi, Taiwan, Republic of China
| | - Jyh-Ming Hu
- Department of Food and Beverage Management, China University of Science and Technology, Taipei, Taiwan, Republic of China
| | - Da-Wei Huang
- Department of Food and Beverage Management, China University of Science and Technology, Taipei, Taiwan, Republic of China
| |
Collapse
|
26
|
Sivasothy Y, Loo KY, Leong KH, Litaudon M, Awang K. A potent alpha-glucosidase inhibitor from Myristica cinnamomea King. PHYTOCHEMISTRY 2016; 122:265-269. [PMID: 26712615 DOI: 10.1016/j.phytochem.2015.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 12/01/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
A dimeric acylphenol and a potent α-glucosidase inhibitor, giganteone D (IC50 5.05μM), was isolated and characterized from the bark of Myristica cinnamomea King. The bark also yielded an acylphenol with an unprecedented skeleton for which the name cinnamomeone A (IC50 358.80μM) was proposed. Their structures were established by means of NMR and MS spectrometric analyses. The Lineweaver-Burk plot of giganteone D indicated that it was a mixed-type inhibitor. This is the first report on the α-glucosidase inhibiting potential of acylphenols.
Collapse
Affiliation(s)
- Yasodha Sivasothy
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kong Yong Loo
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kok Hoong Leong
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Marc Litaudon
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette Cedex, France
| | - Khalijah Awang
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
27
|
Zhou JT, Li CY, Wang CH, Wang YF, Wang XD, Wang HT, Zhu Y, Jiang MM, Gao XM. Phenolic Compounds from the Roots of Rhodiola crenulata and Their Antioxidant and Inducing IFN-γ Production Activities. Molecules 2015. [PMID: 26225952 PMCID: PMC6332023 DOI: 10.3390/molecules200813725] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the present study, two new phenolic compounds 1 and 11, a pair of lignan isomers 12 and 13 with their absolute configurations established for the first time, were isolated from the ethanol extract of the roots of Rhodiola crenulata, together with 13 known phenolic compounds, and their structures were elucidated via NMR, HRESIMS, UV, IR and CD analyses. All the isolated compounds were evaluated for their in vitro antioxidant activities using the 2,2-diphenyl-1-picryhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging assays. Ten of them exhibited significant antioxidant activities compared to ascorbic acid. Furthermore, the inducibilities of the isolated compounds to IFN-γ production were also assessed. Compounds 1, 8, 9, 12, 13, 14 and 15 could moderately stimulate IFN-γ expression.
Collapse
Affiliation(s)
- Jiang-Tao Zhou
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
- Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin 300457, China.
| | - Chen-Yang Li
- Department of Pharmacy, School of Medicine, Shenzhen University, Shenzhen 518060, China.
| | - Chun-Hua Wang
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
- Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin 300457, China.
| | - Yue-Fei Wang
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Xiao-Dong Wang
- Department of Pharmacy, School of Medicine, Shenzhen University, Shenzhen 518060, China.
| | - Hong-Tao Wang
- Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang 050035, China.
| | - Yan Zhu
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
- Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin 300457, China.
| | - Miao-Miao Jiang
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
- Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin 300457, China.
| | - Xiu-Mei Gao
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
28
|
Hsieh JF, Lin WJ, Huang KF, Liao JH, Don MJ, Shen CC, Shiao YJ, Li WT. Antioxidant activity and inhibition of α-glucosidase by hydroxyl-functionalized 2-arylbenzo[b]furans. Eur J Med Chem 2015; 93:443-51. [DOI: 10.1016/j.ejmech.2015.02.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 02/05/2015] [Accepted: 02/15/2015] [Indexed: 12/31/2022]
|
29
|
Effects of Rhodiola on production, health and gut development of broilers reared at high altitude in Tibet. Sci Rep 2014; 4:7166. [PMID: 25418541 PMCID: PMC4241511 DOI: 10.1038/srep07166] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 11/03/2014] [Indexed: 01/29/2023] Open
Abstract
Rhodiola has long been used as a traditional medicine to increase resistance to physical stress in humans in Tibet. The current study was designed to investigate whether Rhodiola crenulata (R. crenulata) could alleviate the negative effects of hypoxia on broiler chickens reared in Tibet Plateau. The effect of supplementing crushed roots of R. crenulata on production performance, health and intestinal morphology in commercial male broilers was investigated. Dietary treatments included CTL (basal diet), Low-R (basal diet + 0.5% R. crenulata) and High-R (basal diet + 1.5% R. crenulata). In comparison with broilers fed the control diet, Low-R had no effect on production performance while High-R significantly decreased average daily feed intake at d 14, 28 and 42, body weight at d 28 and 42 and gut development. Ascites induced mortality did not differ among treatments. Nevertheless Low-R significantly reduced non-ascites induced mortality and total mortality compared with broilers fed CTL and High-R diets. Broilers fed the High-R diet had significantly increased blood red blood cell counts and hemoglobin levels at 28 d compared with other treatments. Our results suggest that supplementation with Rhodiola might reduce the effects of hypoxia on broilers and consequently decrease mortality rate.
Collapse
|
30
|
|