1
|
Vanare SP, Singh RK, Chen J, Kong F. Double Emulsion Microencapsulation System for Lactobacillus rhamnosus GG Using Pea Protein and Cellulose Nanocrystals. Foods 2025; 14:831. [PMID: 40077534 PMCID: PMC11898448 DOI: 10.3390/foods14050831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Microencapsulation using a double emulsion system can improve the viability of probiotic cells during storage and digestion. In this study, a double emulsion system WC/O/WF was designed to microencapsulate Lactobacillus rhamnosus GG using pea protein (PP) and cellulose nanocrystals (CNCs) at various proportions, and the effect of their proportions on the stability and efficacy of the encapsulation system was studied. The double emulsions were prepared by a two-step emulsification process: the internal aqueous phase containing probiotic strain (WC) was homogenized into the oil phase (O), which was then homogenized into the external aqueous phase (WF) containing 15% wall materials with varying proportions of PP and CNCs [F1 (100:0), F2 (96:4), F3 (92:8), F4 (88:12), F5 (84:16), F6 (80:20)]. The incorporation of CNCs significantly lowered the average particle size and improved the stability of the emulsions. The encapsulation efficiency did not differ significantly across the tested formulations (63-68%). To check the effectiveness of the designed system, a simulated digestion study was conducted in two phases: gastric phase and intestinal phase. The double emulsion microencapsulation significantly improved the viability of encapsulated cells during digestion compared against free cells. Microscopic analysis along with assessment of protein hydrolysis of the double emulsions during the simulated digestion demonstrated a two-stage protection mechanism. This study presented promising results for employing a double emulsion system for the microencapsulation of probiotics and the potential of PP and CNCs in designing such systems.
Collapse
Affiliation(s)
| | | | | | - Fanbin Kong
- Department of Food Science & Technology, The University of Georgia, 100 Cedar St #211, Athens, GA 30602, USA; (S.P.V.); (R.K.S.)
| |
Collapse
|
2
|
Cemali Ö, Çelik E, Deveci G, Hirfanoğlu İM, Önal EE, Ağagündüz D. Detection and quantification of miRNA 148a expression in infant formulas. J Food Sci 2025; 90:e17648. [PMID: 39828407 DOI: 10.1111/1750-3841.17648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/03/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
MiRNA 148a, which is associated with various biological processes such as immunity and cell differentiation, is one of the most abundant miRNAs in breast milk. This study aimed to determine the amount of miRNA 148a in different infant formulas, which are used for infants who cannot receive breast milk. The study analyzed 20 formulas, including stage one infant formulas (0-6 months of age), stage two follow-up formulas (6-12 months of age), stage three toddler formulas (above 12 months of age), and premature ones, analyzing miRNA 148a expression and qPCR miRNA gene expression, with significance set at p < 0.05. The expression levels of miRNA 148a in different infant formulas were compared, and no statistically significant difference was observed (p > 0.05). Also, there was no difference in relative miRNA 148a expression across formulas with and without probiotics (p > 0.05). Protein levels in probiotic formulas (0 month-1 year+) were positively correlated with relative miRNA 148a expression (p = 0.022). Although miRNA 148a expression has been shown to be present in formulas, it has been revealed that the amount is low compared to breast milk in line with the literature. In this direction, it is important to increase current data on the mechanisms of action of miRNAs in breast milk and the efforts to ensure that infant formulas reach a composition closest to breast milk in line with their biological effects. PRACTICAL APPLICATION: The miRNAs found in exosomal compounds in human breast milk are very diverse in terms of number and health effects, and can control various biological processes in cells, including immunity, cell differentiation, and apoptosis. One of these is miRNA 148a, which is the most abundant in human breast milk. For this reason, in this study, the miRNA 148a content of infant formulas, which are commonly used in healthy babies who cannot receive enough human breast milk (breastfeeding recommended for at least 6 months and up to 2 years) for a valid reason, was analyzed. In conclusion, miRNA expression has been detected in infant formulas, but it has been shown that this expression is at a low level.
Collapse
Affiliation(s)
- Özge Cemali
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Trakya University, Edirne, Türkiye
| | - Elif Çelik
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Süleyman Demirel University, Isparta, Türkiye
| | - Gülsüm Deveci
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Çankırı Karatekin University, Çankırı, Türkiye
| | | | - Eray Esra Önal
- Faculty of Medicine, Department of Child Health and Diseases, Gazi University, Ankara, Türkiye
| | - Duygu Ağagündüz
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Gazi University, Ankara, Türkiye
| |
Collapse
|
3
|
Zhang W, Zhang Y, Zhao Y, Li L, Zhang Z, Hettinga K, Yang H, Deng J. A Comprehensive Review on Dietary Polysaccharides as Prebiotics, Synbiotics, and Postbiotics in Infant Formula and Their Influences on Gut Microbiota. Nutrients 2024; 16:4122. [PMID: 39683515 DOI: 10.3390/nu16234122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Human milk contains an abundance of nutrients which benefit the development and growth of infants. However, infant formula has to be used when breastfeeding is not possible. The large differences between human milk and infant formula in prebiotics lead to the suboptimal intestinal health of infant formula-fed infants. This functional deficit of infant formula may be overcome through other dietary polysaccharides that have been characterized. The aim of this review was to summarize the potential applications of dietary polysaccharides as prebiotics, synbiotics, and postbiotics in infant formula to better mimic the functionality of human milk prebiotics for infant gut health. Previous studies have demonstrated the influences of dietary polysaccharides on gut microbiota, SCFA production, and immune system development. Compared to prebiotics, synbiotics and postbiotics showed better application potential in shaping the gut microbiota, the prevention of pathogen infections, and the development of the immune system. Moreover, the safety issues for biotics still require more clinical trials with a large-scale population and long time duration, and the generally accepted regulations are important to regulate related products. Pectin polysaccharides has similar impacts to human milk oligosaccharides on gut microbiota and the repairing of a damaged gut barrier, with similar functions also being observed for inulin and β-glucan. Prebiotics as an encapsulation material combined with probiotics and postbiotics showed better potential applications compared to traditional material in infant formula.
Collapse
Affiliation(s)
- Wenyuan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanli Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yaqi Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhanquan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kasper Hettinga
- Dairy Science and Technology, Food Quality and Design Group, Wageningen University & Research, 6708 WG Wageningen, The Netherlands
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jianjun Deng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
4
|
Quintero Quiroz J, Velazquez V, Torres JD, Ciro Gomez G, Delgado E, Rojas J. Effect of the Structural Modification of Plant Proteins as Microencapsulating Agents of Bioactive Compounds from Annatto Seeds ( Bixa orellana L.). Foods 2024; 13:2345. [PMID: 39123536 PMCID: PMC11312334 DOI: 10.3390/foods13152345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/09/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
This project studied the use of lentil protein (LP) and quinoa protein (QP) in their native and modified states as carrier material in the encapsulation process by the ionic gelation technique of annatto seed extract. Soy protein (SP) was used as a model of carrier material and encapsulated bioactive compounds, respectively. The plant proteins were modified by enzymatic hydrolysis, N acylation, and N-cationization to improve their encapsulating properties. Additionally, the secondary structure, differential scanning calorimetry (DSC), solubility as a function of pH, isoelectric point (pI), molecular weight (MW), the content of free thiol groups (SH), the absorption capacity of water (WHC) and fat (FAC), emulsifier activity (EAI), emulsifier stability (ESI), and gelation temperature (Tg) were assessed on proteins in native and modified states. The results obtained demonstrated that in a native state, LP (80.52% and 63.82%) showed higher encapsulation efficiency than QP (73.63% and 45.77%), both for the hydrophilic dye and for the annatto extract. Structural modifications on proteins improve some functional properties, such as solubility, WHC, FAC, EAI, and ESI. However, enzymatic hydrolysis on the proteins decreased the gels' formation, the annatto extract's encapsulated efficiency, and the hydrophilic dye by the ionic gelation method. On the other hand, the modifications of N-acylation and N-cationization increased but did not generate statistically significant differences (p-value > 0.05) in the encapsulation efficiency of both the annatto extract and the hydrophilic dye compared to those obtained with native proteins. This research contributes to understanding how plant proteins (LP and QP) can be modified to enhance their encapsulating and solubility properties. The better encapsulation of bioactive compounds (like annatto extract) can improve product self-life, potentially benefiting the development of functional ingredients for the food industry.
Collapse
Affiliation(s)
- Julián Quintero Quiroz
- Faculty of Ciencias de la Nutrición y los Alimentos, CES University, Calle 10 # 22-04, Medellin 050018, Colombia
- Department of Ciencias Farmacéuticas y Alimentarias, University of Antioquia, Calle 67 No. 53-108, University Campus, Medellín 050010, Colombia; (J.D.T.); (G.C.G.); (J.R.)
| | - Víctor Velazquez
- Department of Family and Consumer Sciences, College of Agriculture, Consumer and Environmental Sciences, New Mexico State University, NMSU Gerald Thomas Hall Room, 308 P.O. Box 30003 MSC 3470, Las Cruces, NM 88003, USA;
| | - Juan D. Torres
- Department of Ciencias Farmacéuticas y Alimentarias, University of Antioquia, Calle 67 No. 53-108, University Campus, Medellín 050010, Colombia; (J.D.T.); (G.C.G.); (J.R.)
| | - Gelmy Ciro Gomez
- Department of Ciencias Farmacéuticas y Alimentarias, University of Antioquia, Calle 67 No. 53-108, University Campus, Medellín 050010, Colombia; (J.D.T.); (G.C.G.); (J.R.)
| | - Efren Delgado
- Department of Family and Consumer Sciences, College of Agriculture, Consumer and Environmental Sciences, New Mexico State University, NMSU Gerald Thomas Hall Room, 308 P.O. Box 30003 MSC 3470, Las Cruces, NM 88003, USA;
| | - John Rojas
- Department of Ciencias Farmacéuticas y Alimentarias, University of Antioquia, Calle 67 No. 53-108, University Campus, Medellín 050010, Colombia; (J.D.T.); (G.C.G.); (J.R.)
| |
Collapse
|
5
|
Zhang Z, Yin B, Liu F, Zhou W, Wang M, Chang Z, Zhou J, Yue M, Chen J, Feng Z. Effect of the initial pH of the culture medium on the nutrient consumption pattern of Bifidobacterium animalis subsp. lactis Bb12 and the improvement of acid resistance by purine and pyrimidine compounds. J Appl Microbiol 2024; 135:lxae022. [PMID: 38299790 DOI: 10.1093/jambio/lxae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/20/2024] [Accepted: 01/30/2024] [Indexed: 02/02/2024]
Abstract
AIMS During fermentation, the accumulation of acidic products can induce media acidification, which restrains the growth of Bifidobacterium animalis subsp. lactis Bb12 (Bb12). This study investigated the nutrient consumption patterns of Bb12 under acid stress and effects of specific nutrients on the acid resistance of Bb12. METHODS AND RESULTS Bb12 was cultured in chemically defined medium (CDM) at different initial pH values. Nutrient consumption patterns were analyzed in CDM at pH 5.3, 5.7, and 6.7. The patterns varied with pH: Asp + Asn had the highest consumption rate at pH 5.3 and 5.7, while Ala was predominant at pH 6.7. Regardless of the pH levels (5.3, 5.7, or 6.7), ascorbic acid, adenine, and Fe2+ were vitamins, nucleobases, and metal ions with the highest consumption rates, respectively. Nutrients whose consumption rates exceeded 50% were added individually in CDM at pH 5.3, 5.7, and 6.7. It was demonstrated that only some of them could promote the growth of Bb12. Mixed nutrients that could promote the growth of Bb12 were added to three different CDM. In CDM at pH 5.3, 5.7, and 6.7, it was found that the viable cell count of Bb12 was the highest after adding mixed nutrients, which were 8.87, 9.02, and 9.10 log CFU ml-1, respectively. CONCLUSIONS The findings suggest that the initial pH of the culture medium affects the nutrient consumption patterns of Bb12. Specific nutrients can enhance the growth of Bb12 under acidic conditions and increase its acid resistance.
Collapse
Affiliation(s)
- Zongcai Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| | - Boxing Yin
- Yangzhou Yangda Kangyuan Dairy Co., Ltd, No. 88, Dingxing Road, Guangling District, Yangzhou 225004, China
| | - Fei Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| | - Wei Zhou
- Yangzhou Yangda Kangyuan Dairy Co., Ltd, No. 88, Dingxing Road, Guangling District, Yangzhou 225004, China
| | - Mengrui Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| | - Ziqing Chang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| | - Junping Zhou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| | - Mingzhe Yue
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| | - Junxia Chen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| | - Zhen Feng
- Yangzhou Yangda Kangyuan Dairy Co., Ltd, No. 88, Dingxing Road, Guangling District, Yangzhou 225004, China
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
| |
Collapse
|
6
|
Díaz Vergara LI, Arata Badano J, Aminahuel CA, Vanden Braber NL, Rossi YE, Pereyra CM, Cavaglieri LR, Montenegro MA. Chitosan-glucose derivative as effective wall material for probiotic yeasts microencapsulation. Int J Biol Macromol 2023; 253:127167. [PMID: 37793535 DOI: 10.1016/j.ijbiomac.2023.127167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/30/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023]
Abstract
A chitosan-glucose derivative (ChG) with lower antimicrobial activity against whey native probiotic yeast K. marxianus VM004 was synthesized by the Maillard reaction. The ChG derivative was characterized by FT-IR, 1H NMR, and SLS to determine the structure, deacetylation degree (DD), and molecular weight (Mw). In addition, we evaluated the antioxidant, cytotoxic, and antimicrobial activities of ChG. ChG was then used for microencapsulation of K. marxianus VM004 by spray drying. The microcapsules were characterized by evaluating their encapsulation yield, encapsulation efficiency, morphology, tolerance to the gastrointestinal tract, and viability during storage. The results indicated that a non-cytotoxic product with lower MW and DD and higher antioxidant activity than native chitosan was obtained by the Maillard reaction. The yeast ChG microcapsules exhibited an encapsulation efficiency >57 %, improved resistance to gastrointestinal conditions, and enhanced stability during storage. These results demonstrate that ChG may be a promising wall material for the microencapsulation of probiotic yeasts.
Collapse
Affiliation(s)
- Ladislao I Díaz Vergara
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), Universidad Nacional de Villa María, Campus Universitario, Av. Arturo Jauretche 1555, Villa María, Córdoba, Argentina
| | - Joaquín Arata Badano
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), Universidad Nacional de Villa María, Campus Universitario, Av. Arturo Jauretche 1555, Villa María, Córdoba, Argentina
| | - Carla A Aminahuel
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), Universidad Nacional de Villa María, Campus Universitario, Av. Arturo Jauretche 1555, Villa María, Córdoba, Argentina
| | - Noelia L Vanden Braber
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), Universidad Nacional de Villa María, Campus Universitario, Av. Arturo Jauretche 1555, Villa María, Córdoba, Argentina
| | - Yanina E Rossi
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), Universidad Nacional de Villa María, Campus Universitario, Av. Arturo Jauretche 1555, Villa María, Córdoba, Argentina
| | - Carina M Pereyra
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta Nacional 36 KM 601, Río Cuarto, Córdoba, Argentina
| | - Lilia R Cavaglieri
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta Nacional 36 KM 601, Río Cuarto, Córdoba, Argentina
| | - Mariana A Montenegro
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), Universidad Nacional de Villa María, Campus Universitario, Av. Arturo Jauretche 1555, Villa María, Córdoba, Argentina.
| |
Collapse
|
7
|
Alves Gragnani Vido M, Dutra Alvim I, Vinderola G, Isabel Berto M, Blumer Zacarchenco Rodrigues de Sá P, Mauricio Barreto Pinilla C, Torres Silva E Alves A. Microencapsulation of Limosilactobacillus reuteri (DSM 23878) for application in infant formula: Heat resistance and bacterial viability during long-time storage. Food Res Int 2023; 173:113378. [PMID: 37803716 DOI: 10.1016/j.foodres.2023.113378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 10/08/2023]
Abstract
This study aimed to evaluate the survival capacity of the probiotic culture Limosilactobacillus reuteri (DSM 23878) to microencapsulation by spray drying, and its potential as component of an infant formula. Preliminary tests were performed between skim milk (SM) and infant formula (IF) as wall material and two inlet temperatures, evaluating the encapsulation efficiency, moisture content, water activity and stability, to choose the drying parameters. After drying in optimized conditions, the powder of microencapsulated L. reuteri was characterized and the viability after dilution in an infant formula at 70 °C was determined. In addition, the survival rate throughout 360 days of storage was assessed. As results, encapsulation efficiency was superior to 90 % in both wall materials. However, the use of IF as for microencapsulation produced microparticles with lower water activity (Aw) and moisture, as compared with the SM. Final microparticles produced with IF as wall material presented values of Aw, moisture content, and particle diameter averaged 0.11 ± 0.02, 2.10 ± 0.35 % and 10.30 ± 0.12 μm, respectively. The viability of microencapsulated L.reuteri decreased 1 Log CFU/mL after dilution at 70 °C and the powder maintained a survivor of 73.5 % after 365 days of storage at 4 °C. Thus, the microencapsulation by spray drying under the conditions of this study proved to be an effective technique to protect the probiotic L. reuteri for application in infant formulas, obtaining an adequate number of viable cells after reconstitution at 70 °C and during long time the storage.
Collapse
Affiliation(s)
| | - Izabela Dutra Alvim
- Cereal and Chocolate Technology Center, Institute of Food Technology, Brazil (ITAL), Campinas, São Paulo, Brazil
| | - Gabriel Vinderola
- Instituto de Lactología Industrial (CONICET-UNL), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Maria Isabel Berto
- Dairy Technology Center (TECNOLAT) of the Food Technology Institute (ITAL), Campinas, São Paulo, Brazil
| | | | | | | |
Collapse
|
8
|
Lao Y, Ye Q, Wang Y, Vongsvivut J, Selomulya C. Quantifying the effects of pre-roasting on structural and functional properties of yellow pea proteins. Food Res Int 2023; 172:113180. [PMID: 37689931 DOI: 10.1016/j.foodres.2023.113180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 09/11/2023]
Abstract
Roasting could modify the protein structure/conformation, contributing to changes in functional properties. Here we investigated the effects of pre-roasting on the extraction efficiency, structural and functional properties of pea protein concentrates and isolates (PPC and PPI) produced from yellow split peas. The shorter roasting times (150 °C, 10 and 20 min) had little effect on protein yields and could increase the solubility of PPC or PPI by ∼ 12% at pH 7 and enhance the solubility of PPI by ∼ 12% (10-min roasting) and ∼ 24% (20-min roasting) at pH 3. However, a longer duration of pre-roasting (150 °C, 30 min) significantly reduced the extraction efficiency of PPC and PPI by ∼ 30% and ∼ 61%, respectively. Meanwhile, pre-roasting had minor effects on SDS-PAGE profiles and the secondary structures of pea proteins but significantly altered tertiary structures by reducing free sulfhydryl groups, increasing disulfide bonds and surface hydrophobicity. As for the emulsifying properties, pre-roasting improved the emulsion ability index (EAI) of PPC and PPI but decreased the emulsion stability index (ESI) of PPC and had no significant effect on PPI. Moreover, PPC and PPI with shorter pre-roasting duration (10 and 20 min) had endothermic peaks and showed a slight decrease in the denaturation temperature (Td) and the onset temperature (To), respectively. Overall, the study demonstrated that controlled pre-roasting at 150 °C for 10 min and 20 min altered protein structures (mainly tertiary structures), improving the solubility and EAI of pea proteins at pH 7, while retaining their thermal properties in comparison to unroasted samples.
Collapse
Affiliation(s)
- Yanyan Lao
- School of Chemical Engineering, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Qianyu Ye
- School of Chemical Engineering, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Yong Wang
- School of Chemical Engineering, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy Beamline, ANSTO Australian Synchrotron, Clayton, Victoria 3168, Australia
| | - Cordelia Selomulya
- School of Chemical Engineering, UNSW Sydney, Kensington, NSW 2052, Australia.
| |
Collapse
|
9
|
Chen L, Qian WW, Zhou S, Zhou T, Gu Q. Fabrication of whey protein/pectin double layer microcapsules for improving survival of Lacticaseibacillus rhamnosus ZFM231. Int J Biol Macromol 2023:125030. [PMID: 37244347 DOI: 10.1016/j.ijbiomac.2023.125030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/10/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
To improve the viability of Lacticaseibacillus rhamnosus ZFM231 strain in the gastrointestinal tract and exhibit better probiotic effect, an internal emulsification/gelation technique was employed to encapsulate this strain using whey protein and pectin as wall materials to fabricate the double layer microcapsules. Four key factors affecting the encapsulation process were optimized using single factor analysis and response surface methodology. Encapsulation efficiency of L. rhamnosus ZFM231 reached 89.46 ± 0.82 %, the microcapsules possessed a particle size of 172 ± 1.80 μm and ζ-potential of -18.36 mV. The characters of the microcapsules were assessed using optical microscope, SEM, FT-IR and XRD analysis. It was found that after exposure to simulated gastric fluid, the bacterial count (log (CFU g-1)) of the microcapsules only lost 1.96 units, the bacteria were released readily in simulated intestinal fluid, reaching 86.56 % after 90 min. After stored at 4 °C for 28 days and 25 °C for 14 days, bacterial count of the dry microcapsules decreased from 10.59 to 9.02 and 10.49 to 8.70 log (CFU g-1), respectively. The double layered microcapsules could significantly increase the storage and thermal abilities of bacteria. Such L. rhamnosus ZFM231 microcapsules could find applications as ingredient of the functional foods and the dairy products.
Collapse
Affiliation(s)
- Liang Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Wen-Wen Qian
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Shaobo Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China; School of Science, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham ME4 4TB, UK
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China.
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China.
| |
Collapse
|
10
|
Khan FF, Sohail A, Ghazanfar S, Ahmad A, Riaz A, Abbasi KS, Ibrahim MS, Uzair M, Arshad M. Recent Innovations in Non-dairy Prebiotics and Probiotics: Physiological Potential, Applications, and Characterization. Probiotics Antimicrob Proteins 2023; 15:239-263. [PMID: 36063353 DOI: 10.1007/s12602-022-09983-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 10/14/2022]
Abstract
Non-dairy sources of prebiotics and probiotics impart various physiological functions in the prevention and management of chronic metabolic disorders, therefore nutraceuticals emerged as a potential industry. Extraction of prebiotics from non-dairy sources is economical and easily implemented. Waste products during food processing, including fruit peels and fruit skins, can be utilized as a promising source of prebiotics and considered "Generally Recognized As Safe" for human consumption. Prebiotics from non-dairy sources have a significant impact on gut microbiota and reduce the population of pathogenic bacteria. Similarly, next-generation probiotics could also be isolated from non-dairy sources. These sources have considerable potential and can give novel strains of probiotics, which can be the replacement for dairy sources. Such strains isolated from non-dairy sources have good probiotic properties and can be used as therapeutic. This review will elaborate on the potential non-dairy sources of prebiotics and probiotics, their characterization, and significant physiological potential.
Collapse
Affiliation(s)
- Fasiha Fayyaz Khan
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan.
| | - Asma Sohail
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Shakira Ghazanfar
- Functional Genomics and Bioinformatics, National Institute of Genomics and Agriculture Biotechnology (NIGAB), National Agriculture Research Centre, Park Road, Islamabad, 45500, Pakistan
| | - Asif Ahmad
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Aayesha Riaz
- Faculty of Veterinary & Animal Sciences, Department of Parasitology & Microbiology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Kashif Sarfraz Abbasi
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Muhammad Sohail Ibrahim
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| |
Collapse
|
11
|
Cerutti Martellet M, Majolo F, Cima L, Goettert MI, Volken de Souza CF. Microencapsulation of Kluyveromyces marxianus and Plantago ovata in cheese whey particles: Protection of sensitive cells to simulated gastrointestinal conditions. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
12
|
Martellet MC, Majolo F, Ducati RG, de Souza CFV, Goettert MI. Probiotic applications associated with Psyllium fiber as prebiotics geared to a healthy intestinal microbiota: A review. Nutrition 2022; 103-104:111772. [DOI: 10.1016/j.nut.2022.111772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022]
|
13
|
Rajam R, Subramanian P. Encapsulation of probiotics: past, present and future. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00228-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Background
Probiotics are live microbial supplements known for its health benefits. Consumption of probiotics reported to improve several health benefits including intestinal flora composition, resistance against pathogens. In the recent years, there is an increasing trend of probiotic-based food products in the market.
Main body
Probiotics cells are targeted to reach the large intestine, and the probiotics must survive through the acidic conditions of the gastric environment. It is recommended to formulate the probiotic bacteria in the range of 108–109 cfu/g for consumption and maintain the therapeutic efficacy of 106–107 cfu/g in the large intestine. During the gastrointestinal transit, the probiotics will drastically lose its viability in the gastric environment (pH 2). Maintaining cell viability until it reaches the large intestine remains challenging task. Encapsulating the probiotics cells with suitable wall material helps to sustain the survival of probiotics during industrial processing and in gastrointestinal transit. In the encapsulation process, cells are completely enclosed in the wall material, through different techniques including spray drying, freeze drying, extrusion, spray freeze drying, emulsification, etc. However, spray-drying and freeze-drying techniques are successfully used for the commercial formulation; thus, we limited to review those encapsulation techniques.
Short conclusions
The survival rate of spray-dried probiotics during simulated digestion mainly depends on the inlet air temperature, wall material and exposure in the GI condition. And fermentation, pH and freeze-drying time are the important process parameters for maintaining the viability of bacterial cells in the gastric condition. Improving the viability of probiotic cells during industrial processing and extending the cell viability during storage and digestion will be the main concern for successful commercialization.
Graphical abstract
Collapse
|
14
|
Russo MI, Abeijón-Mukdsi MC, Santacruz A, Ross R, Malo AL, Gauffin-Cano P, Medina RB. Spray dried lactobacilli maintain viability and feruloyl esterase activity during prolonged storage and under gastrointestinal tract conditions. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:1202-1210. [PMID: 35185216 PMCID: PMC8814231 DOI: 10.1007/s13197-021-05125-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/30/2022]
Abstract
The use of lactobacilli with feruloyl esterase (FE) activity in the development of functional foods has gained considerable interest in recent years. Microencapsulation of FE-producing bacteria to facilitate their incorporation into food is a challenge. The aim of this study was to evaluate survival and maintenance of FE activity during storage at 4 °C and under simulated gastrointestinal tract (GIT) conditions of microcapsules of FE-producing Lactobacillus (Lb.) strains obtained by spray drying. Lb. fermentum CRL1446 and Lb. johnsonii CRL1231 powders maintained viability at concentrations ≥ 106 CFU/g (minimum probiotic dose) when stored at 4 °C for 12 months. Lb. acidophilus CRL1014 powders were only able to maintain ≥ 106 CFU/g during 4 months of storage. FE activity was conserved in three microencapsulated strains evaluated, an increase of specific activity being observed until month 12 of storage. Powders of the three strains incubated under GIT conditions maintained their viability (≥ 106 CFU/g), but specific FE activity was only detected in Lb. fermentum and Lb. johnsonii powders (0.80-0.83 and 0.21-0.56 U/mg, respectively). CRL1446 and CRL1231 microcapsules were able to resist prolonged storage and GIT conditions, retaining FE activity and preserving their probiotic potential and could be incorporated into functional foods.
Collapse
Affiliation(s)
- Matias Irineo Russo
- Centro de Referencia Para Lactobacilos (CERELA)-CONICET, Chacabuco 145, T4000 San Miguel de Tucumán, Tucumán Argentina
| | - María Claudia Abeijón-Mukdsi
- Centro de Referencia Para Lactobacilos (CERELA)-CONICET, Chacabuco 145, T4000 San Miguel de Tucumán, Tucumán Argentina
| | - Arlette Santacruz
- Escuela de Ingeniería Y Ciencias, Instituto Tecnológico Y de Estudios Superiores de Monterrey, 64849 Monterrey, NL México
| | - Romina Ross
- Institutode Biotecnología Farmacéutica Y Alimentaria-CONICET, T4000 Miguel de Tucumán, Tucumán Argentina
| | - Aurelio López Malo
- Departamento de Ingeniería Química, Alimentos Y Ambiental, Universidad de Las Américas Puebla (UDLAP), 72810 San Andrés Cholula, Puebla México
| | - Paola Gauffin-Cano
- Centro de Referencia Para Lactobacilos (CERELA)-CONICET, Chacabuco 145, T4000 San Miguel de Tucumán, Tucumán Argentina
| | - Roxana Beatriz Medina
- Centro de Referencia Para Lactobacilos (CERELA)-CONICET, Chacabuco 145, T4000 San Miguel de Tucumán, Tucumán Argentina
- Facultad de Agronomía Y Zootecnia, Universidad Nacional de Tucumán, T4000 San Miguel de Tucumán, Tucumán Argentina
| |
Collapse
|
15
|
Wen C, Liu G, Ren J, Deng Q, Xu X, Zhang J. Current Progress in the Extraction, Functional Properties, Interaction with Polyphenols, and Application of Legume Protein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:992-1002. [PMID: 35067056 DOI: 10.1021/acs.jafc.1c07576] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Legume protein can replace animal-derived protein because of its high protein content, low price, lack of cholesterol, complete amino acids, and requirements of vegetarianism. Legume protein has not only superior functional properties but also high biological activities. Therefore, it is widely used in the food industry. However, there are few studies on the comprehensive overview of legume protein. In this review, the extraction, functional properties, interaction with polyphenols, application of legume protein, and activities of their peptides were comprehensively reviewed. Legume proteins are mainly composed of globulin and albumin. The methods of protein extraction from legumes mainly include wet separation (alkali solution and acid precipitation, salt extraction, enzyme extraction, and ultrasonic-assisted extraction) and dry separation (electrostatic separation). Besides, various factors (heat, pH, and concentration) could significantly affect the functional properties of legume protein. Some potential modification technologies could further improve the functionality and quality of these proteins. Moreover, the application of legume protein and the effects of polyphenols on structural properties of legume-derived protein were concluded. Furthermore, the bioactivities of peptides from legume proteins were discussed. To improve the bioactivity, bioavailability, and commercial availability of legume-derived protein and peptides, future studies need to further explore new preparation methods and potential new activities of legume-derived proteins and active peptides. This review provides a real-time reference for further research on the application of legume protein in the food industry. In addition, this review provides a new reference for the development of legume-derived protein functional foods and potential therapeutic agents.
Collapse
Affiliation(s)
- Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, People's Republic of China
| | - Qianchun Deng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan, Hubei 430062, People's Republic of China
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, People's Republic of China
| |
Collapse
|
16
|
Penhasi A, Baluashvili I, Shalev DE. An edible erodible semi‐interpenetrating polymer network as a microcapsule shell to protect probiotic bacteria during reconstitution of powdered infant formula at elevated temperatures. J Appl Polym Sci 2022. [DOI: 10.1002/app.52201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Adel Penhasi
- Department of Research and Development PolyCaps Ltd. Tel Aviv Israel
- Department of Pharmaceutical Engineering Azrieli College of Engineering Jerusalem Jerusalem Israel
| | | | - Deborah E. Shalev
- Department of Pharmaceutical Engineering Azrieli College of Engineering Jerusalem Jerusalem Israel
- Wolfson Centre for Applied Structural Biology The Hebrew University of Jerusalem, Edmond J. Safra Campus Jerusalem Israel
| |
Collapse
|
17
|
Microencapsulating polymers for probiotics delivery systems: Preparation, characterization, and applications. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106882] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Li H, Li Y, Zhang T, Liu T, Yang J, Luo X, Li H, Xue C, Yu J. Co-encapsulation of Lactobacillus paracasei with lactitol in caseinate gelation cross-linked by Zea mays transglutaminase. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
19
|
Song MW, Kim KT, Paik HD. Probiotics as a Functional Health Supplement in Infant Formulas for the Improvement of Intestinal Microflora and Immunity. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1928178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Myung Wook Song
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Kee-Tae Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Effect of various encapsulating agents on the beads' morphology and the viability of cells during BB-12 encapsulation through extrusion. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110423] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
21
|
Vaniski R, Silva SC, Silva‐Buzanello RA, Canan C, Drunkler DA. Improvement of
Lactobacillus acidophilus
La‐5 microencapsulation viability by spray‐drying with rice bran protein and maltodextrin. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rosane Vaniski
- Federal Technological University of Paraná Medianeira Paraná Brazil
| | | | | | - Cristiane Canan
- Federal Technological University of Paraná Medianeira Paraná Brazil
| | | |
Collapse
|
22
|
Gharibzahedi SMT, Smith B. Legume proteins are smart carriers to encapsulate hydrophilic and hydrophobic bioactive compounds and probiotic bacteria: A review. Compr Rev Food Sci Food Saf 2021; 20:1250-1279. [PMID: 33506640 DOI: 10.1111/1541-4337.12699] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/30/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022]
Abstract
Encapsulation is a promising technological process enabling the protection of bioactive compounds against harsh storage, processing, and gastrointestinal tract (GIT) conditions. Legume proteins (LPs) are unique carriers that can efficiently encapsulate these unstable and highly reactive ingredients. Stable LPs-based microcapsules loaded with active ingredients can thus develop to be embedded into processed functional foods. The recent advances in micro- and nanoencapsulation process of an extensive span of bioactive health-promoting probiotics and chemical compounds such as marine and plant fatty acid-rich oils, carotenoid pigments, vitamins, flavors, essential oils, phenolic and anthocyanin-rich extracts, iron, and phytase by LPs as single wall materials were highlighted. A technical summary of the use of single LP-based carriers in designing innovative delivery systems for natural bioactive molecules and probiotics was made. The encapsulation mechanisms, encapsulation efficiency, physicochemical and thermal stability, as well as the release and absorption behavior of bioactives were comprehensively discussed. Protein isolates and concentrates of soy and pea were the most common LPs to encapsulate nutraceuticals and probiotics. The microencapsulation of probiotics using LPs improved bacteria survivability, storage stability, and tolerance in the in vitro GIT conditions. Moreover, homogenization and high-pressure pretreatments as well as enzymatic cross-linking of LPs significantly modify their structure and functionality to better encapsulate the bioactive core materials. LPs can be attractive delivery devices for the controlled release and increased bioaccessibility of the main food-grade bioactives.
Collapse
Affiliation(s)
| | - Brennan Smith
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
23
|
Stasiak-Różańska L, Berthold-Pluta A, Pluta AS, Dasiewicz K, Garbowska M. Effect of Simulated Gastrointestinal Tract Conditions on Survivability of Probiotic Bacteria Present in Commercial Preparations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1108. [PMID: 33513771 PMCID: PMC7908519 DOI: 10.3390/ijerph18031108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022]
Abstract
Probiotics are recommended, among others, in the diet of children who are under antibiotic therapy, or that suffer from food allergies or travel diarrhea, etc. In the case of toddlers taking probiotic preparations, it is highly recommended to first remove the special capsule, which normally protects probiotic strains against hard conditions in the gastrointestinal tract. Otherwise, the toddler may choke. This removal can impair probiotic survival and reduce its efficacy in a toddler's organism. The aim of this study was to evaluate the survivability of five strains of lactic acid bacteria from the commercial probiotics available on the Polish market under simulated conditions of the gastrointestinal tract. Five probiotics (each including one of these strains: Bifidobacterium BB-12, Lactobacillus (Lb.) rhamnosus GG, Lb. casei, Lb. acidophilus, Lb. plantarum) were protective capsule deprived, added in a food matrix (chicken-vegetable soup) and subjected under simulated conditions of the gastric and gastrointestinal passage. Strain survivability and possibility to growth were evaluated. Obtained results showed that, among all analyzed commercial probiotic strains, the Lb. plantarum was the most resistant to the applied conditions of the culture medium. They showed a noticeable growth under both in vitro gastric conditions at pH 4.0 and 5.0, as well as in vitro intestinal conditions at all tested concentrations of bile salts.
Collapse
Affiliation(s)
- Lidia Stasiak-Różańska
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska St. 166, 02-787 Warsaw, Poland; (A.B.-P.); (A.S.P.); (K.D.); (M.G.)
| | | | | | | | | |
Collapse
|
24
|
Storage stability and in vitro digestion of microencapsulated powder containing fermented noni juice and probiotics. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100740] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Characteristics of lactobacillus plantarum LIP-1 microcapsules prepared using an aqueous phase separation method. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Roux LL, Chacon R, Dupont D, Jeantet R, Deglaire A, Nau F. In vitro static digestion reveals how plant proteins modulate model infant formula digestibility. Food Res Int 2020; 130:108917. [DOI: 10.1016/j.foodres.2019.108917] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 11/15/2022]
|
27
|
Le Roux L, Ménard O, Chacon R, Dupont D, Jeantet R, Deglaire A, Nau F. Are Faba Bean and Pea Proteins Potential Whey Protein Substitutes in Infant Formulas? An In Vitro Dynamic Digestion Approach. Foods 2020; 9:E362. [PMID: 32245044 PMCID: PMC7142966 DOI: 10.3390/foods9030362] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 01/03/2023] Open
Abstract
Infant formulas (IFs) are used as substitutes for human milk and are mostly based on cow milk proteins. For sustainability reasons, animal protein alternatives in food are increasingly being considered, as plant proteins offer interesting nutritional and functional benefits for the development of innovative IFs. This study aimed to assess how a partial substitution (50%) of dairy proteins with faba bean and pea proteins influenced the digestibility of IFs under simulated dynamic in vitro digestion, which were set up to mimic infant digestion. Pea- and faba bean-based IFs (PIF and FIF, respectively) have led to a faster aggregation than the reference milk-based IF (RIF) in the gastric compartment; that did not affect the digesta microstructure at the end of digestion. The extent of proteolysis was estimated via the hydrolysis degree, which was the highest for FIF (73%) and the lowest for RIF (50%). Finally, it was apparent that in vitro protein digestibility and protein digestibility-corrected amino acid score (PDCAAS)-like scores were similar for RIF and FIF (90% digestibility; 75% PDCAAS), but lower for PIF (75%; 67%). Therefore, this study confirms that faba bean proteins could be a good candidate for partial substitution of whey proteins in IFs from a nutritional point of view, provided that these in vitro results are confirmed in vivo.
Collapse
Affiliation(s)
- Linda Le Roux
- Sill Dairy International, Raden, 29860 Plouvien, France; (L.L.R.); (R.C.)
- STLO, INRAE, AGROCAMPUS OUEST, 35042 Rennes, France; (O.M.); (D.D.); (R.J.); (A.D.)
| | - Olivia Ménard
- STLO, INRAE, AGROCAMPUS OUEST, 35042 Rennes, France; (O.M.); (D.D.); (R.J.); (A.D.)
| | - Raphaël Chacon
- Sill Dairy International, Raden, 29860 Plouvien, France; (L.L.R.); (R.C.)
| | - Didier Dupont
- STLO, INRAE, AGROCAMPUS OUEST, 35042 Rennes, France; (O.M.); (D.D.); (R.J.); (A.D.)
| | - Romain Jeantet
- STLO, INRAE, AGROCAMPUS OUEST, 35042 Rennes, France; (O.M.); (D.D.); (R.J.); (A.D.)
| | - Amélie Deglaire
- STLO, INRAE, AGROCAMPUS OUEST, 35042 Rennes, France; (O.M.); (D.D.); (R.J.); (A.D.)
| | - Françoise Nau
- STLO, INRAE, AGROCAMPUS OUEST, 35042 Rennes, France; (O.M.); (D.D.); (R.J.); (A.D.)
| |
Collapse
|
28
|
Le Roux L, Mejean S, Chacon R, Lopez C, Dupont D, Deglaire A, Nau F, Jeantet R. Plant proteins partially replacing dairy proteins greatly influence infant formula functionalities. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108891] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
29
|
Asgari S, Pourjavadi A, Licht TR, Boisen A, Ajalloueian F. Polymeric carriers for enhanced delivery of probiotics. Adv Drug Deliv Rev 2020; 161-162:1-21. [PMID: 32702378 DOI: 10.1016/j.addr.2020.07.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022]
Abstract
Probiotics are live microorganisms (usually bacteria), which are defined by their ability to confer health benefits to the host, if administered adequately. Probiotics are not only used as health supplements but have also been applied in various attempts to prevent and treat gastrointestinal (GI) and non-gastrointestinal diseases such as diarrhea, colon cancer, obesity, diabetes, and inflammation. One of the challenges in the use of probiotics is putative loss of viability by the time of administration. It can be due to procedures that the probiotic products go through during fabrication, storage, or administration. Biocompatible and biodegradable polymers with specific moieties or pH/enzyme sensitivity have shown great potential as carriers of the bacteria for 1) better viability, 2) longer storage times, 3) preservation from the aggressive environment in the stomach and 4) topographically targeted delivery of probiotics. In this review, we focus on polymeric carriers and the procedures applied for encapsulation of the probiotics into them. At the end, some novel methods for specific probiotic delivery, possibilities to improve the targeted delivery of probiotics and some challenges are discussed.
Collapse
|
30
|
Wu Z, Li X, Liu X, Dong J, Fan D, Xu X, He Y. Membrane shell permeability of Rs-198 microcapsules and their ability for growth promoting bioactivity compound releasing. RSC Adv 2020. [DOI: 10.1039/c9ra06935f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Microencapsulation of bacteria is an alternative technology to enhance viability during processing and application.
Collapse
Affiliation(s)
- Zhansheng Wu
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an 710048
- P. R. China
- School of Chemistry and Chemical Engineering
| | - Xuan Li
- School of Chemistry and Chemical Engineering
- Shihezi University
- Shihezi 832003
- P. R. China
| | - Xiaochen Liu
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an 710048
- P. R. China
| | - Jiawei Dong
- School of Chemistry and Chemical Engineering
- Shihezi University
- Shihezi 832003
- P. R. China
| | - Daidi Fan
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an 710048
- P. R. China
- Department of Chemical Engineering
| | - Xiaolin Xu
- School of Chemistry and Chemical Engineering
- Shihezi University
- Shihezi 832003
- P. R. China
| | - Yanhui He
- School of Chemistry and Chemical Engineering
- Shihezi University
- Shihezi 832003
- P. R. China
| |
Collapse
|
31
|
Factors affecting viability of selected probiotics during cheese-making of pasta filata dairy products obtained by direct-to-vat inoculation system. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108476] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Bessada SM, Barreira JC, Oliveira MBP. Pulses and food security: Dietary protein, digestibility, bioactive and functional properties. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.08.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
33
|
Portela JB, Coimbra PT, Cappato LP, Alvarenga VO, Oliveira RB, Pereira KS, Azeredo DR, Sant’Ana AS, Nascimento JS, Cruz AG. Predictive model for inactivation of salmonella in infant formula during microwave heating processing. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.05.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Eckert C, Agnol WD, Dallé D, Serpa VG, Maciel MJ, Lehn DN, Volken de Souza CF. Development of alginate-pectin microparticles with dairy whey using vibration technology: Effects of matrix composition on the protection of Lactobacillus spp. from adverse conditions. Food Res Int 2018; 113:65-73. [PMID: 30195547 DOI: 10.1016/j.foodres.2018.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/03/2018] [Accepted: 07/01/2018] [Indexed: 12/22/2022]
Abstract
In this study, lactic acid bacteria with probiotic potential, including Lactobacillus plantarum ATCC8014, L. paracasei ML33 and L. pentosus ML82, were encapsulated with whey-alginate-pectin (WAP) or whey permeate-alginate-pectin (PAP) by an extrusion process using vibrational technology, with the resulting microparticles assessed for their resistance to adverse conditions. The aim was to assess the effect of the encapsulation wall materials on the viability of microorganisms, the encapsulation, refrigerated storage and simulated gastrointestinal tract conditions, the kinetic parameters of acidification, and the morphology of microparticles. The bacteria encapsulated with the WAP wall material were adequately protected. Furthermore, after three months of storage at 4 °C, the encapsulated bacteria exhibited a cell viability of >6 log CFU mL-1. In addition, the encapsulated L. plantarum ATCC8014 and L. pentosus ML82 isolates exhibited the highest viability at the end of the storage period among the assayed isolates. Encapsulated bacteria showed greater resistance to acidic conditions than unencapsulated bacteria when exposed to simulated gastrointestinal tract conditions. The maximum rate of milk acidification by encapsulated Lactobacillus spp. was approximately three-fold lower than that observed for unencapsulated bacteria. The resulting size of the microparticles generated using both combinations of wall materials used was approximately 150 μm. The cheese whey and whey permeate combined with alginate and pectin to adequately encapsulate and protect Lactobacillus spp. from the adverse conditions of the simulated gastrointestinal tract and from refrigeration storage temperatures. Furthermore, the sizes of the obtained microparticles indicated that the encapsulated materials are suitable for being incorporated into foods without changing their sensory properties.
Collapse
Affiliation(s)
- Camila Eckert
- Laboratory of Food Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil; Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Wendell Dall Agnol
- Laboratory of Food Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil; Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Danieli Dallé
- Laboratory of Food Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil; Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Vanessa Garcia Serpa
- Laboratory of Food Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil; Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Mônica Jachetti Maciel
- Laboratory of Food Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil; Postgraduate Program in Sustainable Environmental Systems, University of Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Daniel Neutzling Lehn
- Laboratory of Food Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Claucia Fernanda Volken de Souza
- Laboratory of Food Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil; Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil; Postgraduate Program in Sustainable Environmental Systems, University of Vale do Taquari - Univates, Lajeado, RS, Brazil..
| |
Collapse
|
35
|
Eratte D, Dowling K, Barrow CJ, Adhikari B. Recent advances in the microencapsulation of omega-3 oil and probiotic bacteria through complex coacervation: A review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.10.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Ghibaudo F, Gerbino E, Campo Dall' Orto V, Gómez-Zavaglia A. P ectin-iron capsules: Novel system to stabilise and deliver lactic acid bacteria. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.10.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
37
|
Liao LK, Wei XY, Gong X, Li JH, Huang T, Xiong T. Microencapsulation of Lactobacillus casei LK-1 by spray drying related to its stability and in vitro digestion. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.03.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Verruck S, de Carvalho MW, de Liz GR, Amante ER, Vieira CRW, Amboni RDDMC, Prudencio ES. Survival of Bifidobacterium BB-12 microencapsulated with full-fat goat’s milk and prebiotics when exposed to simulated gastrointestinal conditions and thermal treatments. Small Rumin Res 2017. [DOI: 10.1016/j.smallrumres.2017.05.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
39
|
Ramos PE, Cerqueira MA, Teixeira JA, Vicente AA. Physiological protection of probiotic microcapsules by coatings. Crit Rev Food Sci Nutr 2017; 58:1864-1877. [DOI: 10.1080/10408398.2017.1289148] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Philippe E. Ramos
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Miguel A. Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, Braga Portugal
| | - José A. Teixeira
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| | - António A. Vicente
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| |
Collapse
|
40
|
Microencapsulation using biopolymers as an alternative to produce food enhanced with phytosterols and omega-3 fatty acids: A review. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2016.06.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
41
|
Ergin F, Atamer Z, Asci Arslan A, Comak Gocer EM, Demir M, Samtlebe M, Hinrichs J, Kücükcetin A. Application of cold- and heat-adapted Lactobacillus acidophilus in the manufacture of ice cream. Int Dairy J 2016. [DOI: 10.1016/j.idairyj.2016.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Nawong S, Oonsivilai R, Boonkerd N, Truelstrup Hansen L. Entrapment in food-grade transglutaminase cross-linked gelatin–maltodextrin microspheres protects Lactobacillus spp. during exposure to simulated gastro-intestinal juices. Food Res Int 2016; 85:191-199. [DOI: 10.1016/j.foodres.2016.04.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 11/26/2022]
|
43
|
De Prisco A, Mauriello G. Probiotication of foods: A focus on microencapsulation tool. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2015.11.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
44
|
Khurshid M, Aslam B, Nisar MA, Akbar R, Rahman H, Khan AA, Rasool MH. Bacterial munch for infants: potential pediatric therapeutic interventions of probiotics. Future Microbiol 2015; 10:1881-95. [PMID: 26515509 DOI: 10.2217/fmb.15.102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Probiotics are viable microorganisms with the capacity to alter the gastrointestinal microbiota of the host. The recent scientific advancements and development of probiotic formulations have rekindled the importance of these clinical interpretations, underlining the starring role of the gut flora in host metabolism, defense and immune regulation. Despite encouraging preliminary results from randomized clinical trials of probiotics for various clinical conditions including irritable bowel syndrome, necrotizing enterocolitis, gastroenteritis, antibiotic-associated diarrhea, infantile colic, and improvement of digestion and immune function, further evidence is needed to determine the reproducibility of the findings and elucidate the underlying mechanisms. In this review, we have considered the postnatal development of gut flora and appraised the role of probiotics in health and disease condition among infants.
Collapse
Affiliation(s)
- Mohsin Khurshid
- College of Allied Health Professionals, Directorate of Medical Sciences, Government College University, Faisalabad, Pakistan.,Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Bilal Aslam
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Muhammad Atif Nisar
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Rubab Akbar
- Health Biotechnology Division, National Institute for Biotechnology & Genetic Engineering, Faisalabad, Pakistan
| | - Hazir Rahman
- Department of Microbiology, Kohat University of Science & Technology, Kohat, Pakistan
| | - Abdul Arif Khan
- Department of Pharmaceutics, College of Pharmacy, PO Box 2457, King Saud University, Riyadh, 11451, Saudi Arabia
| | | |
Collapse
|
45
|
Novel approaches to improve the intrinsic microbiological safety of powdered infant milk formula. Nutrients 2015; 7:1217-44. [PMID: 25685987 PMCID: PMC4344585 DOI: 10.3390/nu7021217] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/29/2015] [Indexed: 02/07/2023] Open
Abstract
Human milk is recognised as the best form of nutrition for infants. However; in instances where breast-feeding is not possible, unsuitable or inadequate, infant milk formulae are used as breast milk substitutes. These formulae are designed to provide infants with optimum nutrition for normal growth and development and are available in either powdered or liquid forms. Powdered infant formula is widely used for convenience and economic reasons. However; current manufacturing processes are not capable of producing a sterile powdered infant formula. Due to their immature immune systems and permeable gastro-intestinal tracts, infants can be more susceptible to infection via foodborne pathogenic bacteria than other age-groups. Consumption of powdered infant formula contaminated by pathogenic microbes can be a cause of serious illness. In this review paper, we discuss the current manufacturing practices present in the infant formula industry, the pathogens of greatest concern, Cronobacter and Salmonella and methods of improving the intrinsic safety of powdered infant formula via the addition of antimicrobials such as: bioactive peptides; organic acids; probiotics and prebiotics.
Collapse
|
46
|
Ranadheera CS, Evans CA, Adams MC, Baines SK. Microencapsulation of Lactobacillus acidophilus LA-5, Bifidobacterium animalis subsp. lactis BB-12 and Propionibacterium jensenii 702 by spray drying in goat's milk. Small Rumin Res 2015. [DOI: 10.1016/j.smallrumres.2014.10.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|