1
|
Fernandes da Silva CG, Santos Lopes F, Cardoso Vieira Valois ÁF, Vieira Prudêncio C. Sensitivity of Salmonella Typhimurium to nisin in vitro and in orange juice under refrigeration. FEMS Microbiol Lett 2024; 371:fnae031. [PMID: 38714347 DOI: 10.1093/femsle/fnae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/14/2024] [Accepted: 05/06/2024] [Indexed: 05/09/2024] Open
Abstract
The influence of environmental factors on Salmonella sensitivity to nisin in vitro and in refrigerated orange juice were investigated. Nisin activity was observed in the different conditions, but the highest efficiency was achieved at lower pH (4.0) and with higher bacteriocin concentration (174 µM). Moreover, the bactericidal action was directly proportional to the incubation period. When tested in orange juice, nisin caused a reduction of up to 4.05 logarithm cycles in the Salmonella population. So, environmental factors such as low pH and low temperature favored the sensitization of Salmonella cells to the bactericidal action of nisin. Therefore, this may represent an alternative to control Salmonella in refrigerated foods.
Collapse
Affiliation(s)
| | | | | | - Cláudia Vieira Prudêncio
- Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Barreiras, 47810-047, Bahia, Brazil
| |
Collapse
|
2
|
Gómez-García M, Argüello H, Puente H, Mencía-Ares Ó, González S, Miranda R, Rubio P, Carvajal A. In-depth in vitro Evaluation of the Activity and Mechanisms of Action of Organic Acids and Essential Oils Against Swine Enteropathogenic Bacteria. Front Vet Sci 2020; 7:572947. [PMID: 33240953 PMCID: PMC7683615 DOI: 10.3389/fvets.2020.572947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/26/2020] [Indexed: 01/08/2023] Open
Abstract
Alternative antimicrobials require a deep understanding of their action mechanisms by in vitro assays which support science-based field use. This study focuses on the characterization of bactericidal mechanisms of potential antimicrobial compounds, two organic acids and three single essential oil (EO) compounds against swine enteropathogenic bacteria Escherichia coli, Salmonella enterica subsp. enterica serovar Typhimurium, and Clostridium perfringens. Target concentrations of the compounds were evaluated using the inhibitory potential of the vapor phase and bacterial viability after short-term exposure, while cell targets were disclosed using flow cytometry (FC), Fourier-transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). All tested compounds exhibited vapor phase activity against the three bacterial species, except sodium salt of coconut fatty acid distillates against C. perfringens. Survival test results evidenced that effects on bacterial viability were concentration dependent and higher in single EO compounds than in organic acids. In detail, thymol and its isomer carvacrol were the most effective compounds. Further characterization of thymol and cinnamaldehyde activity revealed that thymol main target was the cell membrane, since it caused striking damages in the membrane permeability, integrity and composition evidenced by FC and FTIR in the three enteric pathogens. In contrast, cinnamaldehyde was more effective against enterobacteria than against C. perfringens and only caused slightly damages at the highest concentration tested. Its target at the molecular level differed between enterobacteria and C. perfringens isolates. The SEM micrographs allowed us to confirm the results previously obtained for both EO compounds by other techniques. Altogether, the study showed the straight effect of these antimicrobials, which could constitute relevant information to optimize their feed inclusion rates in field studies or field use.
Collapse
Affiliation(s)
- Manuel Gómez-García
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, León, Spain
| | - Héctor Argüello
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, León, Spain
| | - Héctor Puente
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, León, Spain
| | - Óscar Mencía-Ares
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, León, Spain
| | - Sandra González
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, León, Spain
| | - Rubén Miranda
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, León, Spain
| | - Pedro Rubio
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, León, Spain
| | - Ana Carvajal
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, León, Spain
| |
Collapse
|
3
|
Yang Y, Lin M, Feng S, Gu Q, Chen Y, Wang Y, Song D, Gao M. Chemical composition, antibacterial activity, and mechanism of action of essential oil from
Litsea cubeba
against foodborne bacteria. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yu‐Jing Yang
- Key Laboratory for Food Microbial Technology of Zhejiang Province Zhejiang Gongshang University Hangzhou PR China
| | - Meng‐Yi Lin
- Key Laboratory for Food Microbial Technology of Zhejiang Province Zhejiang Gongshang University Hangzhou PR China
| | - Shu‐Yi Feng
- Key Laboratory for Food Microbial Technology of Zhejiang Province Zhejiang Gongshang University Hangzhou PR China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province Zhejiang Gongshang University Hangzhou PR China
| | - Yi‐Cun Chen
- State Key Laboratory of Tree Genetics and Breeding Chinese Academy of Forestry Beijing PR China
- Institute of Subtropical Forestry Chinese Academy of Forestry Hangzhou PR China
| | - Yang‐Dong Wang
- State Key Laboratory of Tree Genetics and Breeding Chinese Academy of Forestry Beijing PR China
- Institute of Subtropical Forestry Chinese Academy of Forestry Hangzhou PR China
| | - Da‐feng Song
- Key Laboratory for Food Microbial Technology of Zhejiang Province Zhejiang Gongshang University Hangzhou PR China
| | - Ming Gao
- State Key Laboratory of Tree Genetics and Breeding Chinese Academy of Forestry Beijing PR China
- Institute of Subtropical Forestry Chinese Academy of Forestry Hangzhou PR China
| |
Collapse
|
4
|
Carnobacterium maltaromaticum as bioprotective culture in vitro and in cooked ham. Meat Sci 2019; 162:108035. [PMID: 31855662 DOI: 10.1016/j.meatsci.2019.108035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 01/22/2023]
Abstract
The bioprotective effects of Carnobacterium maltaromaticum (CM) strains were assessed in vitro and in sliced cooked ham. CM strains were tested in vitro against Listeria monocytogenes (LM), Escherichia coli O157:H7 (EC) and Salmonella Typhimurium (ST). In vitro effect was evaluated using co-culture (with and without EDTA) and cell-free supernatant (CFS). CFS was tested by agar well diffusion and minimum inhibitory concentration. In cooked ham, the inhibitory effect of CM on L. innocua (LI) and on the physicochemical parameters were evaluated for 7 days at 4 °C. In co-cultures at -1 °C and 4 °C, all CM isolates inhibited LM. A slight inhibition was observed against the Gram-negative bacteria with the addition of EDTA. CFS did not show inhibitory effect under the studied conditions. In cooked ham, CM inhibited LI growth and did not affect the physicochemical parameters of the product during storage. CM strains show potential to be used as bioprotective cultures in cold-stored cooked ham and improve its safety.
Collapse
|
5
|
de Nova PJG, Carvajal A, Prieto M, Rubio P. In vitro Susceptibility and Evaluation of Techniques for Understanding the Mode of Action of a Promising Non-antibiotic Citrus Fruit Extract Against Several Pathogens. Front Microbiol 2019; 10:884. [PMID: 31105673 PMCID: PMC6491944 DOI: 10.3389/fmicb.2019.00884] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/05/2019] [Indexed: 12/17/2022] Open
Abstract
The screening for alternatives to antibiotics is an urgent need for the pharmaceutical industry. One of these alternatives seems to be the citrus fruit extracts, which are showing a significant antibacterial activity against Gram-negative and Gram-positive bacteria. One of these citrus extracts, named BIOCITRO®, is assessed in this study to elucidate its bacteriostatic and bactericidal effect and its mode of action on the important pathogens Campylobacter coli, C. jejuni, Escherichia coli, Salmonella enterica ssp. enterica, Clostridium difficile, C. perfringens, and Staphylococcus aureus. For most of the strains tested of these bacteria the product was bactericidal as well as bacteriostatic at the same concentration, and the minimum bactericidal concentrations ranged from 16 to 256 μg/mL. Regarding the mode of action, important changes in the permeability, structure, composition and morphology of the bacterial envelope were evidenced using flow cytometry, Fourier transform infrared spectroscopy and scanning electron microscopy. The main effect of the product was found over carbohydrates and polysaccharides, inducing the release of microvesicles by the cells in addition to other specific effects. During the study, the techniques used were evaluated to clarify their contribution to the knowledge of the mode of action of the product. The survival test elucidated whether the modifications displayed using other techniques affected the viability of the cells or on the contrary, the cells remained viable even with evident changes in their structure, composition or morphology. Flow cytometry showed that for some strains the proportion of cells detected with altered membrane permeability were higher than the number of non-viable cells, and therefore the damage did not affect the viability of some cells. On the contrary, some cells observed using scanning electron microscopy with no apparent damage, were demonstrated non-viable using the survival test, making this technique indispensable in studies of the mode of action of antimicrobials to make a correct interpretation of the data from other techniques.
Collapse
Affiliation(s)
- Pedro J. G. de Nova
- Department of Animal Health, Faculty of Veterinary, Universidad de León, León, Spain
| | - Ana Carvajal
- Department of Animal Health, Faculty of Veterinary, Universidad de León, León, Spain
| | - Miguel Prieto
- Institute of Food Science and Technology, Universidad de León, León, Spain
- Department of Food Hygiene and Technology, Faculty of Veterinary, Universidad de León, León, Spain
| | - Pedro Rubio
- Department of Animal Health, Faculty of Veterinary, Universidad de León, León, Spain
| |
Collapse
|
6
|
Hu S, Li P, Wei Z, Wang J, Wang H, Wang Z. Antimicrobial activity of nisin-coated polylactic acid film facilitated by cold plasma treatment. J Appl Polym Sci 2018. [DOI: 10.1002/app.46844] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- S. Hu
- Center for Biomedical Materials and Interfaces; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen 518055 China
| | - P. Li
- Center for Biomedical Materials and Interfaces; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen 518055 China
| | - Z. Wei
- Center for Biomedical Materials and Interfaces; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen 518055 China
| | - J. Wang
- Center for Biomedical Materials and Interfaces; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen 518055 China
| | - H. Wang
- Center for Biomedical Materials and Interfaces; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen 518055 China
| | - Z. Wang
- Center for Biomedical Materials and Interfaces; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen 518055 China
- CSIRO Agriculture and Food; 671 Sneydes Road, Werribee Australia
| |
Collapse
|
7
|
Bingol EB, Akkaya E, Hampikyan H, Cetin O, Colak H. Effect of nisin-EDTA combinations and modified atmosphere packaging on the survival of Salmonellaenteritidis in Turkish type meatballs. CYTA - JOURNAL OF FOOD 2018. [DOI: 10.1080/19476337.2018.1523810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Enver Baris Bingol
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Istanbul University, Avcilar, Istanbul, Turkey
| | - Esra Akkaya
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Istanbul University, Avcilar, Istanbul, Turkey
| | - Hamparsun Hampikyan
- The School of Applied Sciences, Gastronomy and Culinary Arts, Beykent University, Buyukcekmece, Istanbul, Turkey
| | - Omer Cetin
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Istanbul University, Avcilar, Istanbul, Turkey
| | - Hilal Colak
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Istanbul University, Avcilar, Istanbul, Turkey
| |
Collapse
|
8
|
de Nova PJG, Carvajal A, Prieto M, Rubio P. In vitro susceptibility of Brachyspira hyodysenteriae to a commercial citrus fruit extract. Res Vet Sci 2017. [PMID: 28651094 DOI: 10.1016/j.rvsc.2017.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Brachyspira hyodysenteriae is the main etiological agent of swine dysentery (SD). Nowadays, treatment and control of SD is increasingly difficult due to the emergence of antimicrobial resistance together with the restrictions on the use of antibiotics in veterinary practice. The aim of this study was to evaluate, as an alternative in the control of this disease, the antimicrobial activity and the main mechanism of action of BIOCITRO, a citrus extract commercialized as raw material and used as feed additive, against B. hyodysenteriae. Ten isolates of B. hyodysenteriae were used to assess the minimum inhibitory and minimum bactericidal concentrations (MIC and MBC) of BIOCITRO by broth microdilution method. Moreover, stationary phase cultures of two B. hyodysenteriae strains were subjected for 90min to four different concentrations of BIOCITRO and compared with the untreated controls by flow cytometry (FC), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The results showed that BIOCITRO has a relevant bacteriostatic and bactericidal effect against B. hyodysenteriae with MIC and MBC values ranging from 32 to 128partspermillion (ppm). It induces damage in at least 35% and 76% of the bacterial cells when exposed to 128 and 256ppm of BIOCITRO respectively as revealed by the intake of propidium iodide by FC. Relevant changes in the structure of the bacterial cells were observed by SEM and confirmed by FTIR. According to these results, BIOCITRO seems to be a satisfactory alternative to the use of antibiotics in the control of SD.
Collapse
Affiliation(s)
- Pedro J G de Nova
- Department of Animal Health, University of León, Campus de Vegazana, 24071 León, Spain.
| | - Ana Carvajal
- Department of Animal Health, University of León, Campus de Vegazana, 24071 León, Spain
| | - Miguel Prieto
- Institute of Food Science and Technology, University of León, Campus de Vegazana, 24071 León, Spain; Department of Food Hygiene and Technology, University of León, Campus de Vegazana, 24071 León, Spain
| | - Pedro Rubio
- Department of Animal Health, University of León, Campus de Vegazana, 24071 León, Spain
| |
Collapse
|
9
|
Prudêncio CV, Mantovani HC, Cecon PR, Prieto M, Vanetti MCD. Temperature and pH influence the susceptibility of Salmonella Typhimurium to nisin combined with EDTA. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.09.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Galvão MF, Prudêncio CV, Vanetti MCD. Stress enhances the sensitivity of Salmonella enterica serovar Typhimurium to bacteriocins. J Appl Microbiol 2015; 118:1137-43. [PMID: 25693498 DOI: 10.1111/jam.12776] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/16/2015] [Accepted: 01/30/2015] [Indexed: 12/27/2022]
Abstract
AIMS The aim of this study was to evaluate the potential application of bacteriocins against Gram-negative bacteria when associated with others food preservation methods. METHODS AND RESULTS Salmonella was subjected to heat, cold, acid and chemical (with ethylenediaminetetracetate and trisodium phosphate) stresses. Then, the cells were recovered and subjected to treatment with bacteriocins (500 AU ml(-1) ) for 6 h. Heat and cold stress were those that promoted more sensitization to bactericidal activity of nisin. Under the same conditions, bovicin HC5 acted more rapidly than nisin reducing the number of viable cells to undetectable levels after 20 min of treatment. Similar results with use of nisin only were observed after 6 h of treatment. CONCLUSIONS Stress conditions used in food industry, such as temperature and pH, and use of chelating agents or membrane disruptors, sensitized Salmonella Typhimurium cells to bacteriocins produced by lactic acid bacteria, such as nisin and bovicin HC5. SIGNIFICANCE AND IMPACT OF THE STUDY Food preservation methods sensitized Gram-negative bacteria to bacteriocins activity, which demonstrate the potential of nisin and bovicin HC5 to inhibit the growth of Salmonella.
Collapse
Affiliation(s)
- M F Galvão
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | |
Collapse
|