1
|
Zarei M, Ghahfarokhi MG, Sabaeian M, Sepahi M, Alirezaie S, Mohebi M. Effect of plasma-activated water on planktonic and biofilm cells of Vibrio parahaemolyticus strains isolated from cutting board surfaces in retail seafood markets. J Appl Microbiol 2024; 135:lxae182. [PMID: 39020257 DOI: 10.1093/jambio/lxae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 07/19/2024]
Abstract
AIMS This research aimed to analyze cutting board surfaces in seafood markets to find Vibrio parahaemolyticus, assess the isolates' ability to form biofilms, generate and evaluate characteristics of plasma-activated water (PAW), and compare the effect of PAW on planktonic and biofilm cells of the isolated V. parahaemolyticus strains. METHODS AND RESULTS A total of 11 V. parahaemolyticus strains were isolated from 8.87% of the examined cutting boards. Biofilm-forming ability was evaluated for these isolates at temperatures of 10°C, 20°C, and 30°C using crystal violet staining. Four strains with the highest biofilm potential were selected for further analysis. The pH of the PAW used in the study was 3.41 ± 0.04, and the initial concentrations of hydrogen peroxide, nitrate, and nitrite were 108 ± 9.6, 742 ± 61, and 36.3 ± 2.9 µM, respectively. However, these concentrations decreased significantly within 3-4 days during storage at room temperature. PAW exhibited significant antimicrobial effects on V. parahaemolyticus planktonic cells, reducing viable bacteria up to 4.54 log CFU/ml within 20 min. PAW also reduced the number of biofilm cells on stainless steel (up to 3.55 log CFU/cm2) and high-density polyethylene (up to 3.06 log CFU/cm2) surfaces, although to a lesser extent than planktonic cells. CONCLUSIONS PAW exhibited significant antibacterial activity against V. parahaemolyticus cells, although its antibacterial properties diminished over time. Furthermore, the antibacterial activity of PAW against biofilm cells of V. parahaemolyticus was less pronounced compared to the planktonic cells. Therefore, the actual effectiveness of PAW in seafood processing environments can be affected by biofilms that may form on various surfaces such as cutting boards if they are not cleaned properly.
Collapse
Affiliation(s)
- Mehdi Zarei
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Maryam Ghaderi Ghahfarokhi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Mohammad Sabaeian
- Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
- Center for Research on Laser and Plasma, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Mahtab Sepahi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Soraya Alirezaie
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Mohadeseh Mohebi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| |
Collapse
|
2
|
Alves Â, Santos-Ferreira N, Magalhães R, Ferreira V, Teixeira P. From chicken to salad: Cooking salt as a potential vehicle of Salmonella spp. and Listeria monocytogenes cross-contamination. Food Control 2022; 137:108959. [PMID: 35783559 PMCID: PMC9025383 DOI: 10.1016/j.foodcont.2022.108959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022]
Abstract
Epidemiological studies show that improper food handling practices at home account for a significant portion of foodborne illness cases. Mishandling of raw meat during meal preparation is one of the most frequent hazardous behaviours reported in observational research studies that potentially contributes to illness occurrence, particularly through the transfer of microbial pathogens from the raw meat to ready-to-eat (RTE) foods. This study evaluated the transfer of two major foodborne pathogens, Salmonella enterica and Listeria monocytogenes, from artificially contaminated chicken meat to lettuce via cooking salt (used for seasoning) during simulated domestic handling practices. Pieces of chicken breast fillets were spiked with five different loads (from ca. 1 to 5 Log CFU/g) of a multi-strain cocktail of either S. enterica or L. monocytogenes. Hands of volunteers (gloved) contaminated by handling the chicken, stirred the cooking salt that was further used to season lettuce leaves. A total of 15 events of cross-contamination (three volunteers and five bacterial loads) were tested for each pathogen. Immediately after the events, S. enterica was isolated from all the cooking salt samples (n = 15) and from 12 samples of seasoned lettuce; whereas L. monocytogenes was isolated from 13 salt samples and from all the seasoned lettuce samples (n = 15). In addition, S. enterica and L. monocytogenes were able to survive in artificially contaminated salt (with a water activity of 0.49) for, at least, 146 days and 126 days, respectively. The ability of these foodborne pathogens to survive for a long time in cooking salt, make it a good vehicle for transmission and cross-contamination if consumers do not adopt good hygiene practices when preparing meals.
Collapse
Affiliation(s)
- Ângela Alves
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Nânci Santos-Ferreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Rui Magalhães
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Vânia Ferreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Paula Teixeira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| |
Collapse
|
3
|
Zhu Y, Wu F, Trmcic A, Wang S, Warriner K. Microbiological status of reusable plastic containers in commercial grower/packer operations and risk of Salmonella cross-contamination between containers and cucumbers. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Myintzaw P, Moran F, Jaiswal AK. Campylobacteriosis, consumer's risk perception, and knowledge associated with domestic poultry handling in Ireland. J Food Saf 2020. [DOI: 10.1111/jfs.12799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peter Myintzaw
- School of Food Science and Environmental HealthCollege of Sciences and Health, Technological University Dublin—City Campus Dublin Ireland
| | - Fintan Moran
- School of Food Science and Environmental HealthCollege of Sciences and Health, Technological University Dublin—City Campus Dublin Ireland
| | - Amit K. Jaiswal
- School of Food Science and Environmental HealthCollege of Sciences and Health, Technological University Dublin—City Campus Dublin Ireland
| |
Collapse
|
5
|
Bogdanovičová K, Kameník J, Dorotíková K, Strejček J, Křepelová S, Dušková M, Haruštiaková D. Occurrence of Foodborne Agents at Food Service Facilities in the Czech Republic. J Food Prot 2019; 82:1096-1103. [PMID: 31199692 DOI: 10.4315/0362-028x.jfp-18-338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
HIGHLIGHTS Contamination of food service facilities in the Czech Republic by foodborne agents was determined. Bacillus cereus, Staphylococcus aureus, and Escherichia coli were detected in almost 50% of samples. The occurrence of B. cereus, S. aureus, and E. coli depended on the season of the year. Regular monitoring of food service facilities for agents of foodborne disease is necessary.
Collapse
Affiliation(s)
- Kateřina Bogdanovičová
- 1 Department of Gastronomy, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, 612 42 Brno, Czech Republic
| | - Josef Kameník
- 1 Department of Gastronomy, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, 612 42 Brno, Czech Republic
| | - Kateřina Dorotíková
- 1 Department of Gastronomy, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, 612 42 Brno, Czech Republic
| | - Jan Strejček
- 1 Department of Gastronomy, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, 612 42 Brno, Czech Republic
| | - Simona Křepelová
- 1 Department of Gastronomy, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, 612 42 Brno, Czech Republic
| | - Marta Dušková
- 2 Department of Milk Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, 612 42 Brno, Czech Republic.,3 Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Danka Haruštiaková
- 4 Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.,5 Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
6
|
Sibanyoni JJ, Tabit FT. An assessment of the hygiene status and incidence of foodborne pathogens on food contact surfaces in the food preparation facilities of schools. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Sarjit A, Dykes GA. Transfer of Campylobacter and Salmonella from Poultry Meat onto Poultry Preparation Surfaces. J Food Prot 2017; 80:750-757. [PMID: 28358259 DOI: 10.4315/0362-028x.jfp-16-414] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/09/2017] [Indexed: 11/11/2022]
Abstract
Thermophilic Campylobacter and Salmonella enterica are major causes of gastrointestinal foodborne infection. Survival of these pathogens on food-associated surfaces is a risk contributing to their spread through the food system. This study examined the transfer of two strains each of C. jejuni, C. coli, Salmonella Enteritidis, and Salmonella Typhimurium from chicken meat to a knife or scissors used on either a plastic or wooden cutting board. Each strain of Campylobacter and Salmonella at ∼108 CFU mL-1 was inoculated (5 mL) onto 25 g of chicken meat with skin and allowed to attach (for 10 min). The meat was then cut (20 times per implement) into 1-cm2 pieces with either a knife or scissors on either a plastic or wooden cutting board. The numbers of pathogens transferred from meat onto cutting implements and cutting board surfaces were enumerated. The surfaces were subsequently either rinsed with water or rinsed with water and wiped with a kitchen towel to mimic commonly used superficial cleaning practices for these implements, and the numbers of pathogens were enumerated again. The bacterial numbers for both pathogens were determined on thin-layer agar. The attachment of the Salmonella strains to chicken meat (∼7.0 to 7.8 log CFU cm-2) was higher than the attachment of the Campylobacter strains (∼4.6 to 6.6 log CFU cm-2). All four Salmonella strains transferred in higher numbers (∼1.9 to 6.3 log CFU cm-2) to all surfaces than did the Campylobacter strains (∼1.1 to 3.9 log CFU cm-2). The transfer rates of both pathogens from the chicken meat to all the surfaces examined varied substantially between ∼0 and 21.1%. The highest rate of transfer (∼21.1%) observed was for C. coli 2875 when transferred from the chicken meat to the scissors. Most cleaning treatments reduced the numbers of both pathogens (∼0.3 to 4.1 log CFU cm-2) transferred to all the surfaces. Our study gives insights into the risks associated with the transfer of Campylobacter and Salmonella from poultry to the surfaces used in poultry preparation.
Collapse
Affiliation(s)
- Amreeta Sarjit
- School of Science, Monash University, Jalan Lagoon Selatan, Bandar Sunway 46150, Selangor, Malaysia; and
| | - Gary A Dykes
- School of Public Health, Curtin University, Bentley 6102, Western Australia, Australia (ORCID: http://orcid.org/0000-0001-5014-9282)
| |
Collapse
|
8
|
Possas A, Carrasco E, García-Gimeno R, Valero A. Models of microbial cross-contamination dynamics. Curr Opin Food Sci 2017. [DOI: 10.1016/j.cofs.2017.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|