1
|
Harat SG, Pourjafar H. Health Benefits and Safety of Postbiotics Derived from Different Probiotic Species. Curr Pharm Des 2025; 31:116-127. [PMID: 39297457 DOI: 10.2174/0113816128335414240828105229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/30/2024] [Indexed: 02/18/2025]
Abstract
Nowadays, the usage of probiotics in the food industry has become common. It has been proven that probiotics have many health benefits, such as adjusting the intestinal microbiome, boosting the immune system, and enhancing anti-inflammatory and anti-cancer activities. However, in recent years, some concerns have arisen about the consumption of probiotics, especially in vulnerable populations such as elderly, infants, and people with underlying diseases. As a result, finding a new alternative to probiotics that has the same function as probiotics and is safer has been prioritized. In recent years, postbiotics have been introduced as a great replacement for probiotics. However, the safety of these compounds is not exactly confirmed due to the limited in vivo research. In this review, the definition, classification, activities, limitations, and some advantages of postbiotics over probiotics are discussed. Finally, the limited published data about the safety of postbiotics is summarized.
Collapse
Affiliation(s)
| | - Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
2
|
Nasri F, Alizadeh A, İncili GK, Hayaloğlu AA, Moradi M. Investigating Chemical Composition and Functionality of Lactobacillus acidophilus LA-5 Postbiotics Prepared in Classic and Cheese Whey Media. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10435-9. [PMID: 39693008 DOI: 10.1007/s12602-024-10435-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2024] [Indexed: 12/19/2024]
Abstract
This study aimed to characterize two types of postbiotics from Lactobacillus acidophilus LA-5 prepared in De Man, Rogosa, and Sharpe (MRS-Pb) and UF cheese whey (W-Pb). We compared the chemical compositions, functional properties, and toxicities of the prepared probiotics. Assessments included antimicrobial and antioxidant activities, total and individual phenolic compounds, volatile compounds, individual free amino acids, and organic acid contents. Cytotoxicity and potential effects on cell proliferation were assessed using MTT and wound healing assays in HCT-116 intestinal epithelial cancer cells. The results revealed differences in the chemical composition of the two postbiotics. Citric, lactic, and butyric acids were the main organic acids in W-Pb, whereas malic and acetic acids were the main organic acids in MRS-Pb. High levels of hydrocarbons were found in MRS-Pb. W-Pb exhibited potent antimicrobial activity against Listeria monocytogenes and Escherichia coli than MRS-Pb, while the antioxidant potential of MRS-Pb was higher than that of W-Pb. L. acidophilus postbiotics significantly reduced HCT-116 cell viability in a dose-dependent manner (10, 20, and 40 mg/mL for MRS-Pb and 10 and 20 mg/mL for W-Pb). MRS-Pb exhibited more potent effects and cytotoxicity than W-Pb did. Postbiotics did not affect HCT-116 cell proliferation or migration. Both postbiotics increased TAC in a concentration-dependent manner in treated cells, with MRS-Pb showing a stronger effect. These results suggest that the type of culture medium can significantly affect the bioactive properties, chemical composition, and toxicity of postbiotics.
Collapse
Affiliation(s)
- Fatemeh Nasri
- Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Arash Alizadeh
- Division of Pharmacology and Toxicology, Department of Basic Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Gökhan Kürşad İncili
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Firat University, 23119, Elazığ, Turkey.
| | - Ali Adnan Hayaloğlu
- Department of Food Engineering, Engineering Faculty, Inonu University, 44280, Malatya, Turkey
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| |
Collapse
|
3
|
Kamber A, Bulut Albayrak C, Harsa HS. Studies on the Probiotic, Adhesion, and Induction Properties of Artisanal Lactic Acid Bacteria: to Customize a Gastrointestinal Niche to Trigger Anti-obesity Functions. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10357-6. [PMID: 39382740 DOI: 10.1007/s12602-024-10357-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/10/2024]
Abstract
The primary goals of this work are to explore the potential of probiotic lactic acid bacteria's (LAB) mucin/mucus layer thickening properties and to identify anti-obesity candidate strains that improve appropriate habitat for use with the Akkermansia group population in the future. The HT-29 cell binding, antimicrobial properties, adhesion to the mucin/mucus layer, growth in the presence of mucin, stability during in vitro gastrointestinal (GI) conditions, biofilm formation, and mucin/mucus thickness increment abilities were all assessed for artisanal LAB strains. Sixteen LAB strains out of 40 were chosen for further analysis based on their ability to withstand GI conditions. Thirteen strains remained viable in simulated intestinal fluid, while most showed high viability in gastric juice simulation. Furthermore, 35.9-65.4% of those 16 bacteria adhered to the mucin layer. Besides, different lactate levels were produced, and Streptococcus thermophilus UIN9 exhibited the highest biofilm development. In the HT-29 cell culture, the highest mucin levels were 333.87 µg/mL with O. AK8 at 50 mM lactate, 313.38 µg/mL with Lactobacillus acidophilus NRRL-B 1910 with initial mucin, and 311.41 µg/mL with Lacticaseibacillus casei NRRL-B 441 with initial mucin and 50 mM lactate. Nine LAB strains have been proposed as anti-obesity candidates, with olive isolates of Lactiplantibacillus plantarum being particularly important due to their ability to avoid mucin sugar consumption. Probiotic LAB's attachment to the colonic mucosa and its ability to stimulate HT-29 cells to secrete mucus are critical mechanisms that may support the development of Akkermansia.
Collapse
Affiliation(s)
- A Kamber
- Food Engineering Department, Izmir Institute of Technology, Engineering Faculty, 35430, Izmir, Türkiye
| | - C Bulut Albayrak
- Food Engineering Department, Aydın Adnan Menderes University, Engineering Faculty, 09100, Aydın, Türkiye
| | - H S Harsa
- Food Engineering Department, Izmir Institute of Technology, Engineering Faculty, 35430, Izmir, Türkiye.
| |
Collapse
|
4
|
Contessa CR, Moreira EC, Moraes CC, de Medeiros Burkert JF. Production and SERS characterization of bacteriocin-like inhibitory substances by latilactobacillus sakei in whey permeate powder: exploring natural antibacterial potential. Bioprocess Biosyst Eng 2024; 47:1723-1734. [PMID: 39014172 DOI: 10.1007/s00449-024-03065-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
Bacteriocins are antimicrobial compounds that have awakened interest across several industries due to their effectiveness. However, their large-scale production often becomes unfeasible on an industrial scale, primarily because of high process costs. Addressing this challenge, this work analyzes the potential of using low-cost whey permeate powder, without any supplementation, to produce bacteriocin-like inhibitory substances (BLIS) through the fermentation of Latilactobacillus sakei. For this purpose, different concentrations of whey permeate powder (55.15 gL-1, 41.3 gL-1 and 27.5 gL-1) were used. The ability of L. sakei to produce BLIS was evaluated, as well as the potential of crude cell-free supernatant to act as a preservative. Raman spectroscopy and surface-enhanced Raman scattering (SERS) provided detailed insights into the composition and changes occurring during fermentation. SERS, in particular, enhanced peak definition significantly, allowing for the identification of key components, such as lactose, proteins, and phenylalanine, which are crucial in understanding the fermentation process and BLIS characteristics. The results revealed that the concentration of 55.15 gL-1 of whey permeate powder, in flasks without agitation and a culture temperature of 32.5 °C, presented the highest biological activity of BLIS, reaching 99% of inhibition of Escherichia coli and Staphylococcus aureus with minimum inhibitory concentration of 36-45%, respectively. BLIS production began within 60 h of cultivation and was associated with class II bacteriocins. The results demonstrate a promising approach for producing BLIS in an economical and environmentally sustainable manner, with potential implications for various industries.
Collapse
Affiliation(s)
- Camila Ramão Contessa
- Engineering and Science of Food Graduate Program, College of Chemistry and Food Engineering, Laboratory Bioprocess Engineering, Federal University of Rio Grande, PO Box 474, Rio Grande, RS, 96203-900, Brazil.
| | - Eduardo Ceretta Moreira
- Science and Engineering of Materials Graduate Program, Spectroscopy Laboratory, Federal University of Pampa, PO Box 1650, Bagé, RS, 96413170, Brazil
| | - Caroline Costa Moraes
- Science and Engineering of Materials Graduate Program, Laboratory of Microbiology and Food Toxicology, Federal University of Pampa, PO Box 1650, Bagé, RS, 96413170, Brazil
| | - Janaína Fernandes de Medeiros Burkert
- Engineering and Science of Food Graduate Program, College of Chemistry and Food Engineering, Laboratory Bioprocess Engineering, Federal University of Rio Grande, PO Box 474, Rio Grande, RS, 96203-900, Brazil
| |
Collapse
|
5
|
Khakpour M, Mohsenzadeh M, Salari A. Feasibility of lactiplantibacillus plantarum postbiotics production in challenging media by different techniques. AMB Express 2024; 14:47. [PMID: 38668839 PMCID: PMC11052967 DOI: 10.1186/s13568-024-01704-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
The postbiotic derived from Lactiplantibacillus plantarum bacteria was produced in three culture media: milk, MRS, and whey, and its antibacterial and antifungal properties were evaluated. To investigate the production efficiency of postbiotics, three methods, heating, sonication and centrifugation, were utilized to prepare postbiotics in MRS broth culture medium. The antibacterial potency of the postbiotic was evaluated using the agar well-diffusion method, and MIC and MBC tests were conducted for different treatments. The results of the study showed that the postbiotic prepared in food environments such as milk and cheese whey can have antibacterial and antifungal properties similar to the postbiotic prepared in the MRS culture medium. However, it is possible to enrich food matrices such as milk and cheese whey and make further adjustments in terms of pH settings. Additionally, the thermal process was able to create a nanoscale postbiotic, which is a significant achievement for the application of postbiotics in the food and pharmaceutical industries. The future outlook of postbiotics clearly indicates that the emergence of this generation of probiotics can have an attractive and functional position in the food and pharmaceutical industries. Therefore, future research focusing on this subject will contribute to the development of this generation of postbiotics.
Collapse
Affiliation(s)
- Mahsa Khakpour
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Mohsenzadeh
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Salari
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
6
|
Mishra B, Mishra AK, Mohanta YK, Yadavalli R, Agrawal DC, Reddy HP, Gorrepati R, Reddy CN, Mandal SK, Shamim MZ, Panda J. Postbiotics: the new horizons of microbial functional bioactive compounds in food preservation and security. FOOD PRODUCTION, PROCESSING AND NUTRITION 2024; 6:28. [DOI: 10.1186/s43014-023-00200-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/05/2023] [Indexed: 01/05/2025]
Abstract
AbstractIn recent decades, consumers, manufacturers, and researchers have been more interested in functional foods, which include probiotics, prebiotics, and postbiotics. Probiotics are live microbes that, when regulated in enough quantities, provide health benefits on the host, while the prebiotics are substrates that host microorganisms selectively use. Postbiotics are metabolites and cell-wall components that are beneficial to the host and are released by living bacteria or after lysis. Postbiotic dietary supplements are more stable than probiotics and prebiotics. Many bioactivities of postbiotics are unknown or poorly understood. Hence, this study aims to present a synopsis of the regular elements and new developments of the postbiotics including health-promoting effects, production, conceptualization of terms, bioactivities, and applications in the field of food safety and preservation. Postbiotics aid in bio preservation and the reduction of biofilm development in food due to their organic acids, bacteriocins, and other antibacterial activities. The present study examines the production of postbiotic metabolites in situ in food and the effects of external and internal food components. The antimicrobial roles, removal of biofilms, and its applications in preservation and food safety have also been discussed. This paper also explored the various aspects like manipulation of postbiotic composition in the food system and its safety measures.
Graphical Abstract
Collapse
|
7
|
Sharafi H, Divsalar E, Rezaei Z, Liu SQ, Moradi M. The potential of postbiotics as a novel approach in food packaging and biopreservation: a systematic review of the latest developments. Crit Rev Food Sci Nutr 2023; 64:12524-12554. [PMID: 37667831 DOI: 10.1080/10408398.2023.2253909] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Metabolic by-products are part of the so-called postbiotics of probiotics and other beneficial microorganisms, particularly lactic acid bacteria, which have gained popularity as a feasible alternative to improving food quality and safety. Postbiotics in dry and liquid forms can be easily integrated into food formulations and packaging materials, exhibiting antimicrobial and antioxidant effects owing to the presence of multiple antimicrobials, such as organic acids, bacteriocins, exopolysaccharides and bioactive peptides. Postbiotics can thus control the growth of pathogens and spoilage microorganisms, thereby extending the shelf life of food products. Because of their ability to be easily manufactured without requiring extensive processing, postbiotics are regarded as a safer and more sustainable alternative to synthetic preservatives, which can have negative environmental consequences. Additionally, food manufacturers can readily adopt postbiotics in food formulations without significant modifications. This systematic review provides an in-depth analysis of studies on the use of postbiotics in the biopreservation and packaging of a wide range of food products. The review evaluates and discusses the types of microorganisms, postbiotics preparation and modification techniques, methods of usage in dairy products, meat, poultry, seafood, fruits, vegetables, bread, and egg, and their effects on food quality and safety.
Collapse
Affiliation(s)
- Houshmand Sharafi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Elahe Divsalar
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Zeinab Rezaei
- Center of Cheshme noshan khorasan (Alis), University of Applied Science and Technology, Chanaran, Iran
| | - Shao-Quan Liu
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
8
|
Moula Ali AM, Sant'Ana AS, Bavisetty SCB. Sustainable preservation of cheese: Advanced technologies, physicochemical properties and sensory attributes. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
Thorakkattu P, Khanashyam AC, Shah K, Babu KS, Mundanat AS, Deliephan A, Deokar GS, Santivarangkna C, Nirmal NP. Postbiotics: Current Trends in Food and Pharmaceutical Industry. Foods 2022; 11:3094. [PMID: 36230169 PMCID: PMC9564201 DOI: 10.3390/foods11193094] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Postbiotics are non-viable bacterial products or metabolic byproducts produced by probiotic microorganisms that have biologic activity in the host. Postbiotics are functional bioactive compounds, generated in a matrix during anaerobic fermentation of organic nutrients like prebiotics, for the generation of energy in the form of adenosine triphosphate. The byproducts of this metabolic sequence are called postbiotics, these are low molecular weight soluble compounds either secreted by live microflora or released after microbial cell lysis. A few examples of widely studied postbiotics are short-chain fatty acids, microbial cell fragments, extracellular polysaccharides, cell lysates, teichoic acid, vitamins, etc. Presently, prebiotics and probiotics are the products on the market; however, postbiotics are also gaining a great deal of attention. The numerous health advantages of postbiotic components may soon lead to an increase in consumer demand for postbiotic supplements. The most recent research aspects of postbiotics in the food and pharmaceutical industries are included in this review. The review encompasses a brief introduction, classification, production technologies, characterization, biological activities, and potential applications of postbiotics.
Collapse
Affiliation(s)
- Priyamvada Thorakkattu
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS 66506, USA
| | | | - Kartik Shah
- Sargento Foods, 305 Pine Street, Elkhart Lake, WI 53020, USA
| | - Karthik Sajith Babu
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS 66506, USA
| | - Anjaly Shanker Mundanat
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat 131028, India
| | | | - Gitanjali S. Deokar
- Department of Quality Assurance, MET’s Institute of Pharmacy, Bhujbal Knowledge City, Nashik 422003, India
| | - Chalat Santivarangkna
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| |
Collapse
|
10
|
Production and fermentation characteristics of antifungal peptides by synergistic interactions with Lactobacillus paracasei and Propionibacterium freudenii in supplemented whey protein formulations. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Manassi CF, de Souza SS, Hassemer GDS, Sartor S, Lima CMG, Miotto M, De Dea Lindner J, Rezzadori K, Pimentel TC, Ramos GLDPA, Esmerino E, Holanda Duarte MCK, Marsico ET, Verruck S. Functional meat products: Trends in pro-, pre-, syn-, para- and post-biotic use. Food Res Int 2022; 154:111035. [DOI: 10.1016/j.foodres.2022.111035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/15/2022]
|
12
|
Parlindungan E, Dekiwadia C, Jones OA. Factors that influence growth and bacteriocin production in Lactiplantibacillus plantarum B21. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Hernández-Granados MJ, Franco-Robles E. Postbiotics in human health: Possible new functional ingredients? Food Res Int 2020; 137:109660. [DOI: 10.1016/j.foodres.2020.109660] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
|
14
|
de Azevedo POS, Mendonça CMN, Seibert L, Domínguez JM, Converti A, Gierus M, Oliveira RPS. Bacteriocin-like inhibitory substance of Pediococcus pentosaceus as a biopreservative for Listeria sp. control in ready-to-eat pork ham. Braz J Microbiol 2020; 51:949-956. [PMID: 32144691 PMCID: PMC7455651 DOI: 10.1007/s42770-020-00245-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/10/2020] [Indexed: 10/24/2022] Open
Abstract
The growing demand of consumers for synthetic chemical-free foods has increased the search for natural preservatives such as bacteriocins and bacteriocin-like inhibitory substances (BLIS) to give them adequate microbiological safety, sensory characteristics, and shelf life. In this study, the antimicrobial activity of BLIS produced by Pediococcus pentosaceus ATCC 43200 was compared with that of nisin. Lactobacillus sakei ATCC 15521, Listeria seeligeri NCTC 11289, Enterococcus En2052 and En2865, and Listeria monocytogenes CECT 934 and NADC 2045 exhibited larger inhibition halos in BLIS-treated than in Nisaplin-treated samples, unlike Listeria innocua NCTC 11288. In artificially contaminated ready-to-eat pork ham, BLIS was effective in inhibiting the growth of L. seeligeri NCTC 11289 for 6 days (counts from 1.74 to 0.00 log CFU/g) and ensured lower weight loss (2.7%) and lipid peroxidation (0.63 mg MDA/kg) of samples compared with the control (3.0%; 1.25 mg MDA/kg). At the same time, coloration of ham samples in terms of luminosity, redness, and yellowness as well as discoloration throughout cold storage was not influenced by BLIS or Nisaplin taken as a control. These results suggest the potential use of P. pentosaceus BLIS as a biopreservative in meat and other food processing industries.
Collapse
Affiliation(s)
- Pamela O S de Azevedo
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo, SP, Brazil
| | - Carlos M N Mendonça
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo, SP, Brazil
| | - Liane Seibert
- Department of Animal Science, Laboratory of Ecology and Natural Grassland, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - José M Domínguez
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas s/n, 32004, Ourense, Spain
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, Via Opera Pia 15, 16145, Genoa, Italy
| | - Martin Gierus
- Department of Agrobiotechnology, Institute of Animal Nutrition, Livestock Products, and Nutrition Physiology (TTE), IFA-Tulln, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Ricardo P S Oliveira
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
15
|
Luong NDM, Coroller L, Zagorec M, Membré JM, Guillou S. Spoilage of Chilled Fresh Meat Products during Storage: A Quantitative Analysis of Literature Data. Microorganisms 2020; 8:E1198. [PMID: 32781668 PMCID: PMC7465036 DOI: 10.3390/microorganisms8081198] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/03/2020] [Indexed: 01/21/2023] Open
Abstract
A literature search was performed on spoilage of fresh meat products by combining keyword query, text mining and expert elicitation. From the 258 collected studies, a quantitative analysis was first performed to identify the methods which are the most used to evaluate spoilage beside the preservation strategies suggested. In a second step focusing on a subset of 24 publications providing quantitative data on spoilage occurrence time, associations between spoilage occurrence time of meat products and specific spoilage indicators were investigated. The analysis especially focused on factors well represented in the 24 publications, i.e., gas packaging (O2 and CO2) and storage temperature. Relationships between spoilage occurrence and several microbiological indicators were also sought. The results point out possible advantages of removing dioxygen in packaging to delay spoilage occurrence, whereas, in the presence of dioxygen, the carbon dioxide proportion in the gas mixtures was shown to influence spoilage occurrence. The collected data clearly reveal a potentially protective role of lactic acid bacteria. Besides, while a spoilage role could be attributed to Pseudomonas spp., the growth of mesophilic aerobic microbes, Brochothrix spp. and Enterobacteriaceae seemed independent of spoilage occurrence time.
Collapse
Affiliation(s)
- Ngoc-Du Martin Luong
- SECALIM, INRAE, ONIRIS, Université Bretagne Loire, Route de Gachet, CS 40706, F-44307 Nantes, France; (N.-D.M.L.); (M.Z.); (J.-M.M.)
| | - Louis Coroller
- Université de Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT Alter’ix, F-29334 Quimper, France;
| | - Monique Zagorec
- SECALIM, INRAE, ONIRIS, Université Bretagne Loire, Route de Gachet, CS 40706, F-44307 Nantes, France; (N.-D.M.L.); (M.Z.); (J.-M.M.)
| | - Jeanne-Marie Membré
- SECALIM, INRAE, ONIRIS, Université Bretagne Loire, Route de Gachet, CS 40706, F-44307 Nantes, France; (N.-D.M.L.); (M.Z.); (J.-M.M.)
| | - Sandrine Guillou
- SECALIM, INRAE, ONIRIS, Université Bretagne Loire, Route de Gachet, CS 40706, F-44307 Nantes, France; (N.-D.M.L.); (M.Z.); (J.-M.M.)
| |
Collapse
|
16
|
Wang K, Ran L, Yan T, Niu Z, Kan Z, Zhang Y, Yang Y, Xie L, Huang S, Yu Q, Wu D, Song Z. Anti-TGEV Miller Strain Infection Effect of Lactobacillus plantarum Supernatant Based on the JAK-STAT1 Signaling Pathway. Front Microbiol 2019; 10:2540. [PMID: 31781061 PMCID: PMC6851170 DOI: 10.3389/fmicb.2019.02540] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022] Open
Abstract
Transmissible gastroenteritis (TGE), caused by transmissible gastroenteritis virus (TGEV), is one many gastrointestinal inflections in piglets, characterized by diarrhea, and high mortality. Probiotics are ubiquitous bacteria in animal intestines, which have many functions, such as promoting intestinal peristalsis and maintaining the intestinal balance. We found that the supernatant of the Lp-1 strain of Lactobacillus plantarum, isolated in our laboratory, and named Lp-1s had marked anti-TGEV effect on IPEC-J2 cells. Lp-1s could induce large amounts of interferon-β in IPEC-J2 cells in the early stage (6 h) of infection with TGEV, and increased the level of phosphorylated signal transducer and activator of transcription and its nuclear translocation in the late stage (24–48 h) of infection. This resulted in upregulated expression of interferon-stimulated genes, and increased the transcription and protein expression of antiviral proteins, resulting in an anti-TGEV effect.
Collapse
Affiliation(s)
- Kai Wang
- Department of Microbiology and Immunology, College of Animal Science, Southwest University, Chongqing, China
| | - Ling Ran
- Department of Microbiology and Immunology, College of Animal Science, Southwest University, Chongqing, China
| | - Tao Yan
- Department of Preventive Veterinary Medicine, Medical College of Animals, Xinjiang Agricultural University, Ürümqi, China
| | - Zheng Niu
- Department of Microbiology and Immunology, College of Animal Science, Southwest University, Chongqing, China
| | - Zifei Kan
- Department of Microbiology and Immunology, College of Animal Science, Southwest University, Chongqing, China
| | - Yiling Zhang
- Department of Microbiology and Immunology, College of Animal Science, Southwest University, Chongqing, China
| | - Yang Yang
- Department of Microbiology and Immunology, College of Animal Science, Southwest University, Chongqing, China
| | - Luyi Xie
- Department of Microbiology and Immunology, College of Animal Science, Southwest University, Chongqing, China
| | - Shilei Huang
- Department of Microbiology and Immunology, College of Animal Science, Southwest University, Chongqing, China
| | - Qiuhan Yu
- Department of Microbiology and Immunology, College of Animal Science, Southwest University, Chongqing, China
| | - Di Wu
- Department of Microbiology and Immunology, College of Animal Science, Southwest University, Chongqing, China
| | - Zhenhui Song
- Department of Microbiology and Immunology, College of Animal Science, Southwest University, Chongqing, China
| |
Collapse
|
17
|
Costa-Trigo I, Otero-Penedo P, Outeiriño D, Paz A, Domínguez JM. Valorization of chestnut (Castanea sativa) residues: Characterization of different materials and optimization of the acid-hydrolysis of chestnut burrs for the elaboration of culture broths. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 87:472-484. [PMID: 31109548 DOI: 10.1016/j.wasman.2019.02.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/05/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
Four kinds of waste from the industrial processing of chestnuts (Castanea sativa), namely leaves, pruned material and burrs from chestnut tree plus chestnut shells, were characterized to determine their content in polymers and thus their potential use in biorefinery processes. Results revealed that chestnut burrs have the highest polysaccharide content being the most promising for carrying out the subsequent stages of acid hydrolysis. Treatment with diluted sulfuric acid (prehydrolysis) allowed the solubilization of xylose, glucose and arabinose, but also some toxic compounds such as furan derivatives, aliphatic acids and phenolic constituents. Xylose, the main component released in the hemicellulosic hydrolyzates, was maximized by using a 3**(2-0) full factorial design combined with desirability function. At optimum conditions set at 130 °C and 3% (w/v) H2SO4, this value was 22.6 g L-1 xylose. Three concentrations of activated charcoal (1, 2.5 and 5% w/v) were evaluated to remove certain unwanted byproducts, and it was found that under the highest dosage, 95.27 ± 0.03% of the color was removed with an almost total reduction of furan derivatives, making this liquor an appropriate basis for the development of suitable culture media for lactic acid bacteria. To validate this hypothesis three lactic acid bacteria, namely Lactobacillus plantarum, Lactobacillus pentosus and Lactococcus lactis were positively tested finding lactic acid yields of 0.89, 0.92 and 0.83 g/L·h respectively.
Collapse
Affiliation(s)
- Iván Costa-Trigo
- Industrial Biotechnology and Environmental Engineering Group "BiotecnIA", Chemical Engineering Department, University of Vigo (Campus Ourense), As Lagoas s/n, 32004 Ourense, Spain
| | - Patricia Otero-Penedo
- Industrial Biotechnology and Environmental Engineering Group "BiotecnIA", Chemical Engineering Department, University of Vigo (Campus Ourense), As Lagoas s/n, 32004 Ourense, Spain
| | - David Outeiriño
- Industrial Biotechnology and Environmental Engineering Group "BiotecnIA", Chemical Engineering Department, University of Vigo (Campus Ourense), As Lagoas s/n, 32004 Ourense, Spain
| | - Alicia Paz
- Industrial Biotechnology and Environmental Engineering Group "BiotecnIA", Chemical Engineering Department, University of Vigo (Campus Ourense), As Lagoas s/n, 32004 Ourense, Spain
| | - José Manuel Domínguez
- Industrial Biotechnology and Environmental Engineering Group "BiotecnIA", Chemical Engineering Department, University of Vigo (Campus Ourense), As Lagoas s/n, 32004 Ourense, Spain.
| |
Collapse
|
18
|
Sabo SS, Converti A, Ichiwaki S, Oliveira RP. Bacteriocin production by Lactobacillus plantarum ST16Pa in supplemented whey powder formulations. J Dairy Sci 2019; 102:87-99. [DOI: 10.3168/jds.2018-14881] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022]
|
19
|
Bio-controlling capability of probiotic strain Lactobacillus rhamnosus against some common foodborne pathogens in yoghurt. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Vera ECS, de Azevedo PODS, Domínguez JM, Oliveira RPDS. Optimization of biosurfactant and bacteriocin-like inhibitory substance (BLIS) production by Lactococcus lactis CECT-4434 from agroindustrial waste. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.02.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|