1
|
Wu H, Qu L, Bai X, Zhu C, Liu Y, Duan Z, Liu H, Fu R, Fan D. Ginsenoside Rk1 induces autophagy-dependent apoptosis in hepatocellular carcinoma by AMPK/mTOR signaling pathway. Food Chem Toxicol 2024:114587. [PMID: 38461953 DOI: 10.1016/j.fct.2024.114587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/01/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Hepatocellular carcinoma (HCC) is the third most lethal cancer in the world. Recent studies have shown that suppression of autophagy plays an important role in the development of HCC. Ginsenoside Rk1 is a protopanaxadiol saponin isolated from ginseng and has a significant anti-tumor effect, but its role and mechanism in HCC are still unclear. In this study, a mouse liver cancer model induced by diethylnitrosamine and carbon tetrachloride (DEN + CCl4) was employed to investigate the inhibitory effect of Rk1 on HCC. The results demonstrate that ginsenoside Rk1 effectively inhibits liver injury, liver fibrosis, and cirrhosis during HCC progression. Transcriptome data analysis of mouse liver tissue reveals that ginsenoside Rk1 significantly regulates the AMPK/mTOR signaling pathway, autophagy pathway, and apoptosis pathway. Subsequent studies show that ginsenoside Rk1 induces AMPK protein activation, upregulates the expression of autophagy marker LC3-II protein to promote autophagy, and then downregulates the expression of Bcl2 protein to trigger a caspase cascade reaction, activating AMPK/mTOR-induced toxic autophagy to promote cells death. Importantly, co-treatment of ginsenoside Rk1 with autophagy inhibitors can inhibit apoptosis of HCC cells, once again demonstrating the ability of ginsenoside Rk1 to promote autophagy-dependent apoptosis. In conclusion, our study demonstrates that ginsenoside Rk1 inhibits the development of primary HCC by activating toxic autophagy to promote apoptosis through the AMPK/mTOR pathway. These findings confirm that ginsenoside Rk1 is a promising new strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Huanyan Wu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Linlin Qu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China; Xi'an Giant Biotechnology Co., Ltd., Xi'an, 710076, China
| | - Xue Bai
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Yuan Liu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Zhiguang Duan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Hongyan Liu
- Shaanxi Gaint Biotechnology Co., Ltd., Xi'an, 710076, China
| | - Rongzhan Fu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China.
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
2
|
Salete-Granado D, Carbonell C, Puertas-Miranda D, Vega-Rodríguez VJ, García-Macia M, Herrero AB, Marcos M. Autophagy, Oxidative Stress, and Alcoholic Liver Disease: A Systematic Review and Potential Clinical Applications. Antioxidants (Basel) 2023; 12:1425. [PMID: 37507963 PMCID: PMC10376811 DOI: 10.3390/antiox12071425] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Ethanol consumption triggers oxidative stress by generating reactive oxygen species (ROS) through its metabolites. This process leads to steatosis and liver inflammation, which are critical for the development of alcoholic liver disease (ALD). Autophagy is a regulated dynamic process that sequesters damaged and excess cytoplasmic organelles for lysosomal degradation and may counteract the harmful effects of ROS-induced oxidative stress. These effects include hepatotoxicity, mitochondrial damage, steatosis, endoplasmic reticulum stress, inflammation, and iron overload. In liver diseases, particularly ALD, macroautophagy has been implicated as a protective mechanism in hepatocytes, although it does not appear to play the same role in stellate cells. Beyond the liver, autophagy may also mitigate the harmful effects of alcohol on other organs, thereby providing an additional layer of protection against ALD. This protective potential is further supported by studies showing that drugs that interact with autophagy, such as rapamycin, can prevent ALD development in animal models. This systematic review presents a comprehensive analysis of the literature, focusing on the role of autophagy in oxidative stress regulation, its involvement in organ-organ crosstalk relevant to ALD, and the potential of autophagy-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Daniel Salete-Granado
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
| | - Cristina Carbonell
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - David Puertas-Miranda
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Víctor-José Vega-Rodríguez
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Marina García-Macia
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Instituto de Biología Funcional y Genómica (IBFG), Universidad de Salamanca, 37007 Salamanca, Spain
| | - Ana Belén Herrero
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Miguel Marcos
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
3
|
Kantharaj V, Yoon YE, Lee KA, Choe H, Chohra H, Seo WD, Kim YN, Lee YB. Saponarin, a Di-glycosyl Flavone from Barley ( Hordeum vulgare L.): An Effective Compound for Plant Defense and Therapeutic Application. ACS OMEGA 2023; 8:22285-22295. [PMID: 37396229 PMCID: PMC10308553 DOI: 10.1021/acsomega.3c00267] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/29/2023] [Indexed: 07/04/2023]
Abstract
Saponarin (SA) is a major di-C-glycosyl-O-glycosyl flavone, which is predominantly accumulated in the young green leaves of barley (Hordeum vulgare L.), with numerous biological functions in plants, such as protection against environmental stresses. Generally, SA synthesis and its localization in the mesophyll vacuole or leaf epidermis are largely stimulated in response to biotic and abiotic stresses to participate in a plant's defense response. In addition, SA is also credited for its pharmacological properties, such as the regulation of signaling pathways associated with antioxidant and anti-inflammatory responses. In recent years, many researchers have shown the potential of SA to treat oxidative and inflammatory disorders, such as in protection against liver diseases, and reducing blood glucose, along with antiobesity effects. This review aims to highlight natural variations of SA in plants, biosynthesis pathway, and SA's role in response to environmental stress and implications in various therapeutic applications. In addition, we also discuss the challenges and knowledge gaps concerning SA use and commercialization.
Collapse
Affiliation(s)
- Vimalraj Kantharaj
- Institute
of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Young-Eun Yoon
- Institute
of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Keum-Ah Lee
- Institute
of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyeonji Choe
- Division
of Applied Life Science (BK21), Gyeongsang
National University, Jinju 52828, Republic
of Korea
| | - Hadjer Chohra
- Division
of Applied Life Science (BK21), Gyeongsang
National University, Jinju 52828, Republic
of Korea
| | - Woo Duck Seo
- Division
of Crop Foundation, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Young-Nam Kim
- Institute
of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
- Division
of Applied Life Science (BK21), Gyeongsang
National University, Jinju 52828, Republic
of Korea
| | - Yong Bok Lee
- Institute
of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
- Division
of Applied Life Science (BK21), Gyeongsang
National University, Jinju 52828, Republic
of Korea
| |
Collapse
|
4
|
Lee WS, Lee HJ, Yang JY, Shin HL, Choi SW, Kim JK, Seo WD, Kim EH. The Potential Neuroprotective Effects of Extracts from Oat Seedlings against Alzheimer's Disease. Nutrients 2022; 14:4103. [PMID: 36235754 PMCID: PMC9571310 DOI: 10.3390/nu14194103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022] Open
Abstract
The physiological or dietary advantages of germinated grains have been the subject of numerous discussions over the past decade. Around 23 million tons of oats are consumed globally, making up a sizeable portion of the global grain market. Oat seedlings contain more protein, beta-glucan, free amino acids, and phenolic compounds than seeds. The progressive neurodegenerative disorder of Alzheimer's is accompanied by worsening memory and cognitive function. A key indicator of this disorder is the unusual buildup of amyloid-beta protein (or Aβ) in human brains. In this context, oat seedling extract (OSE) has been identified as a new therapeutic candidate for AD, due to its antioxidant activity and AD-specific mechanism of action. This study directly investigated how OSE affected AD and its impacts by examining the cognitive function and exploring the inflammatory response mechanism. The dried oat seedlings were grounded finely with a grinder, inserted with 50% fermented ethanol 10 times (w/v), and extracted by stirring for 10 h at 45 °C. After filtering the extract by 0.22 um filter, some of it was used for UHPLC analysis. The results indicated that the treatment with OSE protects against Aβ25-35-induced cytotoxicity in BV2 cells. Tg-5Xfad AD mice had strong deposition of Aβ throughout their brains, while WT mice did not exhibit any such deposition within their brains. A drastic reduction was observed in terms of numbers, as well as the size, of Aβ plaques within Tg-5Xfad AD mice exposed to OSE. This study indicated OSE's neuroprotective impacts against neurodegeneration, synaptic dysfunction, and neuroinflammation induced by amyloid-beta. Our results suggest that OSE acts as a neuroprotective agent to combat AD-specific apoptotic cell death, neuroinflammation, amyloid-beta accumulation, as well as synaptic dysfunction in AD mice's brains. Furthermore, the study indicated that OSE treatment affects JNK/ERK/p38 MAPK signaling, with considerable inhibition in p-JNK, p-p38, and p-ERK levels seen in the brain of OSE-treated Tg-5Xfad AD mice.
Collapse
Affiliation(s)
- Won Seok Lee
- Department of Biochemistry, School of Medicine, Daegu Catholic University, Nam-gu, Daegu 42472, Korea
| | - Hae-June Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea
| | - Ji Yeong Yang
- Division of Crop Foundation, National Institute of Crop Science, Rural Development Administration, Jellabuk-do, Deokjin-gu, Jeonju 55365, Korea
| | - Hye-Lim Shin
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Korea Forest Service (KFS), Jinju 52817, Korea
| | - Sik-Won Choi
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Korea Forest Service (KFS), Jinju 52817, Korea
| | - Jong-Ki Kim
- Department of Biomedical Engineering & Radiology, School of Medicine, Daegu Catholic University, Daegu 42472, Korea
| | - Woo Duck Seo
- Division of Crop Foundation, National Institute of Crop Science, Rural Development Administration, Jellabuk-do, Deokjin-gu, Jeonju 55365, Korea
| | - Eun Ho Kim
- Department of Biochemistry, School of Medicine, Daegu Catholic University, Nam-gu, Daegu 42472, Korea
| |
Collapse
|
5
|
Cao P, Wu Y, Li Y, Xiang L, Cheng B, Hu Y, Jiang X, Wang Z, Wu S, Si L, Yang Q, Xu J, Huang J. The important role of glycerophospholipid metabolism in the protective effects of polyphenol-enriched Tartary buckwheat extract against alcoholic liver disease. Food Funct 2022; 13:10415-10425. [PMID: 36149348 DOI: 10.1039/d2fo01518h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alcoholic liver disease (ALD) is a mounting public health problem with significant medical, economic and social burdens. Tartary buckwheat (F. tataricum (L.) Gaertn, bitter buckwheat) is a kind of healthy and nutritious food, which has been demonstrated to protect against ALD, but the underlying mechanism has not been fully studied. Herein, we aimed to elucidate the beneficial effects of Tartary buckwheat extract (mainly composed of polyphenols including rutin, quercetin, kaempferol and kaempferol-3-O-rutinoside) in terms of lipid metabolism with the aid of lipidomic analysis. In our study, we employed C57BL/6J mice and a Lieber-DeCarli alcohol liquid diet to construct an ALD model and found that Tartary buckwheat extract was able to prevent ALD-induced histopathological lesions, liver injury and abnormal plasma lipid levels. These beneficial effects might be attributed to the regulation of energy metabolism-related genes (SIRT1, LKB1 and AMPK), lipid synthesis-related genes (ACC, SREBP1c and HMGR) and lipid oxidation-related genes (PPARα, CPT1 and CPT2). In addition, lipidomic profiling and KEGG pathway analysis showed that glycerophospholipid metabolism contributed the most to elucidating the regulatory mechanism of Tartary buckwheat extract. In specific, chronic ethanol intake reduced the level of phosphatidylcholines (PC) and increased the level of phosphatidylethanolamines (PE) in the liver, resulting in a decrease in the PC/PE ratio, which could be all significantly restored by Tartary buckwheat extract intervention, indicating that the Tartary buckwheat extract might regulate PC/PE homeostasis to exert its lipid-lowering effect. Overall, we demonstrated that Tartary buckwheat extract could prevent ALD by modulating hepatic glycerophospholipid metabolism, providing the theoretical basis for its further exploitation as a medical plant or nutritional food.
Collapse
Affiliation(s)
- Peng Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Yue Wu
- Hubei Provincial Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd, Daye 435100, Hubei, China.
| | - Yaping Li
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Liping Xiang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Bingyu Cheng
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yixin Hu
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xin Jiang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhe Wang
- Hubei Provincial Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd, Daye 435100, Hubei, China.
| | - Sanlan Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Luqin Si
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Qiang Yang
- Hubei Provincial Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd, Daye 435100, Hubei, China.
| | - Jian Xu
- Hubei Provincial Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd, Daye 435100, Hubei, China.
| | - Jiangeng Huang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
6
|
Fang C, Pan J, Qu N, Lei Y, Han J, Zhang J, Han D. The AMPK pathway in fatty liver disease. Front Physiol 2022; 13:970292. [PMID: 36203933 PMCID: PMC9531345 DOI: 10.3389/fphys.2022.970292] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022] Open
Abstract
Lipid metabolism disorders are the primary causes for the occurrence and progression of various liver diseases, including non-alcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD) caused by a high-fat diet and ethanol. AMPK signaling pathway plays an important role in ameliorating lipid metabolism disorders. Progressive research has clarified that AMPK signal axes are involved in the prevention and reduction of liver injury. Upregulation of AMK can alleviate FLD in mice induced by alcohol or insulin resistance, type 2 diabetes, and obesity, and most natural AMPK agonists can regulate lipid metabolism, inflammation, and oxidative stress in hepatocytes, consequently regulating FLD in mice. In NAFLD and AFLD, increasing the activity of AMPK can inhibit the synthesis of fatty acids and cholesterol by down-regulating the expression of adipogenesis gene (FAS, SREBP-1c, ACC and HMGCR); Simultaneously, by increasing the expression of fatty acid oxidation and lipid decomposition genes (CPT1, PGC1, and HSL, ATGL) involved in fatty acid oxidation and lipid decomposition, the body’s natural lipid balance can be maintained. At present, some AMPK activators are thought to be beneficial during therapeutic treatment. Therefore, activation of AMPK signaling pathway is a potential therapeutic target for disorders of the liver. We summarized the most recent research on the role of the AMPK pathway in FLD in this review. Simultaneously, we performed a detailed description of each signaling axis of the AMPK pathway, as well as a discussion of its mechanism of action and therapeutic significance.
Collapse
Affiliation(s)
- Chunqiu Fang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
| | - Jianheng Pan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
| | - Ning Qu
- College of Traditional Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yuting Lei
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
| | - Jiajun Han
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
| | - Jingzhou Zhang
- College of Traditional Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Dong Han
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
- *Correspondence: Dong Han,
| |
Collapse
|
7
|
Takahashi Y, Kuribayashi H, Tasaki E, Yoshida I, Ide M, Fujita K, Igarashi T, Saeki S, Iuchi Y. Insect feces tea of locust (<i>Locusta migratoria</i>) suppresses lipid accumulation in 3T3-L1 cells and mice. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yushi Takahashi
- Department of Biological Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University
| | - Hiromi Kuribayashi
- Department of Biological Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University
| | - Eisuke Tasaki
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University
| | | | | | | | | | | | - Yoshihito Iuchi
- Department of Biological Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University
| |
Collapse
|
8
|
Muthusamy M, Kim JH, Kim SH, Kim JY, Heo JW, Lee H, Lee KS, Seo WD, Park S, Kim JA, Lee SI. Changes in Beneficial C-glycosylflavones and Policosanol Content in Wheat and Barley Sprouts Subjected to Differential LED Light Conditions. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1502. [PMID: 33172036 PMCID: PMC7694615 DOI: 10.3390/plants9111502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 05/03/2023]
Abstract
The spectral quality and intensity of light, photoperiodism, and other environmental factors have profound impacts on the metabolic composition of light-dependent higher plants. Hence, we investigate the effects of fluorescent light (96 μmol m-2s-1) and white (100 μmol m-2s-1), blue (100 μmol m-2s-1), and red (93 μmol m-2s-1) light-emitting diode (LED) light irradiation on the C-glycosylflavone and policosanol contents in young seedlings of wheat and barley. Ultra-high-performance liquid chromatography (UHPLC) analyses of C-glycosylflavone contents in barley reveal that the saponarin content is significantly enhanced under blue LED light irradiation. Under similar conditions, isoorientin and isoschaftoside contents are improved in wheat seedlings. The contents of these C-glycosylflavones differed along with the light quality and growth period. The highest accumulation was observed in sprouts after three days under blue LED light irradiation. GC/MS analyses of policosanol contents showed that 1-hexacosanol (C26:o-OH) in barley and 1-octacosanol (C28:o-OH) in wheat seedlings were reduced under LED light irradiation, compared to seedlings under fluorescent light conditions. Nonetheless, the policosanol contents gradually improved with the extension of growth times and treatments, irrespective of the light quality. Additionally, a positive correlation was observed between the expression pattern of biosynthesis-related genes and the respective metabolite content in barley. This study demonstrates that blue LED light irradiation is useful in maximizing the C-glycosylflavone content in barley and wheat sprouts.
Collapse
Affiliation(s)
- Muthusamy Muthusamy
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (M.M.); (J.H.K.); (S.H.K.); (J.Y.K.); (S.P.); (J.A.K.)
| | - Jong Hee Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (M.M.); (J.H.K.); (S.H.K.); (J.Y.K.); (S.P.); (J.A.K.)
- Division of Horticultural Biotechnology, Hankyung National University, Anseong 17579, Korea
| | - Suk Hee Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (M.M.); (J.H.K.); (S.H.K.); (J.Y.K.); (S.P.); (J.A.K.)
| | - Joo Yeol Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (M.M.); (J.H.K.); (S.H.K.); (J.Y.K.); (S.P.); (J.A.K.)
| | - Jeong Wook Heo
- Department of Agricultural Engineering, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea;
| | - HanGyeol Lee
- Division of Crop Foundation, National Institute of Crop Science (NICS), RDA, Wanju 55365, Korea; (H.L.); (K.-S.L.); (W.D.S.)
| | - Kwang-Sik Lee
- Division of Crop Foundation, National Institute of Crop Science (NICS), RDA, Wanju 55365, Korea; (H.L.); (K.-S.L.); (W.D.S.)
| | - Woo Duck Seo
- Division of Crop Foundation, National Institute of Crop Science (NICS), RDA, Wanju 55365, Korea; (H.L.); (K.-S.L.); (W.D.S.)
| | - Soyoung Park
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (M.M.); (J.H.K.); (S.H.K.); (J.Y.K.); (S.P.); (J.A.K.)
| | - Jin A Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (M.M.); (J.H.K.); (S.H.K.); (J.Y.K.); (S.P.); (J.A.K.)
| | - Soo In Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (M.M.); (J.H.K.); (S.H.K.); (J.Y.K.); (S.P.); (J.A.K.)
| |
Collapse
|
9
|
Policosanol profiles and adenosine 5'-monophosphate-activated protein kinase (AMPK) activation potential of Korean wheat seedling extracts according to cultivar and growth time. Food Chem 2020; 317:126388. [PMID: 32078993 DOI: 10.1016/j.foodchem.2020.126388] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/23/2020] [Accepted: 02/09/2020] [Indexed: 11/21/2022]
Abstract
Policosanols is a health promoting aliphatic alcohol known as lipid-lowing agent. To enable maximising the functional properties of wheat, this research investigates the policosanol profiles and adenosine 5'-monophosphate-activated protein kinase (AMPK) activation potential of Korean wheat seedlings according to cultivars and growth times. GC-MS revealed six policosanols that differed markedly in content between 17 cultivars, especially, octacosanol (8) showed the most predominant component (49-83%), varying significantly in average concentrations with growth times as 361.4 (3 days) → 613.0 (6 days) → 203.1 (9 days) → 196.5 (12 days) → 50.9 mg/100 g (19 days). The highest average policosanol (738.7 mg/100 g) exhibited after 6 days, while the lowest was 104.4 mg/100 g on 19 days. Moreover, the wheat cultivars including Shinmichal 1, Anbaek, Namhae, and Joah at 6 days may be recommended as potential sources because of high policosanols (921.7-990.6 mg/100 g). Western blot analysis revealed markedly higher AMPK activation in cells treated with the hexane extracts (150-370% at 100 μg/ml) and octacosanol (8) possessed potent AMPK activator (control; 100 → 280% at 200 μg/ml). It is confirmed that the AMPK activation by wheat seedlings are positively related to the highest policosanol content at the 6 days of growth time, independent of the cultivar. Our results may be contributed to enhance the wheat value regarding development of new cultivars and functional foods.
Collapse
|
10
|
Fang J, Wang F, Song H, Wang Z, Zuo Z, Cui H, Jia Y, Deng J, Yu S, Hu Y, Shen L, Ma X, Ren Z, Gou L. AMPKα pathway involved in hepatic triglyceride metabolism disorder in diet-induced obesity mice following Escherichia coli Infection. Aging (Albany NY) 2019; 10:3161-3172. [PMID: 30398974 PMCID: PMC6286859 DOI: 10.18632/aging.101623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/27/2018] [Indexed: 01/13/2023]
Abstract
To investigate the different effects of acute pulmonary infection induced by Escherichia coli (E. coli) on lipid metabolism between diet-induced obesity (DIO, fed with high-fat diet) mice and lean mice. A total of 180 ICR mice were selected to be challenged intranasally with phosphate-buffered saline or 109 CFUs/mL of E. coli, and the body character indexes, biochemical indexes and expressions of genes and proteins involved in lipid metabolism were examined pre- and post-infection. Results revealed that, before infection, DIO mice had significantly higher body weight, adipose and liver indexes, free fatty acid and triglyceride contents than lean mice. After infection, increased free fatty acid and triglyceride contents, increased expressions of resistin, SREBP-1c, ACC1, FAS and SCD-1, and declined PPARα, CPT-1α expressions and AMPKα phosphorylation were detected in the infected group, while the change rates were more serious in the lean mice than the DIO mice. The above-mentioned findings verified that, after being infected with E. coli, hepatic lipid metabolism disorder was aggravated by activating SREBP-1c related lipid synthesis pathway and inhibiting PPARα related fatty acid oxidation pathway. However, infection-induced lipid metabolic disorders was slighter in the DIO mice than the lean mice through AMPKα pathway.
Collapse
Affiliation(s)
- Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Fengyuan Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Hetao Song
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhengyi Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.,Sichuan Center for Animal Disease Control and Prevention, Chengdu, Sichuan 610041, PR China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yiping Jia
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.,Heze Animal Husbandry and Veterinary Bureau, Heze, Shandong 274000, PR China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Shumin Yu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yanchun Hu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Liuhong Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Xiaoping Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhihua Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Liping Gou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| |
Collapse
|
11
|
Kan J, Zhao C, Lu S, Shen G, Yang J, Tong P, Xi L, Zhang R, Liang X, Su D, Li D, Liu Y. S100A16, a novel lipogenesis promoting factor in livers of mice and hepatocytes in vitro. J Cell Physiol 2019; 234:21395-21406. [PMID: 31069793 DOI: 10.1002/jcp.28748] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Jingbao Kan
- Department of Geriatrics The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Cuiping Zhao
- Department of Geriatrics The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Shan Lu
- Department of Geriatrics The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Geqian Shen
- Department of Geriatrics The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Jie Yang
- Department of Geriatrics The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Pei Tong
- Department of Geriatrics The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Ling Xi
- Department of Geriatrics The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Rihua Zhang
- Department of Geriatrics The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Xiubin Liang
- The Center of Metabolic Disease Research Nanjing Medical University Nanjing China
| | - Dongming Su
- The Center of Metabolic Disease Research Nanjing Medical University Nanjing China
| | - Dong Li
- Department of Orthopedics Jiangsu Province Hospital of TCM Affiliated Hospital of Nanjing University of TCM Nanjing Jiangsu China
| | - Yun Liu
- Department of Geriatrics The First Affiliated Hospital of Nanjing Medical University Nanjing China
| |
Collapse
|
12
|
Xiang Q, Liu X, Liu S, Ma Y, Xu C, Bai Y. Effect of plasma-activated water on microbial quality and physicochemical characteristics of mung bean sprouts. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2018.11.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Lavanco G, Castelli V, Brancato A, Tringali G, Plescia F, Cannizzaro C. The endocannabinoid-alcohol crosstalk: Recent advances on a bi-faceted target. Clin Exp Pharmacol Physiol 2018; 45:889-896. [PMID: 29770478 DOI: 10.1111/1440-1681.12967] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 12/22/2022]
Abstract
Increasing evidence has focusesed on the endocannabinoid system as a relevant player in the induction of aberrant synaptic plasticity and related addictive phenotype following chronic excessive alcohol drinking. In addition, the endocannabinoid system is implicated in the pathogenesis of alcoholic liver disease. Interestingly, whereas the involvement of CB1 receptors in alcohol rewarding properties is established, the central and peripheral action of CB2 signalling is still to be elucidated. This review aims at giving the input to deepen knowledge on the role of the endocannabinoid system, highlighting the advancing evidence that suggests that CB1 and CB2 receptors may play opposite roles in the regulation of both the reinforcing properties of alcohol in the brain and the mechanisms responsible for cell injury and inflammation in the hepatic tissue. The manipulation of the endocannabinoid system could represent a bi-faceted strategy to counteract alcohol-related dysfunction in central transmission and liver structural and functional disarrangement.
Collapse
Affiliation(s)
- Gianluca Lavanco
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Valentina Castelli
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Anna Brancato
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Giuseppe Tringali
- Institute of Pharmacology, Catholic University School of Medicine, Rome, Italy
| | - Fulvio Plescia
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Carla Cannizzaro
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| |
Collapse
|