1
|
Fu Q, Wang F, Tang T, Liu Z, Wang L, Wang Q, Shi X, Wang B. A Snapshot of Microbial Succession and Volatile Component Dynamics of Marselan Wine in Xinjiang During Spontaneous Fermentation. Foods 2025; 14:994. [PMID: 40232002 PMCID: PMC11941887 DOI: 10.3390/foods14060994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 04/16/2025] Open
Abstract
Marselan wine is characterized by distinctive flavors of blackcurrant, cranberry, and spice, which are significantly influenced by environmental factors such as region and climate. In this study, we analyzed the dynamic changes in the microbial community, physicochemical indices, and flavor compounds during the spontaneous fermentation of Marselan wine in Xinjiang using high-throughput sequencing (HTS), high-performance liquid chromatography (HPLC), and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS). The results indicated that the sugar content decreased from 259.12 g/L to 22.45 g/L, while the ethanol content increased to 13.63 ± 0.15% vol after 12 days of fermentation. The predominant aromatic components identified in Marselan grapes include isophorone, 2,3-pentanedione, 2-hexenal, and melonal. After fermentation, ethanol, phenethyl alcohol, isoamyl acetate, ethyl acetate, and ethyl hexanoate were produced, imparting rose, cream, and fruit flavors to wine. The key microorganisms involved in the spontaneous fermentation of Marselan wine include Saccharomyces, Starmerella, Pichia, Pseudomonas, Sphingomonas, and Aspergillus. These microorganisms contributed substantially to the main physicochemical indices and flavor profiles. Saccharomyces and Pichia enhanced the formation of most alcohols and esters, whereas Aspergillus, Acremonium, and Fusarium inhibited the synthesis of numerous volatile compounds. These findings provide valuable theoretical references for improving the quality of Marselan wines in Xinjiang.
Collapse
Affiliation(s)
- Qingquan Fu
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Fangfang Wang
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Tiantian Tang
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Zimen Liu
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Lilin Wang
- Production & Construction Group Key Laboratory of Special Agricultural Products Further Processing in Southern Xinjiang, College of Food Science and Engineering, Tarim University, Alar 843300, China;
| | - Qingling Wang
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Xuewei Shi
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Bin Wang
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| |
Collapse
|
2
|
Peña-Neira A, Cortiella MGI, Ubeda C, Pastenes C, Villalobos L, Contador L, Infante R, Gómez C. Phenolic, Polysaccharides Composition, and Texture Properties during Ripening and Storage Time of New Table Grape Cultivars in Chile. PLANTS (BASEL, SWITZERLAND) 2023; 12:2488. [PMID: 37447049 DOI: 10.3390/plants12132488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
The aim of this study is to determine the phenolic and polysaccharidic composition, texture properties, and gene expression of new seedless table grape cultivars Timco™ and Krissy™ and compare them to the traditional table grape variety Crimson Seedless (Vitis vinifera L.), during ripening and in commercial postharvest conditions. According to the results, phenolic compounds were present in very different proportions. The total anthocyanins responsible for skin color increased during maturation and the majority anthocyanin in the three cultivars was peonidin-3-glucoside, followed by malvidin-3-glucoside. The phenolic compounds presented a different behavior (decreasing or increasing) during postharvest. The total skin soluble polysaccharides decreased during ripening and postharvest in Crimson Seedless and Krissy™ and remained constant from technological maturity to postharvest storage in Timco™. In all cultivars, the majority soluble polysaccharide fraction was that with a molecular mass between 500 and 35 KDa. The skin mechanical properties of table grapes were good parameters for differentiating varieties, with better results for the new cultivars, compared to the traditional Crimson Seedless, especially in postharvest. Genes involved in the flavonoid pathway and cell wall metabolism in skins exhibited an increase in expression from veraison to remaining constant at the end of the berry ripening.
Collapse
Affiliation(s)
- Alvaro Peña-Neira
- Department of Agro-Industry and Enology, Facultad de Ciencias Agronómicas, Universidad de Chile, Santa Rosa 11315, La Pintana, Santiago 8820000, Chile
| | - Mariona Gil I Cortiella
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Av. El Llano Subercaseaux 2801, San Miguel, Santiago 8910060, Chile
| | - Cristina Ubeda
- Área de Nutrición y Bromatología, Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/P. García González no. 2, E-41012 Sevilla, Spain
| | - Claudio Pastenes
- Department of Plant Production, Facultad de Ciencias Agronómicas, Universidad de Chile, Santa Rosa 11315, La Pintana, Santiago 8820000, Chile
| | - Luís Villalobos
- Department of Plant Production, Facultad de Ciencias Agronómicas, Universidad de Chile, Santa Rosa 11315, La Pintana, Santiago 8820000, Chile
| | - Loreto Contador
- Department of Plant Production, Facultad de Ciencias Agronómicas, Universidad de Chile, Santa Rosa 11315, La Pintana, Santiago 8820000, Chile
| | - Rodrigo Infante
- Department of Plant Production, Facultad de Ciencias Agronómicas, Universidad de Chile, Santa Rosa 11315, La Pintana, Santiago 8820000, Chile
| | - Camila Gómez
- Department of Agro-Industry and Enology, Facultad de Ciencias Agronómicas, Universidad de Chile, Santa Rosa 11315, La Pintana, Santiago 8820000, Chile
| |
Collapse
|
3
|
Lanuza F, Zamora-Ros R, Petermann-Rocha F, Martínez-Sanguinetti MA, Troncoso-Pantoja C, Labraña AM, Leiva-Ordoñez AM, Nazar G, Ramírez-Alarcón K, Ulloa N, Lasserre-Laso N, Parra-Soto S, Martorell M, Villagrán M, Garcia-Diaz DF, Andrés-Lacueva C, Celis-Morales C. Advances in Polyphenol Research from Chile: A Literature Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2009508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- F Lanuza
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
- Centro de Epidemiología Cardiovascular y Nutricional (EPICYN), Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - R Zamora-Ros
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - F Petermann-Rocha
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | | | - C Troncoso-Pantoja
- Centro de Investigación en Educación y Desarrollo (CIEDE-UCSC), Departamento de Salud Pública, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - AM Labraña
- Departamento de Nutrición y Dietética, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - AM Leiva-Ordoñez
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - G Nazar
- Departamento de Psicología, Facultad de Ciencias Sociales, y Centro de Vida Saludable. Universidad de Concepción, Concepción, Chile
| | - K Ramírez-Alarcón
- Departamento de Nutrición y Dietética, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - N Ulloa
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, y Centro de Vida Saludable, Universidad de Concepción, Concepción, Chile
| | - N Lasserre-Laso
- Escuela de Nutrición y Dietética, Facultad de Salud, Universidad Santo Tomás, Los Ángeles, Chile
| | - S Parra-Soto
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - M Martorell
- Departamento de Nutrición y Dietética, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - M Villagrán
- Department of Basic Science, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - DF Garcia-Diaz
- Department of Nutrition, School of Medicine, University of Chile, Independencia, 1027 Santiago, Chile
| | - C Andrés-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| | - C Celis-Morales
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Centro de Investigación en Fisiología del Ejercicio (CIFE), Universidad Mayor, Santiago, Chile
- Laboratorio de Rendimiento Humano, Grupo de Estudio en Educación, Actividad Física y Salud (GEEAFyS), Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
4
|
Jones-Moore HR, Jelley RE, Marangon M, Fedrizzi B. The polysaccharides of winemaking: From grape to wine. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Gutiérrez-Gamboa G, Zheng W, Martínez de Toda F. Strategies in vineyard establishment to face global warming in viticulture: a mini review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1261-1269. [PMID: 32914423 DOI: 10.1002/jsfa.10813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/24/2020] [Accepted: 09/10/2020] [Indexed: 05/26/2023]
Abstract
Different technological solutions are developing in the wine industry to mitigate the negative effects of the current global warming to mainly achieve wines with a lower alcohol content. These proposed solutions mostly act at the oenological level and are focused on intervening in the raw material to be transformed; that is, on reducing the concentration of sugar in the must using filtration techniques or also on wine dealcoholizing by physical processes. These techniques are intended to offer solutions and respond to new consumer expectations, but they may be considered too artificial to be widely accepted. In this way, viticultural strategies may offer a natural solution to obtain grapes with low sugar content, maximizing their quality by delaying ripening. This mini review surveys the viticultural strategies that can be applied in the establishment of a vineyard - that is, when it comes to planting of a new vineyard - such as vineyard altitude, latitude, orientation, and slope, as well as rootstock, variety, clone, training system, and row orientation and slope, with the aim to mitigate the negative effects of climate change on grape and wine quality and to delay grape maturation. Finally, we propose a ponderation of the strategies discussed to contextualize its importance to face global warming in viticulture. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Wei Zheng
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Fernando Martínez de Toda
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Logroño, Spain
| |
Collapse
|
6
|
Ormazabal P, Cifuentes M, Varì R, Scazzocchio B, Masella R, Pacheco I, Vega W, Paredes A, Morales G. Hydroethanolic Extract of Lampaya Medicinalis Phil. ( Verbenaceae) Decreases Proinflammatory Marker Expression in Palmitic Acid-exposed Macrophages. Endocr Metab Immune Disord Drug Targets 2020; 20:1309-1320. [PMID: 32400338 DOI: 10.2174/1871530320666200513082300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/15/2020] [Accepted: 02/24/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Obesity is a major health problem associated with increased comorbidities, which are partially triggered by inflammation. Proinflammatory macrophage infiltration in adipose tissue of individuals with obesity increases chronic inflammation. Obesity is associated with elevated plasma levels of saturated fatty acids, such as palmitic acid (PA), which promotes inflammation in vivo and in vitro. Infusions of Lampaya medicinalis Phil. (Verbenaceae) are used in the folk medicine of Northern Chile to counteract inflammation of rheumatic diseases. Hydroethanolic extract of lampaya (HEL) contains spectrophotometrically defined compounds that may contribute to the observed effect on inflammation. METHODS We evaluated the phytochemical composition of HEL by high-performance liquid chromatography coupled to diode array detection (HPLC-DAD) and liquid chromatography-electrospray ionization- tandem mass spectrometry (LC-ESI-MS/MS). We assessed whether the exposure to HEL affects PA-induced expression of proinflammatory factors in THP-1 macrophages. RESULTS HPLC-DAD and LC-ESI-MS/MS analyses showed the presence of considerable amounts of flavonoids in HEL. The PA-induced phosphorylation of the inflammatory pathway mediators IKK and NF-κB, as well as the elevated expression and secretion of proinflammatory cytokines (IL-6, TNF-α), were reduced in cells pre-exposed to HEL. CONCLUSION These findings give new insights about the effect of HEL reducing IKK/NF-κB proinflammatory pathway, likely explained by the number of flavonoids contained in the extract. More studies would be needed to define the possible role of Lampaya as a preventive approach in subjects with obesity whose circulating PA might contribute to chronic inflammation.
Collapse
Affiliation(s)
- Paulina Ormazabal
- Institute of Health Sciences, Universidad de O'Higgins, Av. Libertador Bernardo O'Higgins 611, 2820000 Rancagua, Chile.,Laboratory of Obesity and Metabolism in Geriatrics and Adults (OMEGA), Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Av. El Líbano 5524, 7830490 Macul, Santiago, Chile
| | - Mariana Cifuentes
- Laboratory of Obesity and Metabolism in Geriatrics and Adults (OMEGA), Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Av. El Líbano 5524, 7830490 Macul, Santiago, Chile
| | - Rosaria Varì
- Center for Gender- Specific Medicine, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Beatrice Scazzocchio
- Center for Gender- Specific Medicine, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Roberta Masella
- Center for Gender- Specific Medicine, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Igor Pacheco
- Laboratorio de Bioinformatica y Expresion Genica, Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Av. El Líbano 5524, 7830490 Macul, Santiago, Chile
| | - Wladimir Vega
- Laboratorio de Bioinformatica y Expresion Genica, Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Av. El Líbano 5524, 7830490 Macul, Santiago, Chile
| | - Adrián Paredes
- Laboratorio de Quimica Biologica, Instituto Antofagasta (IA) and Departamento de Quimica, Facultad de Ciencias Basicas, Universidad de Antofagasta, Av. Angamos 601, 1240000 Antofagasta, Chile
| | - Glauco Morales
- Laboratorio de Quimica Biologica, Instituto Antofagasta (IA) and Departamento de Quimica, Facultad de Ciencias Basicas, Universidad de Antofagasta, Av. Angamos 601, 1240000 Antofagasta, Chile
| |
Collapse
|
7
|
Gutiérrez-Gamboa G, Liu SY, Pszczólkowski P. Resurgence of minority and autochthonous grapevine varieties in South America: a review of their oenological potential. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:465-482. [PMID: 31452209 DOI: 10.1002/jsfa.10003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 08/09/2019] [Accepted: 08/22/2019] [Indexed: 05/11/2023]
Abstract
In contrast with the general trend of producing wine from the most famous grapevine varieties, associated with the French paradigm, such as Cabernet-Sauvignon, Merlot, Pinot Noir, Syrah, Sauvignon Blanc, and Chardonnay, there is a tendency to revalorize and preserve minority or autochthonous grapevine varieties worldwide. The South American wine region, where most of the varieties derived from varieties brought after European colonization, is not exempt from this. This has allowed new wines to be provided with distinctive identities that are markedly different from the current homogeneous wine production. Moreover, varietal homogenization increases vineyard genetic vulnerability in relation to the emergence of grapevine diseases, to which the commonly cultivated varieties are not resistant. This review summarizes the oenological potential of minority or autochthonous grapevine varieties cultivated within the South American wine region, focusing on Argentina, Chile, and Bolivia. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gastón Gutiérrez-Gamboa
- Centro Tecnológico de la Vid y el Vino, Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
| | - Shu-Yan Liu
- Universidad de La Rioja/Instituto de Ciencias de la Vid y del Vino (UR, CSIC, GR), Finca La Grajera, ctra. de Burgos km 6, Logroño, Spain
| | | |
Collapse
|