1
|
Yang N, Simon J, Fang W, Ayed C, Zhang WE, Axell M, Viltoriano R, Fisk I. Development of analytical "aroma wheels" for Oolong tea infusions (Shuixian and Rougui) and prediction of dynamic aroma release and colour changes during "Chinese tea ceremony" with machine learning. Food Chem 2025; 464:141537. [PMID: 39396470 DOI: 10.1016/j.foodchem.2024.141537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/06/2024] [Accepted: 10/03/2024] [Indexed: 10/15/2024]
Abstract
The flavour of tea as a worldwide popular beverage has been studied extensively. This study aimed to apply established flavour analysis techniques (GC-MS, GC-O-MS and APCI-MS/MS) in innovative ways to characterise the flavour profile of oolong tea infusions for two types of oolong tea (type A- Shuixian, type B- Rougui). GC-MS identified 48 aroma compounds, with type B having a higher abundance of most compounds. GC-O-MS analysis determined the noticeable aroma difference based on 20 key aroma compounds, facilitating the creation of an analytical "Aroma Wheel" with 8 key odour descriptors. APCI-MS/MS assessed real-time aroma release during successive brews linked with the "Chinese tea ceremony" (Gongfu Cha). Multivariate Polynomial Regression (MPR) and Long Short-Term Memory (LSTM) network approaches were applied to aroma and colour data from seven successive brews. The results revealed a progressive decline in both colour and aroma with seven repeated brews, particularly notable after the fourth brew.
Collapse
Affiliation(s)
- Ni Yang
- International Flavour Research Centre, Division of Food, Nutrition and Dietetics, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom..
| | - Juliette Simon
- International Flavour Research Centre, Division of Food, Nutrition and Dietetics, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom.; Graduate School of Materials, Food and Chemistry - ENSMAC in Bordeaux, France
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, China
| | - Charfedinne Ayed
- International Flavour Research Centre, Division of Food, Nutrition and Dietetics, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom
| | - Wei Emma Zhang
- School of Computer and Mathematical Sciences, University of Adelaide, Adelaide, Australia
| | - Matthew Axell
- School of Computer and Mathematical Sciences, University of Adelaide, Adelaide, Australia
| | - Robin Viltoriano
- School of Computer and Mathematical Sciences, University of Adelaide, Adelaide, Australia
| | - Ian Fisk
- School of Computer and Mathematical Sciences, University of Adelaide, Adelaide, Australia; International Flavour Research Centre (Adelaide), School of Agriculture, Food and Wine and Waite Research Institute, University of Adelaide, Adelaide, Australia
| |
Collapse
|
2
|
Tu Z, Li S, Tao M, He W, Shu Z, Wang S, Liu Z. Effect of shaking and piling processing on improving the aroma quality of green tea. Food Res Int 2025; 201:115624. [PMID: 39849777 DOI: 10.1016/j.foodres.2024.115624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/22/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Aroma plays a crucial role in the quality of pure green tea beverage. However, there are limited methods to improve their aroma. In this study, green tea produced using shaking and piling process (SPGT) demonstrated a notable improvement in aromatic intensity, particularly in floral, fruity, and sweet notes. A total of 58 volatile compounds were detected, with SPGT exhibiting the highest concentration of aroma compounds among the tested green teas. Eight key aroma compounds were selected based on a relative odor activity value (ROAV) greater than 1 in SPGT: dimethyl sulfide (71.14, cooked corn-like), 2-methylbutanal (3.17, cereal), octanal (1.31, fruity), linalool (5.25, floral), nonanal (5.00, floral), (E)-2-nonenal (2.81, cucumber), decanal (22.90, fruity), and β-ionone (60.51, floral). The concentration of aroma compounds, especially for floral and fruity key volatile compounds significantly increased during the shaking and piling process (p < 0.05), and their formation pathways help explained these changes. Our results provided a new theoretical foundation and practical guidelines for producing the high-aroma green tea.
Collapse
Affiliation(s)
- Zheng Tu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Sixu Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China; The College of Food and Health, Zhejiang A & F University, Hangzhou 311300, China
| | - Meng Tao
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Weizhong He
- Lishui Institute of Agriculture and Forestry Sciences, Lishui, Zhejiang 323400, China
| | - Zaifa Shu
- Lishui Institute of Agriculture and Forestry Sciences, Lishui, Zhejiang 323400, China
| | - Shanshan Wang
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Zhengquan Liu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| |
Collapse
|
3
|
An H, Ou X, Chen Y, Huang Y, Ying J, Jiang Y, Yuan Y, Tan Y, Xie Y, Liu Z, Huang J, Li S. Scenting: An effective processing technology for enriching key flavor compounds and optimizing flavor quality of decaffeinated tea. Food Chem 2024; 467:142372. [PMID: 39657485 DOI: 10.1016/j.foodchem.2024.142372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/08/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
Decaffeinated teas (DTs) are preferred for their low caffeine content, but their flavor was unsatisfactory. To explore and optimize the flavor of DT decaffeinated by supercritical carbon dioxide (SCD), the volatiles and non-volatiles were analyzed using mass spectrometry. Results showed that SCD results in the loss of the original tea flavor by reducing the volatiles associated with floral aroma and non-volatiles related to sweet and mellow. Scenting significantly optimized the comprehensive flavor of DTs by blending DTs with fresh jasmine. The aroma of DTs was improved by absorbing the high concentration of volatiles released by jasmine, and their jasmine taste resulted from the subsequent release of methyl anthranilate dissolved in tea infusion. Jasmine decaffeinated tea with a powerful and long-lasting jasmine aroma can be obtained with 100 % amount of flowers. The scenting provided in this study can effectively optimize the flavor of DTs, thereby positively impacting the development of DTs.
Collapse
Affiliation(s)
- Huimin An
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Xingchang Ou
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Yuan Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Hunan Co - Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Yiwen Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Jiaqi Ying
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Youcang Jiang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Yong Yuan
- Hunan Tea Group Co., Ltd, Changsha 410125, China
| | - Yueping Tan
- Hunan Tea Group Co., Ltd, Changsha 410125, China
| | - Yongxing Xie
- Hunan Tea Group Co., Ltd, Changsha 410125, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Hunan Co - Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China.
| | - Shi Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
4
|
Hao Z, Wang J, Zhuang J, Feng X, Lv H, Feng J, Ye S, Tian W, Pan G, Chen P, Lin H, Chu Q. Another inner truth of shaking: Water migration and transformation-advanced physicochemical alterations in tea leaves. Food Chem 2024; 467:142338. [PMID: 39647387 DOI: 10.1016/j.foodchem.2024.142338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/27/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
Shaking, essential in oolong tea production, is becoming an innovative method to impart floral fragrance. Research on shaking primarily concentrates on biological underpinnings, including modifications in gene expression and stress-triggered enzymatic catalysis, and consequent physicochemical properties. Water phase and distribution, reshaped by shaking and affected the biological and physicochemical alterations of tea leaves, is always ignored. This work utilized TEM, LF-NMR, UPLC-QqQ-MS, and GC-TOF-MS to explore physicochemical alterations during shaking. Results revealed shaking induced stomatal opening, water migration from stems to leaf veins, and a reduction in free water, transformed into bound water. Mechanical stimulation disrupted cell microstructures, including vacuoles, chloroplasts, and cell walls, releasing precursors and enzyme substrates. Shaking triggered intracellular physicochemical reactions that decreased polyphenols, amino acids, chlorophyll, and carotenoids, while increasing organic acids and sugars. Also catalyzed the synthesis of aromatic compounds like (E)-nerolidol, β-ionone epoxide, and α-farnesene, shaping the floral-fruity aroma and mellow taste of tea.
Collapse
Affiliation(s)
- Zhilong Hao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, China.
| | - Jinyuan Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiayun Zhuang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinyu Feng
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Helin Lv
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiao Feng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuping Ye
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weisu Tian
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guanjun Pan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ping Chen
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hongzheng Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, China.
| | - Qiang Chu
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Li Q, Zhang C, Liu W, Li B, Chen S, Wang H, Li Y, Li J. Characterization and exploration of dynamic variation of volatile compounds in vine tea during processing by GC-IMS and HS-SPME/GC-MS combined with machine learning algorithm. Food Chem 2024; 460:140580. [PMID: 39142197 DOI: 10.1016/j.foodchem.2024.140580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/25/2024] [Accepted: 07/21/2024] [Indexed: 08/16/2024]
Abstract
It is imperative to unravel the dynamic variation of volatile components of vine tea during processing to provide guidance for tea quality evaluation. In this study, the dynamic changes of volatile compounds of vine tea during processing were characterized by GC-IMS and HS-SPME/GC-MS. As a result, 103 volatile compounds were characterized by the two technologies with three overlapped ones. The random forest approach was employed to develop the models and explore key volatile compounds. 23 key compounds were explored, among which 13 were derived from GC-IMS and ten were from HS-SPME/GC-MS. Moreover, the area under the receiver operating characteristics curve with 100 cross validations by the pair-wised models were all 1 for the established models. Furthermore, the primary aroma formation mechanism for the key volatile compounds were mainly involved in fatty acid and amino acid metabolism. Besides, this study provides a theoretical support for directed processing and quality control of vine tea.
Collapse
Affiliation(s)
- Qianqian Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100093, PR China
| | - Chaoyang Zhang
- Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Hubei 445000, PR China
| | - Wei Liu
- Chongqing Grain and Oil Quality Supervision and Inspection Station, Chongqing 400026, China
| | - Bei Li
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Hainan 570314, PR China
| | - Shengfan Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100093, PR China
| | - Huawei Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100093, PR China
| | - Yi Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100093, PR China.
| | - Jianxun Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100093, PR China.
| |
Collapse
|
6
|
Xiao H, Tian Y, Yang H, Zeng Y, Yang Y, Yuan Z, Zhou H. Are there any differences in the quality of high-mountain green tea before and after the first new leaves unfold? A comprehensive study based on E-sensors, whole metabolomics and sensory evaluation. Food Chem 2024; 457:140119. [PMID: 38936125 DOI: 10.1016/j.foodchem.2024.140119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/29/2024]
Abstract
High-mountain green tea, where the first new leaf hasn't yet unfurled, is prized for perceived superior quality, but this hasn't yet been verified by experimentation. Electronic sensors, whole metabolomics and sensory evaluation were employed to assess the quality of yymj (tea buds with a newly unfurled leaf) and qymj (tea buds without new leaves). The qymj proved to have significant advantages in aroma, color and shape, but still had some shortcomings in umami, bitterness and sourness. Differences in the content of volatile organic compounds (including alcohols, hydrocarbons and lipids) and nonvolatile organic compounds (flavonoids, amino acids, sugars, and phenolic acids) quality of high-mountain green teas with different maturity levels and provides well explained these quality differences. This study establishes a systematic approach to study the quality of high-mountain green tea at different maturity levels, and provides important reference information for consumers, governments and tea farmers.
Collapse
Affiliation(s)
- Hongshi Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410000, China
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410000, China
| | - Hui Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410000, China
| | - Yajuan Zeng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410000, China
| | - Yang Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410000, China
| | - Zhihui Yuan
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China.
| | - Haiyan Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410000, China.
| |
Collapse
|
7
|
Deng Y, Li C, Chen Y, Zou Z, Gong J, Shen C, Fang K. Chemical Profile and Aroma Effects of Major Volatile Compounds in New Mulberry Leaf Fu Brick Tea and Traditional Fu Brick Tea. Foods 2024; 13:1808. [PMID: 38928750 PMCID: PMC11203251 DOI: 10.3390/foods13121808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/23/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
This study aimed to investigate the aroma effects of key volatile compounds in a new type of mulberry leaf Fu brick teas (MTs) and traditional Fu brick teas (FTs). Headspace solid-phase microextraction (HS-SPME), gas chromatography-mass spectrometry (GC-MS), sensory evaluation, and chemometrics were used to determine the differences in key flavour qualities between the two. The results showed that a total of 139 volatile components were identified, with aldehydes, ketones, and alcohols dominating. Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) combined with the odour activity value (OAV) showed that seven aroma compounds had an OAV > 10, including 2-(4-methylcyclohex-3-en-1-yl) propan-2-ol with floral and fruity aroma and green attributes, 6-methylhept-5-en-2-one, (E)-6,10-dimethyl-5,9-Undecadien-2-one, (3E,5E)-octa-3,5-dien-2-one, Benzaldehyde, and (E)-3,7,11,15-tetramethylhexadec-2-en-1-ol, which were more abundant in MTs than FTs; Cedrol with sweet aroma attributes was more consistent in MTs than FTs, and we suggest that these odour compounds are important aroma contributors to MTs. Taken together, these findings will provide new insights into the mechanism of formation of the characteristic attributes of aroma in MTs.
Collapse
Affiliation(s)
- Yuezhao Deng
- College of Information and Intelligent Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.D.); (C.L.); (Z.Z.); (J.G.)
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China;
| | - Cheng Li
- College of Information and Intelligent Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.D.); (C.L.); (Z.Z.); (J.G.)
| | - Yineng Chen
- School of Information Science and Engineering, Hunan Women’s College, Changsha 410000, China;
| | - Zhuoyang Zou
- College of Information and Intelligent Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.D.); (C.L.); (Z.Z.); (J.G.)
| | - Junyao Gong
- College of Information and Intelligent Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.D.); (C.L.); (Z.Z.); (J.G.)
| | - Chengwen Shen
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China;
| | - Kui Fang
- College of Information and Intelligent Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.D.); (C.L.); (Z.Z.); (J.G.)
| |
Collapse
|
8
|
Lin F, Wu H, Li Z, Huang Y, Lin X, Gao C, Wang Z, Yu W, Sun W. Effect of Mechanical Damage in Green-Making Process on Aroma of Rougui Tea. Foods 2024; 13:1315. [PMID: 38731686 PMCID: PMC11083345 DOI: 10.3390/foods13091315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Rougui Tea (RGT) is a typical Wuyi Rock Tea (WRT) that is favored by consumers for its rich taste and varied aroma. The aroma of RGT is greatly affected by the process of green-making, but its mechanism is not clear. Therefore, in this study, fresh leaves of RGT in spring were picked, and green-making (including shaking and spreading) and spreading (unshaken) were, respectively, applied after sun withering. Then, they were analyzed by GC-TOF-MS, which showed that the abundance of volatile compounds with flowery and fruity aromas, such as nerolidol, jasmine lactone, jasmone, indole, hexyl hexanoate, (E)-3-hexenyl butyrate and 1-hexyl acetate, in green-making leaves, was significantly higher than that in spreading leaves. Transcriptomic and proteomic studies showed that long-term mechanical injury and dehydration could activate the upregulated expression of genes related to the formation pathways of the aroma, but the regulation of protein expression was not completely consistent. Mechanical injury in the process of green-making was more conducive to the positive regulation of the allene oxide synthase (AOS) branch of the α-linolenic acid metabolism pathway, followed by the mevalonate (MVA) pathway of terpenoid backbone biosynthesis, thus promoting the synthesis of jasmonic acid derivatives and sesquiterpene products. Protein interaction analysis revealed that the key proteins of the synthesis pathway of jasmonic acid derivatives were acyl-CoA oxidase (ACX), enoyl-CoA hydratase (MFP2), OPC-8:0 CoA ligase 1 (OPCL1) and so on. This study provides a theoretical basis for the further explanation of the formation mechanism of the aroma substances in WRT during the manufacturing process.
Collapse
Affiliation(s)
- Fuming Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.L.); (H.W.); (C.G.); (Z.W.)
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou 362406, China;
| | - Huini Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.L.); (H.W.); (C.G.); (Z.W.)
| | - Zhaolong Li
- Institute of Animal Husbandry and Veterlnary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
| | - Yan Huang
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou 362406, China;
| | - Xiying Lin
- Fuding Tea Technology Promotion Station, Ningde 355200, China;
| | - Chenxi Gao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.L.); (H.W.); (C.G.); (Z.W.)
| | - Zhihui Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.L.); (H.W.); (C.G.); (Z.W.)
| | - Wenquan Yu
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Weijiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.L.); (H.W.); (C.G.); (Z.W.)
| |
Collapse
|
9
|
Wang J, Ouyang W, Zhu X, Jiang Y, Yu Y, Chen M, Yuan H, Hua J. Effect of shaking on the improvement of aroma quality and transformation of volatile metabolites in black tea. Food Chem X 2023; 20:101007. [PMID: 38144830 PMCID: PMC10740037 DOI: 10.1016/j.fochx.2023.101007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 12/26/2023] Open
Abstract
Shaking is an innovative technology employed in black tea processing to enhance flavor. However, the effects of shaking on the evolutionary mechanisms of volatile metabolites (VMs) remain unclear. In this study, we compared the effects of a shaking-withering method with those of traditional withering on the flavor and VMs transformation of black tea. The results showed that black tea treated with shaking exhibited excellent quality with floral and fruity aroma. Based on gas chromatography-tandem mass spectrometry, 128 VMs (eight categories) were detected. Combining variable importance projection with odor activity value analysis, eight key differential VMs were identified. Shaking could promote the oxidative degradation of fatty acids and carotenoids and modulate the biosynthesis of terpenoids to facilitate the formation of floral/fruity VMs (such as (Z)-hexanoic acid-3-hexenyl ester, ethyl hexanoate, trans-β-ionone, and decanal). Our findings provide theoretical guidance for the production of high-quality black tea with floral and fruity aromas.
Collapse
Affiliation(s)
| | | | - Xizhe Zhu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Yongwen Jiang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Yaya Yu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Ming Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Haibo Yuan
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Jinjie Hua
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| |
Collapse
|
10
|
Wang K, Xiao Y, Xie N, Xu H, Li S, Liu C, Huang J, Zhang S, Liu Z, Yin X. Effect of Leaf Grade on Taste and Aroma of Shaken Hunan Black Tea. Foods 2023; 13:42. [PMID: 38201072 PMCID: PMC10778213 DOI: 10.3390/foods13010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Shaken Hunan black tea is an innovative Hunan black tea processed by adding shaking to the traditional Hunan black tea. The quality of shaken black tea is influenced by leaf grades of different maturity. In this study, the taste and aroma quality of shaken Hunan black tea processed with different grades were analyzed by sensory evaluation (SP, HPLC, and HS-SPME/GC-MS). The results showed that shaken Hunan black tea processed with one bud and two leaves has the best quality, which has a sweet, mellow, and slightly floral taste, as well as a floral, honey, and sweet aroma. Moreover, caffeine and EGCG were identified as the most important bitter and astringent substances in shaken Hunan black. Combined with the analysis of GC-MS and OAV analysis, geraniol, jasmone, β-myrcene, citral, and trans-β-ocimene might be the most important components that affect the sweet aroma, while methyl jasmonate, indole, and nerolidol were the key components that affect the floral aroma of shaken Hunan black tea. This study lays a foundation for this study of the taste and aroma characteristics of shaken Hunan black tea and guides enterprises to improve shaken black tea processing technology.
Collapse
Affiliation(s)
- Kuofei Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (K.W.)
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| | - Yangbo Xiao
- Department of Tea Quality Chemistry and Nutrition Health, Tea Research Institute, Hunan Academy of Agricultural Sciences, Hunan Tea Plant and Tea Processing Observation Station of Ministry of Agriculture, Changsha 410125, China
| | - Nianci Xie
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (K.W.)
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Department of Tea Quality Chemistry and Nutrition Health, Tea Research Institute, Hunan Academy of Agricultural Sciences, Hunan Tea Plant and Tea Processing Observation Station of Ministry of Agriculture, Changsha 410125, China
| | - Hao Xu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (K.W.)
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| | - Saijun Li
- Department of Tea Quality Chemistry and Nutrition Health, Tea Research Institute, Hunan Academy of Agricultural Sciences, Hunan Tea Plant and Tea Processing Observation Station of Ministry of Agriculture, Changsha 410125, China
| | - Changwei Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (K.W.)
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (K.W.)
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Shuguang Zhang
- Department of Tea Quality Chemistry and Nutrition Health, Tea Research Institute, Hunan Academy of Agricultural Sciences, Hunan Tea Plant and Tea Processing Observation Station of Ministry of Agriculture, Changsha 410125, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (K.W.)
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Xia Yin
- Department of Tea Quality Chemistry and Nutrition Health, Tea Research Institute, Hunan Academy of Agricultural Sciences, Hunan Tea Plant and Tea Processing Observation Station of Ministry of Agriculture, Changsha 410125, China
| |
Collapse
|
11
|
Chai K, Chen S, Wang P, Kong W, Ma X, Zhang X. Multiomics Analysis Reveals the Genetic Basis of Volatile Terpenoid Formation in Oolong Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19888-19899. [PMID: 38048088 DOI: 10.1021/acs.jafc.3c06762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Oolong tea has gained great popularity in China due to its pleasant floral and fruity aromas. Although numerous studies have investigated the aroma differences across various tea cultivars, the genetic mechanism is unclear. This study performed multiomics analysis of three varieties suitable for oolong tea and three others with different processing suitability. Our analysis revealed that oolong tea varieties contained higher levels of cadinane sesquiterpenoids. PanTFBS was developed to identify variants of transcription factor binding sites (TFBSs). We found that the CsDCS gene had two TFBS variants in the promoter sequence and a single nucleotide polymorphism (SNP) in the coding sequence. Integrating data on genetic variations, gene expression, and protein-binding sites indicated that CsDCS might be a pivotal gene involved in the biosynthesis of cadinane sesquiterpenoids. These findings advance our understanding of the genetic factors involved in the aroma formation of oolong tea and offer insights into the enhancement of tea aroma.
Collapse
Affiliation(s)
- Kun Chai
- College of Life Science, Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuai Chen
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Pengjie Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Weilong Kong
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Xiaokai Ma
- College of Life Science, Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xingtan Zhang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| |
Collapse
|
12
|
Yin X, Xiao Y, Wang K, Wu W, Huang J, Liu S, Zhang S. Effect of shaking manners on floral aroma quality and identification of key floral-aroma-active compounds in Hunan black tea. Food Res Int 2023; 174:113515. [PMID: 37986507 DOI: 10.1016/j.foodres.2023.113515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 11/22/2023]
Abstract
Shaking is a key process effecting the floral aroma of Hunan black tea (HBT). In this study, the aroma composition of HBTs shaken in the early withering stage (ES1, ES1 + LS1, and ES2), shaken in the late withering stage (LS1), and not shaken (NS), and the identification of main floral aroma compounds were analyzed using sensory evaluation combined with gas chromatography-mass spectrometry (GC-MS), gas chromatography-olfactometry (GC-O), and aroma recombination experiments. Sensory evaluation results showed that the floral aroma of HBT shaken in the early withering stage was with high intensity, whereas HBT shaken in the late withering stage had low-intensity floral aroma. GC-MS identified a total number of 81 differential volatile compounds in HBT, including 30 esters, 18 aldehydes, 15 alcohols, 12 terpenes, 4 ketones, and 2 nitrogen-containing compounds. Further screening of important floral aroma differential compounds was performed using sensory-guided, odor activity value (OAV), and GC-O analysis, which identified three critical floral aroma differential compounds. Eventually, absolute quantification analysis and aroma recombination experiments confirmed that indole and methyl jasmonate were the most critical compounds of HBT determining floral aroma intensity. The findings of this study provide valuable guidance for the production of HBT with rich floral aroma attributes.
Collapse
Affiliation(s)
- Xia Yin
- Department of Tea Quality Chemistry and Nutrition Health/Tea Research Institute, Hunan Academy of Agricultural Sciences, Hunan Tea Plant and Tea Processing Observation Station of Ministry of Agriculture, Changsha 410125, China
| | - Yangbo Xiao
- Department of Tea Quality Chemistry and Nutrition Health/Tea Research Institute, Hunan Academy of Agricultural Sciences, Hunan Tea Plant and Tea Processing Observation Station of Ministry of Agriculture, Changsha 410125, China
| | - Kuofei Wang
- Key Lab of Tea Science of Education Ministry, Hunan Agricultural University, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| | - Wenliang Wu
- Department of Tea Quality Chemistry and Nutrition Health/Tea Research Institute, Hunan Academy of Agricultural Sciences, Hunan Tea Plant and Tea Processing Observation Station of Ministry of Agriculture, Changsha 410125, China
| | - Jing Huang
- Department of Tea Quality Chemistry and Nutrition Health/Tea Research Institute, Hunan Academy of Agricultural Sciences, Hunan Tea Plant and Tea Processing Observation Station of Ministry of Agriculture, Changsha 410125, China
| | - Shujuan Liu
- Department of Tea Quality Chemistry and Nutrition Health/Tea Research Institute, Hunan Academy of Agricultural Sciences, Hunan Tea Plant and Tea Processing Observation Station of Ministry of Agriculture, Changsha 410125, China
| | - Shuguang Zhang
- Department of Tea Quality Chemistry and Nutrition Health/Tea Research Institute, Hunan Academy of Agricultural Sciences, Hunan Tea Plant and Tea Processing Observation Station of Ministry of Agriculture, Changsha 410125, China.
| |
Collapse
|
13
|
Qin D, Wang Q, Jiang X, Ni E, Fang K, Li H, Wang Q, Pan C, Li B, Wu H. Identification of key volatile and odor-active compounds in 10 main fragrance types of Fenghuang Dancong tea using HS-SPME/GC-MS combined with multivariate analysis. Food Res Int 2023; 173:113356. [PMID: 37803659 DOI: 10.1016/j.foodres.2023.113356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 10/08/2023]
Abstract
Fenghuang Dancong tea (FHDC), a famous oolong tea originating from Guangdong Province in China, is known for its rich and unique fragrance. Nevertheless, the identification of the key aroma compounds with the difference fragrance types of FHDC remains uncertain. In order to characteristic the volatile components in different fragrance types of FHDC, 10 well-known fragrance types of FHDC and Tieguanyin (TGY) as a control were analyzed by headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography mass spectrometry (GC-MS). Results indicated that 172 volatile compounds were identified as common volatile compounds among all the tea samples. A total of 16 compounds were identified as key compounds that could be used to distinguish between FHDC and TGY. Among the 10 FHDC fragrance types, indole, hotrienol, benzyl nitrile, and jasmine lactone were found to be the most abundant compounds. Despite the presence of certain similarities in aroma components, each type exhibits unique fragrance characteristics as a result of variation in compound composition content and proportion. Furthermore, using statistical and odor activity value analysis, 20 aroma-active compounds were recognized as potential characteristic markers accountable for the diverse fragrance types of FHDC. This research enhances our comprehension of the various fragrance types of FHDC and provides reference values for their rapid identification in the market.
Collapse
Affiliation(s)
- Dandan Qin
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou, Guangdong 510640, China
| | - Qiushuang Wang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou, Guangdong 510640, China
| | - Xiaohui Jiang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou, Guangdong 510640, China
| | - Erdong Ni
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou, Guangdong 510640, China
| | - Kaixing Fang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou, Guangdong 510640, China
| | - Hongjian Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou, Guangdong 510640, China
| | - Qing Wang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou, Guangdong 510640, China
| | - Chendong Pan
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou, Guangdong 510640, China
| | - Bo Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou, Guangdong 510640, China
| | - Hualing Wu
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou, Guangdong 510640, China.
| |
Collapse
|
14
|
Mei S, Ding J, Chen X. Identification of differential volatile and non-volatile compounds in coffee leaves prepared from different tea processing steps using HS-SPME/GC-MS and HPLC-Orbitrap-MS/MS and investigation of the binding mechanism of key phytochemicals with olfactory and taste receptors using molecular docking. Food Res Int 2023; 168:112760. [PMID: 37120211 DOI: 10.1016/j.foodres.2023.112760] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/03/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Tea processing steps affected the proximate composition, enzyme activity and bioactivity of coffee leaves; however, the effects of different tea processing steps on the volatiles, non-volatiles, color, and sensory characteristics of coffee leaves have yet been demonstrated. Here the dynamic changes of volatile and non-volatile compounds in different tea processing steps were investigated using HS-SPME/GC-MS and HPLC-Orbitrap-MS/MS, respectively. A total of 53 differential volatiles (alcohol, aldehyde, ester, hydrocarbon, ketone, oxygen heterocyclic compounds, phenol, and sulfur compounds) and 50 differential non-volatiles (xanthone, flavonoid, organic acid, amino acid, organic amine, alkaloid, aldehyde, and purine et al.) were identified in coffee leaves prepared from different processing steps. Kill-green, fermentation, and drying steps significantly influenced the volatiles; however, kill-green, rolling, and drying steps significantly affected the color of coffee leaves and their hot water infusion. The coffee leaf tea that was prepared without the kill-green process was found to have a more pleasant taste as compared to the tea that was prepared with the kill-green process. This can be attributed to the fact that the former contained lower levels of flavonoids, chlorogenic acid, and epicatechin, but had higher levels of floral, sweet, and rose-like aroma compounds. The binding interactions between the key differential volatile and non-volatile compounds and the olfactory and taste receptors were also investigated. The key differential volatiles, pentadecanal and methyl salicylate generate fresh and floral odors by activating olfactory receptors, OR5M3 and OR1G1, respectively. Epicatechin showed a high affinity to the bitter receptors, including T2R16, T2R14, and T2R46. Since the specific content of differential compounds in different samples varies greatly, the dose-effect and structure-function relationships of these key compounds and the molecular mechanism of the odor and taste of coffee leaf tea need to be further studied.
Collapse
Affiliation(s)
- Suhuan Mei
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China.
| | - Jian Ding
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China.
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
15
|
Hong L, Wang Y, Zhang Q, Wang Y, Chen M, Li M, Huang Y, Wu Z, Ye J, Wang H. Effects of processing procedures on the formation of aroma intensity and odor characteristic of Benshan tea (Oolong tea, Camellia sentences). Heliyon 2023; 9:e14855. [PMID: 37025800 PMCID: PMC10070919 DOI: 10.1016/j.heliyon.2023.e14855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Benshan tea is a kind of oolong tea, and Benshan (Camellia sinensis) tea tree originates from Anxi County of Fujian Province in China, which is a national tea tree breed. Tea processing is the key to the formation of its odor characteristics. It is extremely important to step by step analyze effects of tea processing on aroma intensity and the formation of odor characteristics for optimizing tea processing process and improving tea quality. The results of this study showed that processing resulted in a significant increase in the content of volatile compounds in tea leaves, i.e., from 25.213 μg/kg to 111.223 μg/kg, in which the volatile compounds were mainly terpenoids. Secondly, the analysis found that 20 kinds of key compounds constituted to odor characteristics of Benshan tea leaves, among which geraniol, trans-β-ionone, gerol, citronellol, benzeneacetaldehyde, and trans-nerolidol were the most key six. Floral and fruity aromas, especially floral aroma, mainly formed odor characteristics of Benshan tea after processing, while floral aroma mainly came from the contribution of geraniol, which was the foremost compound in the formation of floral aroma of Benshan tea.
Collapse
|
16
|
Wang Z, Ahmad W, Zhu A, Geng W, Kang W, Ouyang Q, Chen Q. Identification of volatile compounds and metabolic pathway during ultrasound-assisted kombucha fermentation by HS-SPME-GC/MS combined with metabolomic analysis. ULTRASONICS SONOCHEMISTRY 2023; 94:106339. [PMID: 36842214 PMCID: PMC9984899 DOI: 10.1016/j.ultsonch.2023.106339] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/29/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The current work combines headspace solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC/MS) with multivariate analysis fusion metabonomics for examining metabolite profile changes. The correlation with metabolic pathways during the fermentation of kombucha tea were comprehensively explored. For optimizing the fermentation process, ultrasound-assisted factors were explored. A total of 132 metabolites released by fermented kombucha were detected by HS-SPME-GC/MS. We employed the principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) to present the relationship between aroma components and fermentation time, of which the first two principal components respectively accounted for 60.3% and 6.5% of the total variance. Multivariate statistical analysis showed that during the fermentation of kombucha tea, there were significant differences in the phenotypes of metabolites in the samples, and 25 characteristic metabolites were selected as biomarkers. Leaf alcohol was first proposed as the characteristic volatile in the fermentation process of kombucha. Furthermore, we addressed the generation pathways of characteristic volatiles, their formation mechanisms, and the transformational correlation among them. Our findings provide a roadmap for future kombucha fermentation processing to enhance kombucha flavor and aroma.
Collapse
Affiliation(s)
- Zhen Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Waqas Ahmad
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Afang Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wenhui Geng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wencui Kang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
17
|
Ye J, Wang Y, Lin S, Hong L, Kang J, Chen Y, Li M, Jia Y, Jia X, Wu Z, Wang H. Effect of processing on aroma intensity and odor characteristics of Shuixian (Camellia sinensis) tea. Food Chem X 2023; 17:100616. [PMID: 36974179 PMCID: PMC10039254 DOI: 10.1016/j.fochx.2023.100616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Processing is extremely important for the formation of aroma characteristic of tea leaves. In this study, the effects of processing on the content of volatile compounds, aroma intensity and odor characteristic of Shuixian tea were analyzed. The results showed that the content of volatile compounds in Shuixian tea increased significantly after processing, among which terpenoids and esters were the highest. There were 18 key compounds constituting the aroma characteristics of Shuixian tea, among which geraniol and nerol were the most important compounds, which contributed 96.28% to the aroma of Shuixian tea. The odor characteristics of Shuixian tea were mainly floral and fruity and the contribution of floral mainly came from geraniol, while fruity mainly came from nerol. Geraniol and nerol compounds increased rapidly after the withering process of tea leaves. This study provided an important reference for the improvement of processing technology and quality enhancement of Shuixian tea.
Collapse
|
18
|
Chen M, Fang D, Gou H, Wang S, Yue W. Quantitative Measurement Reveals Dynamic Volatile Changes and Potential Biochemical Mechanisms during Green Tea Spreading Treatment. ACS OMEGA 2022; 7:40009-40020. [PMID: 36385841 PMCID: PMC9647863 DOI: 10.1021/acsomega.2c04654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Quantitative data provide clues for biochemical reactions or regulations. The absolute quantification of volatile compounds in tea is complicated by their low abundance, volatility, thermal liability, matrix complexity, and instrumental sensitivity. Here, by integrating solvent-assisted flavor evaporation extraction with a gas chromatography-triple quadrupole mass spectrometry platform, we successfully established a method based on multiple reaction monitoring (MRM). The method was validated by multiple parameters, including the linear range, limit of detection, limit of quantification, precision, repeatability, stability, and accuracy. This method was then applied to measure temporal changes of endogenous volatiles during green tea spreading treatment. In total, 38 endogenous volatiles were quantitatively measured, which are derived from the shikimic acid pathway, mevalonate pathway, 2-C-methylerythritol-4-phosphate pathway, and fatty acid derivative pathway. Hierarchical clustering and heat-map analysis demonstrated four different changing patterns during green tea spreading treatment. Pathway analysis was then conducted to explore the potential biochemistry underpinning these dynamic change patterns. Our data demonstrated that the established MRM method showed high selectivity and sensitivity for quantitative tea volatile measurement and offered novel insights about volatile formation during green tea spreading.
Collapse
Affiliation(s)
- Mingjie Chen
- College
of Life Sciences, Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Dongsheng Fang
- College
of Life Sciences, Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Huan Gou
- College
of Life Sciences, Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Shiya Wang
- College
of Life Sciences, Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Wenjie Yue
- Jinshan
College, Fujian Agriculture and Forestry
University, Fuzhou, Fujian 350002, China
| |
Collapse
|
19
|
Wang M, Li J, Liu X, Liu C, Qian J, Yang J, Zhou X, Jia Y, Tang J, Zeng L. Characterization of Key Odorants in Lingtou Dancong Oolong Tea and Their Differences Induced by Environmental Conditions from Different Altitudes. Metabolites 2022; 12:1063. [PMID: 36355146 PMCID: PMC9695488 DOI: 10.3390/metabo12111063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 10/08/2023] Open
Abstract
Lingtou Dancong oolong tea is a famous Chinese oolong tea due to its special honey-like aroma. However, little is known about its specific aroma profile and key contributors. Furthermore, whether the aroma characteristics of Lingtou Dancong oolong tea are affected by the environmental conditions at different altitudes is unknown. In this study, the aromas in Lingtou Dancong oolong tea were extracted and analyzed by stir-bar sorptive extraction (SBSE) combined with gas chromatography-olfactometry (GC-O) and GC-mass spectrometry (GC-MS), and the aroma profiles of tea plants grown at different altitudes were compared. We detected 59 odor compounds in Lingtou Dancong oolong tea. Eight compounds with honey and floral odors were identified as key components on the basis of GC-O, GC-MS, odor activity value, and flavor dilution analyses. Differences in the contents of precursor geranyl diphosphate and transcript levels of structural genes were found to be responsible for the differential accumulation of linalool and hotrienol among plants grown at different altitudes. This is the first report on the aroma characteristics and key contributors of Lingtou Dancong oolong tea and their differences, as affected by altitude. These results provide details of the chemical basis of the aroma quality of Lingtou Dancong oolong tea.
Collapse
Affiliation(s)
- Miao Wang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- South China National Botanical Garden, No. 723 Xingke Road, Guangzhou 510650, China
| | - Jianlong Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
| | - Xiaohui Liu
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Chengshun Liu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- South China National Botanical Garden, No. 723 Xingke Road, Guangzhou 510650, China
| | - Jiajia Qian
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- South China National Botanical Garden, No. 723 Xingke Road, Guangzhou 510650, China
| | - Jie Yang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Guangzhou 510650, China
| | - Xiaochen Zhou
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- South China National Botanical Garden, No. 723 Xingke Road, Guangzhou 510650, China
| | - Yongxia Jia
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Guangzhou 510650, China
| | - Jinchi Tang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
| | - Lanting Zeng
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- South China National Botanical Garden, No. 723 Xingke Road, Guangzhou 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
20
|
Li Z. Comparative analysis of Fenghuang Dancong, Tieguanyin, and Dahongpao teas using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry and chemometric methods. PLoS One 2022; 17:e0276044. [PMID: 36228035 PMCID: PMC9560621 DOI: 10.1371/journal.pone.0276044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] Open
Abstract
Fenghuang Dancong, Tieguanyin, and Dahongpao teas are belonged to semi-fermented oolong teas and are famous for their unique aroma. However, reports regarding the systematic comparison, differentiation, and classification of the volatile components of these three types of oolong teas are lacking. In this study, we aimed to establish a method for distinguishing these three types of oolong teas. The volatile components in a total of 21 tea samples of these three types of oolong teas were extracted, determined, and identified by headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS). In addition, chemometric methods such as hierarchical cluster analysis (HCA), principal component analysis (PCA), and orthogonal partial least squares discriminant analysis (OPLS-DA) were used for distinguishing and classifying the three types of oolong teas on the basis of the similarities and differences in the volatile components. The results showed that 125 volatile components were extracted and identified from the three types of oolong teas, among which 53 volatile components overlapped among the samples. The results of HCA indicated that the samples of each of the three types of oolong teas could be placed in one category when the t value was 220. The results of PCA and OPLS-DA showed that the volatile components such as dehydrolinalool, linalool oxide II, linalool, α-farnesene, linalool oxide I, β-ocimene, nerolidol, cis-3-butyric acid folate, myrcene, and (Z)-hexanoic acid-3-hexenyl ester are the characteristic components, which can be used to distinguish the three types of oolong teas. We developed a simple, fast, and efficient method for distinguishing three types of oolong teas and provided a feasible technique for the identification of oolong tea types.
Collapse
Affiliation(s)
- Zhangwei Li
- Institute of Chemistry and Environment Engineering, Hanshan Normal University, Chaozhou, P. R. China
| |
Collapse
|
21
|
Junxing LI, Aiqing M, Gangjun ZHAO, Xiaoxi L, Haibin W, Jianning L, Hao G, Xiaoming Z, Liting D, Chengying M. Assessment of the ‘taro-like’ aroma of pumpkin fruit (Cucurbita moschata D.) via E-nose, GC–MS and GC-O analysis. Food Chem X 2022; 15:100435. [PMID: 36211734 PMCID: PMC9532776 DOI: 10.1016/j.fochx.2022.100435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022] Open
Abstract
E-nose and GC–MS could distinguish the different pumpkin based on aroma profiles and volatile compounds. It’s the first time to study the key volatile compound associated with ‘taro-like’ aroma of pumpkin fruit. 2-Acetyl-1-pyrroline is the key contributor to the ‘taro-like’ aroma of pumpkin fruit.
‘Taro-like’ aroma is a pleasant flavor and value-added trait in pumpkin species imparted by unknown key volatile compounds. In this study, we used the electronic nose (E-nose), gas chromatography-mass spectrometry (GC–MS), and GC-Olfactometry (GC-O) to study the aroma profile, volatile compounds, and key contributors, respectively. By E-nose and GC–MS, we found significant differences in the aroma profiles and volatile compounds between fruits from five samples with/without ‘taro-like’ aroma. According to the analysis of differential volatile compounds obtained from GC–MS and the GC-O analysis of the sample with ‘taro-like’ aroma, we found that 2-acetyl-1-pyrroline representing the ‘taro’ odor was only identified in the sample with ‘taro-like’ aroma. Therefore, we conclude that 2-acetyl-1-pyrroline is the key contributor to the 'taro-like' aroma. Moreover, the relationship between 2-acetyl-1-pyrroline and ‘taro-like’ aroma was further verified via other pumpkin samples. Our results provide a theoretical basis for understanding the aroma characteristics of pumpkin fruit.
Collapse
|
22
|
Chen W, Hu D, Miao A, Qiu G, Qiao X, Xia H, Ma C. Understanding the aroma diversity of Dancong tea (Camellia sinensis) from the floral and honey odors: Relationship between volatile compounds and sensory characteristics by chemometrics. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Advanced sensing of volatile organic compounds in the fermentation of tea extract enabled by nano-colorimetric sensor array based on density functional theory. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Bauhinia forficata Link Infusions: Chemical and Bioactivity of Volatile and Non-Volatile Fractions. Molecules 2022; 27:molecules27175415. [PMID: 36080183 PMCID: PMC9457595 DOI: 10.3390/molecules27175415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 11/24/2022] Open
Abstract
This study aimed to evaluate Bauhinia forficata infusions prepared using samples available in Rio de Janeiro, Brazil. As such, infusions at 5% (w/v) of different brands and batches commercialized in the city (CS1, CS2, CS3, and CS4) and samples of plant material botanically identified (BS) were evaluated to determine their total phenolic and flavonoid contents (TPC and TFC), antioxidant capacity (ABTS•+, DPPH•, and FRAP assays), phytochemical profile, volatile compounds, and inhibitory effects against the α-amylase enzyme. The results showed that infusions prepared using BS samples had lower TPC, TFC and antioxidant potential than the commercial samples (p < 0.05). The batch averages presented high standard deviations mainly for the commercial samples, corroborating sample heterogeneity. Sample volatile fractions were mainly composed of terpenes (40 compounds identified). In the non-volatile fraction, 20 compounds were identified, with emphasis on the CS3 sample, which comprised most of the compounds, mainly flavonoid derivatives. PCA analysis demonstrated more chemical diversity in non-volatile than volatile compounds. The samples also inhibited the α-amylase enzyme (IC50 value: 0.235−0.801 mg RE/mL). Despite the differences observed in this work, B. forficata is recognized as a source of bioactive compounds that can increase the intake of antioxidant compounds by the population.
Collapse
|
25
|
Kang W, Lin H, Jiang R, Yan Y, Ahmad W, Ouyang Q, Chen Q. Emerging applications of nano-optical sensors combined with near-infrared spectroscopy for detecting tea extract fermentation aroma under ultrasound-assisted sonication. ULTRASONICS SONOCHEMISTRY 2022; 88:106095. [PMID: 35850035 PMCID: PMC9293937 DOI: 10.1016/j.ultsonch.2022.106095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/13/2022] [Accepted: 07/08/2022] [Indexed: 05/26/2023]
Abstract
The current innovative work combines nano-optical sensors with near-infrared spectroscopy for rapid detection and quantification of polyphenols and investigates the potential of the nano-optical sensor based on chemo-selective colorants to detect the dynamic changes in aroma components during the fermentation of tea extract. The procedure examined the influence of different ultrasound-assisted sonication factors on the changes in the consumption rate of polyphenols during the fermentation of tea extract versus non-sonication as a control group. The results showed that the polyphenol consumption rate improved under the ultrasound conditions of 28 kHz ultrasound frequency, 24 min treatment time, and 40 W/L ultrasonic power density. The metal-organic framework based nano-optical sensors reported here have more adsorption sites for enhanced adsorption of the volatile organic compounds. The polystyrene-acrylic microstructure offered specific surface area for the reactants. Besides, the employed porous silica nanospheres with higher porosity administered improved gas enrichment effect. The nano-optical sensor exhibits good performance with a "chromatogram" for the identification of aroma components in the fermentation process of tea extract. The proposed method respectively enhanced the consumption rate of polyphenol by 35.57%, 11.34% and 16.09% under the optimized conditions. Based on the established polyphenol quantitative prediction models, this work demonstrated the feasibility of using a nano-optical sensor to perform in-situ imaging of the fermentation degree of tea extracts subjected to ultrasonic treatment.
Collapse
Affiliation(s)
- Wencui Kang
- School of Food and Biological Engineering, Jiangsu University, Jiangsu 212013, PR China
| | - Hao Lin
- School of Food and Biological Engineering, Jiangsu University, Jiangsu 212013, PR China
| | - Ruiqi Jiang
- School of Food and Biological Engineering, Jiangsu University, Jiangsu 212013, PR China
| | - Yuqian Yan
- School of Food and Biological Engineering, Jiangsu University, Jiangsu 212013, PR China
| | - Waqas Ahmad
- School of Food and Biological Engineering, Jiangsu University, Jiangsu 212013, PR China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Jiangsu 212013, PR China.
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Jiangsu 212013, PR China; College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
26
|
Zeng L, Jin S, Xu YQ, Granato D, Fu YQ, Sun WJ, Yin JF, Xu YQ. Exogenous stimulation-induced biosynthesis of volatile compounds: Aroma formation of oolong tea at postharvest stage. Crit Rev Food Sci Nutr 2022; 64:76-86. [PMID: 35900156 DOI: 10.1080/10408398.2022.2104213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Volatile organic compounds (VOCs) are produced by plants responding to biotic and abiotic stresses. According to their biosynthetic sources, induced VOCs are divided into three major classes: terpenoids, phenylpropanoid/benzenoid, and fatty acid derivatives. These compounds with specific aroma characteristics importantly contribute to the aroma quality of oolong tea. Shaking and rocking is the crucial procedure for the aroma formation of oolong tea by exerting mechanical damage to fresh tea leaves. Abundant studies have been carried out to investigate the formation mechanisms of VOCs during oolong tea processing in recent years. This review systematically introduces the biosynthesis of VOCs in plants, and the volatile changes due to biotic and abiotic stresses are summarized and expatiated, using oolong tea as an example.
Collapse
Affiliation(s)
- Lin Zeng
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering & Technology Research Center for Tea Industry, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shan Jin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yan-Qun Xu
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, Zhejiang University, Zhejiang, China
| | - Daniel Granato
- Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Yan-Qing Fu
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering & Technology Research Center for Tea Industry, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
| | - Wei-Jiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jun-Feng Yin
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering & Technology Research Center for Tea Industry, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
| | - Yong-Quan Xu
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering & Technology Research Center for Tea Industry, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
| |
Collapse
|
27
|
Variations in Fatty Acids Affected Their Derivative Volatiles during Tieguanyin Tea Processing. Foods 2022; 11:foods11111563. [PMID: 35681313 PMCID: PMC9180273 DOI: 10.3390/foods11111563] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 01/12/2023] Open
Abstract
Fatty acids (FAs) are important precursors of oolong tea volatile substances, and their famous derivatives have been shown to be the key aroma components. However, the relationship between fatty acids and their derivatives during oolong tea production remains unclear. In this study, fresh Tieguanyin leaves were manufactured into oolong tea and green tea (control), and fatty acids and fatty acid-derived volatiles (FADV) were extracted from processed samples by the sulfuric acid–methanol method and solvent-assisted flavor evaporation (SAFE), respectively. The results showed that unsaturated fatty acids were more abundant than saturated fatty acids in fresh leaves and decreased significantly during tea making. Relative to that in green tea, fatty acids showed larger variations in oolong tea, especially at the green-making stage. Unlike fatty acids, the FADV content first increased and then decreased. During oolong tea manufacture, FADV contents were significantly and negatively correlated with total fatty acids; during the green-making stage, methyl jasmonate (MeJA) content was significantly and negatively correlated with abundant fatty acids except steric acid. Our data suggest that the aroma quality of oolong tea can be improved by manipulating fatty acid transformation.
Collapse
|
28
|
Wang B, Meng Q, Xiao L, Li R, Peng C, Liao X, Yan J, Liu H, Xie G, Ho CT, Tong H. Characterization of aroma compounds of Pu-erh ripen tea using solvent assisted flavor evaporation coupled with gas chromatography-mass spectrometry and gas chromatography-olfactometry. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Characterization analysis of flavor compounds in green teas at different drying temperature. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Wang N, Wen X, Gao Y, Lu S, Li Y, Shi Y, Yang Z. Identification and Characterization of the Bioactive Polyphenols and Volatile Compounds in Sea Buckthorn Leaves Tea Together With Antioxidant and α-Glucosidase Inhibitory Activities. Front Nutr 2022; 9:890486. [PMID: 35571930 PMCID: PMC9100590 DOI: 10.3389/fnut.2022.890486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/29/2022] [Indexed: 01/18/2023] Open
Abstract
Sea buckthorn leaves have been used for tea making in food field gradually. This study was carried out to characterize the bioactive polyphenols and volatile compounds in sea buckthorn leaves (SL), sea buckthorn leaves green tea (SGT), and sea buckthorn leaves black tea (SBT) by using high-performance liquid chromatography with an UV detector (HPLC-UV), the liquid chromatography-mass spectrometry (LC-MS), and headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS), in combination with multivariate analysis. A total of 48 non-volatile metabolites and 295 volatile metabolites were identified. Then, the total polyphenol and total flavonoid contents in SL, SGT, and SBT were also analyzed. Moreover, SL and SGT showed greater antioxidant activities based on 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), and oxygen radical absorbance capacity (ORAC) results. At the concentration of 0.1 mg/ml, their DPPH and ABTS radical scavenging ratios were 66 to 95%, while SBT exhibited lower antioxidant activity of 26 to 44%. SL, SGT, and SBT displayed moderate α-glucosidase inhibitory activity.
Collapse
Affiliation(s)
- Ningning Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xiufeng Wen
- Seabuckthorn Development and Management Center of the Ministry of Water Resources, Beijing, China
| | - Yan Gao
- Seabuckthorn Development and Management Center of the Ministry of Water Resources, Beijing, China
| | - Shunguang Lu
- Seabuckthorn Development and Management Center of the Ministry of Water Resources, Beijing, China
| | - Yimeng Li
- School of Pharmacy, Lanzhou University, Lanzhou, China
- Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou, China
| | - Yanbin Shi
- School of Pharmacy, Lanzhou University, Lanzhou, China
- Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou, China
| | - Zhigang Yang
- School of Pharmacy, Lanzhou University, Lanzhou, China
- Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou, China
- *Correspondence: Zhigang Yang
| |
Collapse
|
31
|
Identification of Key Aroma Compounds Responsible for the Floral Ascents of Green and Black Teas from Different Tea Cultivars. Molecules 2022; 27:molecules27092809. [PMID: 35566160 PMCID: PMC9100887 DOI: 10.3390/molecules27092809] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Chemicals underlying the floral aroma of dry teas needs multi-dimensional investigations. Green, black, and freeze-dried tea samples were produced from five tea cultivars, and only ‘Chunyu2’ and ‘Jinguanyin’ dry teas had floral scents. ‘Chunyu2’ green tea contained the highest content of total volatiles (134.75 μg/g) among green tea samples, while ‘Jinguanyin’ black tea contained the highest content of total volatiles (1908.05 μg/g) among black tea samples. The principal component analysis study showed that ‘Chunyu2’ and ‘Jinguanyin’ green teas and ‘Chunyu2’ black tea were characterized by the abundant presence of certain alcohols with floral aroma, while ‘Jinguanyin’ black tea was discriminated due to the high levels of certain alcohols, esters, and aldehydes. A total of 27 shared volatiles were present in different tea samples, and the contents of 7 floral odorants in dry teas had correlations with those in fresh tea leaves (p < 0.05). Thus, the tea cultivar is crucial to the floral scent of dry tea, and these seven volatiles could be promising breeding indices.
Collapse
|
32
|
Quality Characteristics of Oolong Tea Products in Different Regions and the Contribution of Thirteen Phytochemical Components to Its Taste. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040278] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Regionality is a term used in the tea industry to describe the particular style of tea produced by a growing region. Determining the characteristics of the tea of specific regions can help growers predict tea plant quality before harvesting and eventually production. As such, in this study, we collected representative Oolong tea samples from 15 regions in 8 countries. Quantitative description analysis (QDA) and a flavor wheel were used to analyze their sensory characteristics. Chemometrics was used to screen the phytochemical components that significantly contribute to the taste of Oolong tea. We preliminarily obtained 35 sensory characteristic descriptors and constructed a flavor wheel for Oolong tea. We found that Oolong tea in each region has unique sensory quality characteristics. The content of thirteen phytochemical components of Oolong tea in different regions widely varied, and the average coefficient of variation was 45.56%. Among of them, we found the largest difference in free amino acids. We identified the relationship between taste sub-attributes, and the thirteen phytochemical components was found through correlation analysis. Finally, we selected phytochemical components with significant effects on five taste sub-attributes that were selected from the thirteen detected phytochemical components. The construction of the Oolong tea flavor wheel can help realize the qualitative and quantitative sensory evaluation of Oolong tea from different origins and contribute to the quality identification and directional improvement of Oolong tea products.
Collapse
|
33
|
Mei S, Yu Z, Chen J, Zheng P, Sun B, Guo J, Liu S. The Physiology of Postharvest Tea (Camellia sinensis) Leaves, According to Metabolic Phenotypes and Gene Expression Analysis. Molecules 2022; 27:molecules27051708. [PMID: 35268809 PMCID: PMC8911848 DOI: 10.3390/molecules27051708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Proper postharvest storage preserves horticultural products, including tea, until they can be processed. However, few studies have focused on the physiology of ripening and senescence during postharvest storage, which affects the flavor and quality of tea. In this study, physiological and biochemical indexes of the leaves of tea cultivar ‘Yinghong 9′ preserved at a low temperature and high relative humidity (15–18 °C and 85–95%, PTL) were compared to those of leaves stored at ambient conditions (24 ± 2 °C and relative humidity of 65% ± 5%, UTL). Water content, chromatism, chlorophyll fluorescence, and key metabolites (caffeine, theanine, and catechins) were analyzed over a period of 24 h, and volatilized compounds were determined after 24 h. In addition, the expression of key biosynthesis genes for catechin, caffeine, theanine, and terpene were quantified. The results showed that water content, chromatism, and chlorophyll fluorescence of preserved leaves were more similar to fresh tea leaves than unpreserved tea leaves. After 24 h, the content of aroma volatiles and caffeine significantly increased, while theanine decreased in both groups. Multiple catechin monomers showed distinct changes within 24 h, and EGCG was significantly higher in preserved tea. The expression levels of CsFAS and CsTSI were consistent with the content of farnesene and theanine, respectively, but TCS1 and TCS2 expression did not correlate with caffeine content. Principal component analysis considered results from multiple indexes and suggested that the freshness of PTL was superior to that of UTL. Taken together, preservation conditions in postharvest storage caused a series of physiological and metabolic variations of tea leaves, which were different from those of unpreserved tea leaves. Comprehensive evaluation showed that the preservation conditions used in this study were effective at maintaining the freshness of tea leaves for 2–6 h. This study illustrates the metabolic changes that occur in postharvest tea leaves, which will provide a foundation for improvements to postharvest practices for tea leaves.
Collapse
Affiliation(s)
- Shuang Mei
- College of Engineering, South China Agricultural University, Guangzhou 510642, China;
- Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zizi Yu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Y.); (J.C.); (P.Z.); (B.S.)
| | - Jiahao Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Y.); (J.C.); (P.Z.); (B.S.)
| | - Peng Zheng
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Y.); (J.C.); (P.Z.); (B.S.)
| | - Binmei Sun
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Y.); (J.C.); (P.Z.); (B.S.)
| | - Jiaming Guo
- College of Engineering, South China Agricultural University, Guangzhou 510642, China;
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 525000, China
- Correspondence: (J.G.); (S.L.)
| | - Shaoqun Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Y.); (J.C.); (P.Z.); (B.S.)
- Correspondence: (J.G.); (S.L.)
| |
Collapse
|
34
|
Fan FY, Zhou SJ, Qian H, Zong BZ, Huang CS, Zhu RL, Guo HW, Gong SY. Effect of Yellowing Duration on the Chemical Profile of Yellow Tea and the Associations with Sensory Traits. Molecules 2022; 27:molecules27030940. [PMID: 35164205 PMCID: PMC8839223 DOI: 10.3390/molecules27030940] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
The yellowing process is the crucial step to form the characteristic sensory and chemical properties of yellow tea. To investigate the chemical changes and the associations with sensory traits during yellowing, yellow teas with different yellowing times (0–13 h) were prepared for sensory evaluation and chemical analysis. The intensities of umami and green-tea aroma were reduced whereas sweet taste, mellow taste and sweet aroma were increased under long-term yellowing treatment. A total of 230 chemical constituents were determined, among which 25 non-volatiles and 42 volatiles were the key chemical contributors to sensory traits based on orthogonal partial least squares discrimination analysis (OPLS-DA), multiple factor analysis (MFA) and multidimensional alignment (MDA) analysis. The decrease in catechins, flavonol glycosides and caffeine and the increase in certain amino acids contributed to the elevated sweet taste and mellow taste. The sweet, woody and herbal odorants and the fermented and fatty odorants were the key contributors to the characteristic sensory feature of yellow tea with sweet aroma and over-oxidation aroma, including 7 ketones, 5 alcohols, 1 aldehyde, 5 acids, 4 esters, 5 hydrocarbons, 1 phenolic compound and 1 sulfocompound. This study reveals the sensory trait-related chemical changes in the yellowing process of tea, which provides a theoretical basis for the optimization of the yellowing process and quality control of yellow tea.
Collapse
Affiliation(s)
- Fang-Yuan Fan
- Tea Research Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (F.-Y.F.); (S.-J.Z.); (B.-Z.Z.); (C.-S.H.); (R.-L.Z.); (H.-W.G.)
| | - Sen-Jie Zhou
- Tea Research Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (F.-Y.F.); (S.-J.Z.); (B.-Z.Z.); (C.-S.H.); (R.-L.Z.); (H.-W.G.)
| | - Hong Qian
- Deqing Agricultural Technology Extension Center, 883 Zhongxingbei Road, Huzhou 313200, China;
| | - Bang-Zheng Zong
- Tea Research Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (F.-Y.F.); (S.-J.Z.); (B.-Z.Z.); (C.-S.H.); (R.-L.Z.); (H.-W.G.)
| | - Chuang-Sheng Huang
- Tea Research Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (F.-Y.F.); (S.-J.Z.); (B.-Z.Z.); (C.-S.H.); (R.-L.Z.); (H.-W.G.)
| | - Ruo-Lan Zhu
- Tea Research Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (F.-Y.F.); (S.-J.Z.); (B.-Z.Z.); (C.-S.H.); (R.-L.Z.); (H.-W.G.)
| | - Hao-Wei Guo
- Tea Research Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (F.-Y.F.); (S.-J.Z.); (B.-Z.Z.); (C.-S.H.); (R.-L.Z.); (H.-W.G.)
| | - Shu-Ying Gong
- Tea Research Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (F.-Y.F.); (S.-J.Z.); (B.-Z.Z.); (C.-S.H.); (R.-L.Z.); (H.-W.G.)
- Correspondence: ; Tel.: +86-(571)-88982519
| |
Collapse
|
35
|
Cui J, Zhai X, Guo D, Du W, Gao T, Zhou J, Schwab WG, Song C. Characterization of Key Odorants in Xinyang Maojian Green Tea and Their Changes During the Manufacturing Process. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:279-288. [PMID: 34932338 DOI: 10.1021/acs.jafc.1c06473] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Xinyang Maojian (XYMJ) green tea is a famous high-grade Chinese green tea, but the key odorants contributing to its aroma have been poorly understood. In this study, solid-phase microextraction and solvent-assisted flavor evaporation were used for sample preparation, and gas chromatography-mass spectrometry (GC-MS) and gas chromatography-olfactometry (GC-O) were used for both qualitative and quantitative analysis. A total of 50 volatile compounds of five chemical classes were identified in XYMJ tea infusion. Among them, nine odorants including nonanal, β-ionone, octanal, E-nerolidol, linalool, cis-3-hexenyl hexanoate, geraniol, decanal, and β-cyclocitral were identified as key odorants of XYMJ based on GC-O, odor activity values, and aroma combination experiments. Changes in the content of these aroma-active compounds during the manufacturing process of XYMJ (fresh leaves, fixing, rolling, shaping, and drying) were also determined. Most aroma-active compounds decreased after the fixation process, with the exception of cis-3-hexenyl hexanoate. This is the first study to investigate the key odorants in XYMJ using the sensomics approach. The findings of this study provide novel information on the aroma quality of XYMJ.
Collapse
Affiliation(s)
- Jilai Cui
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
- College of Life Science, Xinyang Normal University, 237 Nanhu R., Xinyang, Henan 464000, People's Republic of China
| | - Xiaoting Zhai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
- International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
| | - Danyang Guo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
- International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
| | - Wenkai Du
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
- International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
| | - Ting Gao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
- International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
| | - Jie Zhou
- College of Life Science, Xinyang Normal University, 237 Nanhu R., Xinyang, Henan 464000, People's Republic of China
| | - Wilfried G Schwab
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
- International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
- International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
| |
Collapse
|
36
|
ZHU W, FANG X, WANG W, XU W, CHEN W, WU S, HUANG Y, WANG S. Aroma effects of critical volatile compounds during thermophilic bacteria pile-fermentation in dark tea using gas chromatography mass spectrometry and odor activity value. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.87022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Wen ZHU
- Huazhong Agricultural University,, China
| | - Xin FANG
- Huazhong Agricultural University,, China
| | | | - Wencan XU
- Huazhong Agricultural University,, China
| | | | - Shuang WU
- Huazhong Agricultural University,, China
| | - Youyi HUANG
- Huazhong Agricultural University,, China; Huazhong Agricultural University, China
| | | |
Collapse
|
37
|
Xue J, Zhang X, Cheng C, Sun C, Yang S. The aroma analysis of asparagus tea processed from different parts of green asparagus (
Asparagus officinalis
L.). J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Junxiu Xue
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao) Ministry of Agriculture and Rural Affairs Qingdao City China
- College of Horticulture Qingdao Agricultural University Qingdao City China
| | - Xinfu Zhang
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao) Ministry of Agriculture and Rural Affairs Qingdao City China
- College of Horticulture Qingdao Agricultural University Qingdao City China
| | - Chenxia Cheng
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao) Ministry of Agriculture and Rural Affairs Qingdao City China
- College of Horticulture Qingdao Agricultural University Qingdao City China
| | - Chao Sun
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao) Ministry of Agriculture and Rural Affairs Qingdao City China
- College of Horticulture Qingdao Agricultural University Qingdao City China
| | - Shaolan Yang
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao) Ministry of Agriculture and Rural Affairs Qingdao City China
- College of Horticulture Qingdao Agricultural University Qingdao City China
| |
Collapse
|
38
|
Du Y, Yang W, Yang C, Yang X. A comprehensive review on microbiome, aromas and flavors, chemical composition, nutrition and future prospects of Fuzhuan brick tea. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
39
|
Lin SY, Hsiao YH, Chen PA. Revealing the profound meaning of pan-firing of oolong tea - A decisive point in odor fate. Food Chem 2021; 375:131649. [PMID: 34848093 DOI: 10.1016/j.foodchem.2021.131649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022]
Abstract
The delicate aroma of Bao-chung tea comes from oxidation, followed by fixation in the pan-firing step. Traditionally, the timing of pan-firing has been based on odor perception by tea masters and lacks relevant scientific research. Pan-firing at three different green-note intensities and three stirring sequences was used to explore the relationship between the compositions of volatile organic compounds (VOCs) before pan-firing and in the finished tea. Pan-firing decreased green leaf volatiles and increased the ratio of terpenoid volatiles. The characteristic VOCs of the finished tea were highly related to VOCs before pan-firing (R2 = 0.97). Principal component analysis revealed that the traditional judgment of the pan-firing step is based on nonanal, β-linalool, and cis- and trans-linalool oxides. The timing of pan-firing is crucial for VOCs, and VOC composition before pan-firing can be used to predict desired tea aroma.
Collapse
Affiliation(s)
- Shu-Yen Lin
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan
| | - Ya-Hsin Hsiao
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan
| | - Po-An Chen
- Plant Technology Research Center, Agricultural Technology Research Institute, Hsinchu, Taiwan.
| |
Collapse
|
40
|
Qi D, Miao A, Chen W, Wang W, He X, Ma C. Characterization of the volatile compounds profile of the innovative broken oolong-black tea in comparison with broken oolong and broken black tea. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Chen S, Xie P, Li Y, Wang X, Liu H, Wang S, Han W, Wu R, Li X, Guan Y, Yang Z, Yu X. New Insights into Stress-Induced β-Ocimene Biosynthesis in Tea ( Camellia sinensis) Leaves during Oolong Tea Processing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11656-11664. [PMID: 34554738 DOI: 10.1021/acs.jafc.1c04378] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As the major contributors to the floral odors of tea products, terpenoid volatiles play critical roles in the defense response of plants to multiple stresses. Until now, only a few TPS genes in tea plants (Camellia sinensis) have been functionally validated. In this study, by comparative studies conducted at gene, protein, and metabolite levels during oolong tea processing, we isolated an ocimene synthase gene, CsOCS, which displays a low similarity to previously characterized tea ocimene synthases. Further prokaryotic expression and subcellular localization analysis showed that it is plastid-located and could produce (E)-β-ocimene and (Z)-β-ocimene using GPP as the substrate. The optimum temperature and pH of the enzyme were 30 °C and 7.5, respectively. Treatment with exogenous methyl jasmonate elevated the transcript level of CsOCS and enhanced the emission of ocimene from tea leaves. Collectively, CsOCS is implicated as a key enzyme for β-ocimene synthesis during oolong tea processing.
Collapse
Affiliation(s)
- Si Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peifeng Xie
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yeye Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaxia Wang
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huihui Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shanshan Wang
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenbo Han
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruimei Wu
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinlei Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuefeng Guan
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenbiao Yang
- Institute of Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| | - Xiaomin Yu
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
42
|
Liu H, Li S, Zhong Y, Lan S, Brennan CS, Wang Q, Ma L. Study of aroma compound formations and transformations during Jinxuan and Qingxin oolong tea processing. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Huifan Liu
- Zhongkai University of Agriculture and Engineering Guangzhou Guangdong 510225 China
| | - Sufen Li
- Zhongkai University of Agriculture and Engineering Guangzhou Guangdong 510225 China
| | - Yuming Zhong
- Zhongkai University of Agriculture and Engineering Guangzhou Guangdong 510225 China
| | - Siqi Lan
- Zhongkai University of Agriculture and Engineering Guangzhou Guangdong 510225 China
| | - Charles Stephen Brennan
- Food Science Department of Wine, Food and Molecular Biosciences Lincoln University Lincoln New Zealand
| | - Qin Wang
- Zhongkai University of Agriculture and Engineering Guangzhou Guangdong 510225 China
| | - Lukai Ma
- Zhongkai University of Agriculture and Engineering Guangzhou Guangdong 510225 China
| |
Collapse
|
43
|
Formation of Volatile and Aroma Compounds during the Dehydration of Membrane-Clarified Sugarcane Juice to Non-Centrifugal Sugar. Foods 2021; 10:foods10071561. [PMID: 34359431 PMCID: PMC8303542 DOI: 10.3390/foods10071561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 12/01/2022] Open
Abstract
The development of volatile compounds and their precursors during the dehydration process of membrane-clarified sugarcane juice to non-centrifugal sugar (NCS) was investigated. Head-space solid phase microextraction/gas chromatography–mass spectrometry (HS-SPME/GC–MS) coupled with chemometrics was employed to assess the differences at the various stages of the dehydration process. A total of 111 volatile compounds were identified, among which 57 were endogenous compounds from sugarcane juice and displayed an attenuated abundance in the first 30 min. Typical oxygen and nitrogen heterocyclic compounds, including furans and pyrazines, and aldehydes derived were found to be the main volatiles contributing to the formation of NCS characteristic aroma, with phenols, alcohols, esters, acids, and sulfur compounds as supplementary odor. Free amino acids and reducing sugars were identified as important precursors for the aroma development process. The low temperature (90–108 °C) and micro vacuum condition (−0.03 MPa) approach used in this study could be an alternative option for the manufacture of NCS.
Collapse
|
44
|
Song Y, Wang X, Xie H, Li L, Ning J, Zhang Z. Quality evaluation of Keemun black tea by fusing data obtained from near-infrared reflectance spectroscopy and computer vision sensors. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119522. [PMID: 33582437 DOI: 10.1016/j.saa.2021.119522] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Keemun black tea is classified into 7 grades according to the difference in its quality. The appearance and flavour are crucial indicators of its quality. This research demonstrates a rapid grading method of jointly using near-infrared reflectance spectroscopy (NIRS) and computer vision systems (CVS) to evaluate the flavour and appearance quality of tea. A Bruker MPA Fourier Transform near-infrared spectrometer was used to record the spectrum of samples. A computer vision system was used to capture the image of tea leaves in an unobstructed manner. 80 tea samples for each grade were analyzed. The performance of four NIRS feature extraction methods (principal component analysis, local linear embedding, isometric feature mapping, and convolutional neural network (CNN)) was compared in this study. Histograms of six geometric features (leaf width, leaf length, leaf area, leaf perimeter, aspect ratio, and rectangularity) of different tea samples were used to describe their appearance. A feature-level fusion strategy was used to combine softmax and artificial neural networks (ANN) to classify NIRS and CVS features. The results indicated that for an individual NIRS signal, CNN achieved the highest classification accuracy with the softmax classification model. The histograms of the combined shape features indicated that when the softmax classification model was used, the classification accuracy was also higher than ANN. The fusion of NIRS and CVS features proved to be the optimal combination; the accuracy of calibration, validation and testing sets increased from 99.29%, 96.67% and 98.57% (when the optimal features from a single-sensor were used) to 100.00%, 99.29% and 100.00% (when features from multiple-sensors were used). This study revealed that the combination of NIRS and CVS features can be a useful strategy for classifying black tea samples of different grades.
Collapse
Affiliation(s)
- Yan Song
- School of Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Xiaozhong Wang
- School of Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Hanlei Xie
- School of Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Luqing Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Zhengzhu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
45
|
A comparative study of aromatic characterization of Yingde Black Tea infusions in different steeping temperatures. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110860] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
46
|
Xu C, Liang L, Li Y, Yang T, Fan Y, Mao X, Wang Y. Studies of quality development and major chemical composition of green tea processed from tea with different shoot maturity. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Liu H, Li S, Xiao G, Wang Q. Formation of volatiles in response to tea green leafhopper (Empoasca onukii Matsuda) herbivory in tea plants: a multi-omics study. PLANT CELL REPORTS 2021; 40:753-766. [PMID: 33616702 DOI: 10.1007/s00299-021-02674-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/10/2021] [Indexed: 05/19/2023]
Abstract
Combined transcriptome and metabolome analysis of fresh leaf infestation by tea green leafhoppers (Empoasca (Matsumurasca) onukii Matsuda) suggests roles for alternative pre-mRNA splicing and mRNAs in the regulation of aroma formation in tea plants. Oriental Beauty is a high-grade, oolong tea with a pronounced honey-like aroma and rich ripe fruit flavor that develops primarily as a result of the infestation of the fresh leaves by tea green leafhoppers (Empoasca (Matsumurasca) onukii Matsuda). Here, we used PacBio Iso-Seq and RNA-seq analyses to determine the full-length transcripts and gene expression profiles of fresh tea leaves in response to E. (M.) onukii herbivory. We investigated the relationship between RNA-seq, tea metabolites, and aroma response mechanisms in leaves infested by leafhoppers. We found 3644 differentially expressed genes, of which 2552 were up- and 1092 were down-regulated. A total of 49,913 alternative splicing events were predicted, including 324 differential AS events. Moreover, 3105 differentially expressed transcripts were also identified, of which 2295 were up- and 810 were down-regulated. The characterization of expression patterns of the key gene transcript isoforms involved in the aroma formation pathways identified 130 differentially expressed metabolites, 97 of which were up- and 33 were down-regulated. Two key aroma compounds (phenylacetaldehyde and 4-hydroxybenzaldehyde) were highly correlated with genes of the aroma formation pathways. Our results revealed that pre-mRNA AS plays a crucial role in the metabolic regulation surrounding aroma formation under leafhopper herbivory in tea plants.
Collapse
Affiliation(s)
- Huifan Liu
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Sufen Li
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Gengsheng Xiao
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Qin Wang
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China.
| |
Collapse
|
48
|
Chen Y, Wang F, Wu Z, Jiang F, Yu W, Yang J, Chen J, Jian G, You Z, Zeng L. Effects of Long-Term Nitrogen Fertilization on the Formation of Metabolites Related to Tea Quality in Subtropical China. Metabolites 2021; 11:metabo11030146. [PMID: 33801425 PMCID: PMC8000315 DOI: 10.3390/metabo11030146] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
As a main agronomic intervention in tea cultivation, nitrogen (N) application is useful to improve tea yield and quality. However, the effects of N application on the formation of tea quality-related metabolites have not been fully studied, especially in long-term field trials. In this study, a 10-year field experiment was conducted to investigate the effect of long-term N application treatments on tea quality-related metabolites, their precursors, and related gene expression. Long-term N application up-regulated the expression of key genes for chlorophyll synthesis and promoted its synthesis, thus increasing tea yield. It also significantly increased the contents of total free amino acids, especially l-theanine, in fresh tea leaves, while decreasing the catechin content, which is conducive to enhancing tea liquor freshness. However, long-term N application significantly reduced the contents of benzyl alcohol and 2-phenylethanol in fresh tea leaves, and also reduced (E)-nerolidol and indole in withered leaves, which were not conducive to the formation of floral and fruity aroma compounds. In general, an appropriate amount of N fertilizer (225 kg/hm2) balanced tea yield and quality. These results not only provide essential information on how N application affects tea quality, but also provide detailed experimental data for field fertilization.
Collapse
Affiliation(s)
- Yuzhen Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, No. 104 Pudang Road, Xindian Town, Jin’an District, Fuzhou 350012, China; (Y.C.); (F.W.); (Z.W.); (F.J.)
- National Agricultural Experimental Station for Soil Quality, No. 1 Hutouyang Road, Shekou Town, Fu’an 355015, China
| | - Feng Wang
- Tea Research Institute, Fujian Academy of Agricultural Sciences, No. 104 Pudang Road, Xindian Town, Jin’an District, Fuzhou 350012, China; (Y.C.); (F.W.); (Z.W.); (F.J.)
- National Agricultural Experimental Station for Soil Quality, No. 1 Hutouyang Road, Shekou Town, Fu’an 355015, China
| | - Zhidan Wu
- Tea Research Institute, Fujian Academy of Agricultural Sciences, No. 104 Pudang Road, Xindian Town, Jin’an District, Fuzhou 350012, China; (Y.C.); (F.W.); (Z.W.); (F.J.)
- National Agricultural Experimental Station for Soil Quality, No. 1 Hutouyang Road, Shekou Town, Fu’an 355015, China
| | - Fuying Jiang
- Tea Research Institute, Fujian Academy of Agricultural Sciences, No. 104 Pudang Road, Xindian Town, Jin’an District, Fuzhou 350012, China; (Y.C.); (F.W.); (Z.W.); (F.J.)
- National Agricultural Experimental Station for Soil Quality, No. 1 Hutouyang Road, Shekou Town, Fu’an 355015, China
| | - Wenquan Yu
- Fujian Academy of Agricultural Sciences, No. 247 Wusi Road, Gulou District, Fuzhou 350013, China;
| | - Jie Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; (J.Y.); (J.C.); (G.J.)
| | - Jiaming Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; (J.Y.); (J.C.); (G.J.)
| | - Guotai Jian
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; (J.Y.); (J.C.); (G.J.)
| | - Zhiming You
- Tea Research Institute, Fujian Academy of Agricultural Sciences, No. 104 Pudang Road, Xindian Town, Jin’an District, Fuzhou 350012, China; (Y.C.); (F.W.); (Z.W.); (F.J.)
- National Agricultural Experimental Station for Soil Quality, No. 1 Hutouyang Road, Shekou Town, Fu’an 355015, China
- Correspondence: (Z.Y.); (L.Z.)
| | - Lanting Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; (J.Y.); (J.C.); (G.J.)
- Correspondence: (Z.Y.); (L.Z.)
| |
Collapse
|
49
|
Huang C, Zhou S, Tong Y, Lin Z, Gong S, Fan F. Simultaneous nitrogen-blow distillation extraction: A novel approach for aroma extraction of white tea. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Chen W, Qi D, Wang W, Miao A, Ma C. GC-MS analysis combined with sensory analysis revealed the various aroma characteristics of black tea resulted from different grafting rootstocks. J Food Sci 2021; 86:813-823. [PMID: 33569782 DOI: 10.1111/1750-3841.15612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/24/2020] [Accepted: 12/27/2020] [Indexed: 11/29/2022]
Abstract
The study was aim to investigate the effects of grafting on volatile compounds and sensory quality of black tea. Seven groups of black tea were prepared from one nongrafted tea tree "Yinghong9 (YJ)" and six grafted tea trees by grafting scion of "YingHong9" on different rootstocks. Sensory analysis indicated marked/slight variations among seven samples, among which, the one grafting on HuangZhiXiangDanCong (HZX) stood out with floral and fruity aroma. The result of chemometrics analysis suggested various effects on compounds caused by different rootstocks. A total of 38 differential compounds were identified, showing mainly quantitative variations, with 36 being identified in all samples. The significant higher contents of volatiles, such as geraniol, phenylethyl alcohol, (E)-nerolidol, decanal, and linalool oxides, in HZX compared with YJ were observed, which explained why floral and fruity aroma stood out among the whole aroma profile of HZX. Both results of sensory and instrumental analysis suggested certain correlation between compound variations and aroma characteristics. Moreover, different rootstocks influenced the aroma quality in different ways. PRACTICAL APPLICATION: In conclusion, the study illuminates the various effects of grafting on the volatile compounds and aroma quality, which enlightens the possibility of changing aroma quality of black tea by grafting scions on different rootstocks. And thus, it can help guide the practical production when cultivating new varieties.
Collapse
Affiliation(s)
- Wei Chen
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Dandan Qi
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Wenwen Wang
- Agilent Technologies (China) Co. Ltd., Beijing, 100102, China
| | - Aiqing Miao
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Chengying Ma
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| |
Collapse
|