1
|
Yang W, Jia Y, Yang Y, Chen H, Zhou L, Wang L, Lv X, Zhao Q, Qin Y, Zhang J, Tang C. Sacha inchi oil addition to hen diets and the effects on egg yolk flavor based on multiomics and flavoromics analysis. Food Chem 2025; 475:143251. [PMID: 39956056 DOI: 10.1016/j.foodchem.2025.143251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/21/2025] [Accepted: 02/05/2025] [Indexed: 02/18/2025]
Abstract
Multiomics and flavoromics were used to evaluate the effects of Sacha inchi oil (SIO) levels (0, 0.5, and 1 %) in hen feed on the sensory properties, volatile flavor, fatty acid composition, and flavor precursors in the resulting egg yolks. The addition of 0.5 % SIO improved consumer preference without causing off-flavors in the eggs. Thirty-eight volatile compounds were identified, of which thirty-five were significantly more abundant (P < 0.05) in the 0.5 % and 1 % SIO groups than in the control group. SIO additions enriched the egg ω-3 polyunsaturated fatty acid (PUFA) content and achieved the ideal healthy ratio of ω-6/ω-3. Lipidomics combined with partial least-squares regression model analysis suggested that oxidative degradation of the fatty acids aided the variations in the aroma characteristic between the 0.5 % SIO and control groups. Our results established that SIO additions effectively increased the ω-3 PUFA content in yolks and improved acceptability.
Collapse
Affiliation(s)
- Weifang Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Beijing General Station of Animal Husbandry, Beijing 100107, China
| | - Yaxiong Jia
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Youyou Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Han Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Longzhu Zhou
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liang Wang
- Beijing General Station of Animal Husbandry, Beijing 100107, China
| | - Xueze Lv
- Beijing General Station of Animal Husbandry, Beijing 100107, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Zhang Q, Jiao J, Zhao Z, Ma Z, Kakade A, Jing X, Mi J, Long R. Feeding systems change yak meat quality and flavor in cold season. Food Res Int 2025; 203:115846. [PMID: 40022375 DOI: 10.1016/j.foodres.2025.115846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/13/2025] [Accepted: 01/23/2025] [Indexed: 03/03/2025]
Abstract
Yak meat is in high demand due to its unique flavor. Thus this research utilized GC × GC-ToF-MS to discover important flavor compounds in yak meat raised during the cold season under different feeding systems: traditional grazing (TG), grazing-based supplementation (GS), and stall-feeding (SF). Meat quality results showed that SF significantly improved meat's lightness and tenderness (P < 0.05), as compared to TG. Intramuscular fat (2.7 g/100 g) was highest in the SF, followed by the GS (2.46 g/100 g) and the TG (1.57 g/100 g), whereas protein content was similar in the GS and TG, but again higher in the SF. β-carotene and Vitamin E were highest in the GS and TG groups (P < 0.05), respectively. Essential, fresh, and total amino acids were richer in the SF and TG than in the GS group (P < 0.05). TG exhibited a significantly elevated level of n-3 PUFA compared to the SF and GS systems (P < 0.05). Flavoromics analysis identified 736, 721, and 869 flavor substances in the TG, GS, and SF groups, respectively with six as key flavor compounds (ROAV ≥ 1) in all belonging to aldehydes, ketones, and heterocyclic compounds. The pyruvate, glycolysis/gluconeogenesis, and phenylalanine metabolic pathways significantly contributed to the yak meat flavor. Network analysis showed a complex significant positive correlation between amino acids in meat and Vitamin A in fodder (P < 0.05). Altogether, this study provides a basis for selecting a suitable meat production system that benefits producers and consumers by ensuring an annual supply of fresh meat.
Collapse
Affiliation(s)
- Qunying Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, International Centre for Tibetan Plateau Ecosystem Management, College of Ecology, Lanzhou University, Gansu 730000, China; International Cooperation Hub of Mountain Eco-Agriculture of Gansu Province, Gansu 730000, China
| | - Jianxin Jiao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, International Centre for Tibetan Plateau Ecosystem Management, College of Ecology, Lanzhou University, Gansu 730000, China; International Cooperation Hub of Mountain Eco-Agriculture of Gansu Province, Gansu 730000, China
| | - Zhiwei Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, International Centre for Tibetan Plateau Ecosystem Management, College of Ecology, Lanzhou University, Gansu 730000, China; International Cooperation Hub of Mountain Eco-Agriculture of Gansu Province, Gansu 730000, China
| | - Zhiyuan Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, International Centre for Tibetan Plateau Ecosystem Management, College of Ecology, Lanzhou University, Gansu 730000, China; International Cooperation Hub of Mountain Eco-Agriculture of Gansu Province, Gansu 730000, China
| | - Apurva Kakade
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, International Centre for Tibetan Plateau Ecosystem Management, College of Ecology, Lanzhou University, Gansu 730000, China; International Cooperation Hub of Mountain Eco-Agriculture of Gansu Province, Gansu 730000, China
| | - Xiaoping Jing
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, International Centre for Tibetan Plateau Ecosystem Management, College of Ecology, Lanzhou University, Gansu 730000, China; International Cooperation Hub of Mountain Eco-Agriculture of Gansu Province, Gansu 730000, China
| | - Jiandui Mi
- International Cooperation Hub of Mountain Eco-Agriculture of Gansu Province, Gansu 730000, China; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Gansu 730000, China
| | - Ruijun Long
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, International Centre for Tibetan Plateau Ecosystem Management, College of Ecology, Lanzhou University, Gansu 730000, China; International Cooperation Hub of Mountain Eco-Agriculture of Gansu Province, Gansu 730000, China.
| |
Collapse
|
3
|
Dong L, Guo F, Gao Y, Bao Z, Lin S. The revelation of characteristic volatile compounds in egg powder and analysis of their adsorption rules based on HS-GC-IMS technology. Food Chem 2024; 460:140650. [PMID: 39089016 DOI: 10.1016/j.foodchem.2024.140650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/14/2024] [Accepted: 07/24/2024] [Indexed: 08/03/2024]
Abstract
The study constructed fingerprints and analyzed adsorption rules of volatile compounds (VOCs) in egg powder (EP) under different production processes, including egg white powder (EWP), egg yolk powder (EYP) and whole egg powder (WEP) by HS-GC-IMS. The 29 VOCs identified were primarily ketones and aldehydes. Characteristic VOCs responsible for flavor differences were clarified by difference comparison, clustering and PCA analysis. Additionally, variations in lipid and protein were the primary causes of the VOCs differences in EP through microscopy imaging, infrared and fluorescence spectroscopy. EWP's stretched structure favored fishy-smelling VOCs adsorption but limited total aldehyde binding due to strong hydrophobic interaction. EYP's higher β-sheet ratio and fewer hydrogen bond sites weakened its alcohol VOCs binding capacity. The abundance of ketone VOCs in EP was linked to their low steric hindrance. Therefore, this study elucidated the flavor differences reasons among EWP, EYP and WEP, laying foundation for EP applications in food industry.
Collapse
Affiliation(s)
- Liu Dong
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; Engineering Research Center of Special Dietary Food of Liaoning Province, Food Engineering Technology Research Center of Liaoning Province, Dalian 116034, PR China
| | - Fujun Guo
- Dalian Green Snow Egg Product Development Co., Ltd, Dalian 116036, PR China
| | - Yuan Gao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; Engineering Research Center of Special Dietary Food of Liaoning Province, Food Engineering Technology Research Center of Liaoning Province, Dalian 116034, PR China
| | - Zhijie Bao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; Engineering Research Center of Special Dietary Food of Liaoning Province, Food Engineering Technology Research Center of Liaoning Province, Dalian 116034, PR China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; Engineering Research Center of Special Dietary Food of Liaoning Province, Food Engineering Technology Research Center of Liaoning Province, Dalian 116034, PR China.
| |
Collapse
|
4
|
Elizarraraz-Martínez IJ, Rojas-Raya MA, Feregrino-Pérez AA, Partida-Martínez LP, Heil M. Immunity priming and biostimulation by airborne nonanal increase yield of field-grown common bean plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1451864. [PMID: 39568456 PMCID: PMC11577088 DOI: 10.3389/fpls.2024.1451864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/13/2024] [Indexed: 11/22/2024]
Abstract
Introduction Stress-induced volatile organic compounds (VOCs) that induce plant immunity bear potential for biocontrol. Here, we explore the potential of nonanal to enhance the seed yield of common bean (Phaseolus vulgaris) under open field conditions that are realistic for smallholder farmers. Methods and results Using plastic cups with a nonanal-containing lanolin paste as low-cost dispensers, we observed that exposure of Flor de Junio Marcela (FJM) plants over 48h to airborne nonanal was followed by a 3-fold higher expression of pathogenesis-related (PR) genes PR1 and PR4. Both genes further increased their expression in response to subsequent challenge with the fungal pathogen Colletotrichum lindemuthianum. Therefore, we conclude that nonanal causes resistance gene priming. This effect was associated with ca. 2.5-fold lower infection rates and a 2-fold higher seed yield. Offspring of nonanal-exposed FJM plants exhibited a 10% higher emergence rate and a priming of PR1- and PR4-expression, which was associated with decreased infection by C. lindemuthianum and, ultimately, a ca. 3-fold increase in seed yield by anthracnose-infected offspring of nonanal-exposed plants. Seeds of nonanal-exposed and of challenged plants contained significantly more phenolic compounds (increase by ca 40%) and increased antioxidant and radical scavenging activity. Comparative studies including five widely used bean cultivars revealed 2-fold to 3-fold higher seed yield for nonanal-exposed plants. Finally, a cost-benefit analysis indicated a potential economic net profit of nonanal exposure for some, but not all cultivars. Outlook We consider nonanal as a promising candidate for an affordable tool that allows low-income smallholder farmers to increase the yield of an important staple-crop without using pesticides.
Collapse
Affiliation(s)
- Iris J Elizarraraz-Martínez
- Departamento de Ingeniería Genética, Laboratorio de Ecología de Plantas, Centro de Investigación y de Estudios Avanzados (CINVESTAV) - Unidad Irapuato, Irapuato, Mexico
| | - Mariana A Rojas-Raya
- Departamento de Ingeniería Genética, Laboratorio de Ecología de Plantas, Centro de Investigación y de Estudios Avanzados (CINVESTAV) - Unidad Irapuato, Irapuato, Mexico
| | | | - Laila P Partida-Martínez
- Departamento de Ingeniería Genética, Laboratorio de Interacciones Microbianas, Centro de Investigación y de Estudios Avanzados (CINVESTAV)- Unidad Irapuato, Irapuato, Mexico
| | - Martin Heil
- Departamento de Ingeniería Genética, Laboratorio de Ecología de Plantas, Centro de Investigación y de Estudios Avanzados (CINVESTAV) - Unidad Irapuato, Irapuato, Mexico
| |
Collapse
|
5
|
Xiang X, Chen L, Dong S, Li Z, Liu Y, Wu Y, Li S, Ye L. Targeted metabolomics reveals the contribution of degradation and oxidation of lipids and proteins mediated by pH to the formation of characteristic volatiles in preserved egg yolk during pickling. Food Res Int 2024; 195:114945. [PMID: 39277223 DOI: 10.1016/j.foodres.2024.114945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/11/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
Targeted metabolomics and flavouromics combined with relative odor activity value were performed to explore the effect of degradation and oxidation of matrix mediated by pH on the formation of characteristic volatiles in preserved egg yolk (PEY) during pickling. It was found that the oxidation of proteins and lipids in PEY induced by pH sequentially occurred in early and later periods, and degradation both mainly occurred in early stage. Moreover, 1-octen-3-one, heptanal, trimethylamine, etc., compounds and 5-HETrE, proline, etc., components were confirmed as up-regulated characteristic volatiles and differential metabolites in PEY during pickling. The formation of octanal-M/D and benzeneacetaldehyde-M was attributed to β-oxidation of hydroxyeicosapentaenoic acid and L-isoleucine catalyzed by strong alkali at early period based on correlation network between them, respectively. Meanwhile, the generation of 1-octen-3-one-M/D mainly depended on L-serine and could be promoted by phosphatidylcholines oxidation. At later stage, the formation of heptanal-M/D was primarily attributed to phosphatidylethanolamines oxidation induced by alkali, and the enrichment of heptanal-M/D and nonanal were both enhanced by oxidized lipids. Lastly, trimethylamine was derived from L-lysine under alkaline conditions and promoted by protein oxidation during the whole process. This manuscript provided insight into the differential contribution of oxidation and degradation from matrix regulated by exogenous factors on the formation pathway for characteristic volatiles in foods.
Collapse
Affiliation(s)
- Xiaole Xiang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China.
| | - Le Chen
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Shiqin Dong
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Zixiao Li
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Yongle Liu
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Yingqun Wu
- School of Medicine and Health Management, Guizhou Medical University, Guiyang 550025, China.
| | - Shugang Li
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| | - Lin Ye
- College of Food Science and Engineering, Tarim University, Alar, Xinjiang 843300, China.
| |
Collapse
|
6
|
Zhang L, Xu M, Liu F, Li R, Azzam MM, Dong X. Characterization and Evaluation of Taihe Black-Boned Silky Fowl Eggs Based on Physical Properties, Nutritive Values, and Flavor Profiles. Foods 2024; 13:3308. [PMID: 39456371 PMCID: PMC11508104 DOI: 10.3390/foods13203308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Taihe black-boned silky fowl (TS) is a native chicken breed in China with more than 2000 years of history. The present study aimed to characterize and evaluate the physical, nutritional, and flavor properties of TS eggs with a comparison to two other commercial breeds. Eggs from TS (n = 60) crossbred black-boned silky fowl (CB, n = 60) and Hy-line Brown (HL, n = 60) were used for physicochemical analysis. The evaluation system was divided into four parts based on nutrient and flavor profiles: protein and amino acids, lipids and fatty acids, mineral elements, and flavor-related amino acids and volatile compounds. Results showed that TS eggs were typically associated with the lowest egg weight and the highest yolk color, as compared with CB and HL eggs. No differences were found in crude protein, crude fat, triglycerides, and cholesterol content between eggs from the different breeds, but these eggs were distinct in terms of the amino acid, fatty acid, and volatile flavor compound profiles. Moreover, the differences in amino acid and fatty acid profiles might contribute to the specific flavor of TS eggs. Evaluation results indicated that TS egg whites may be suitable as a protein source for premature infants and young children under three years old and TS egg yolks could be considered a beneficial dietary lipid source due to their potential anti-cardiovascular properties. Additionally, TS whole eggs could serve as a valuable source of selenium (Se), molybdenum (Mo), zinc (Zn), and phosphorus (P) for adults aged 18 to 65. However, TS and CB eggs showed inferior Haugh units, eggshell quality, and essential amino acid compositions for older children, adolescents, and adults. These findings provide a better insight into the health benefits of TS eggs and contribute to the breeding and nutrition regulation of TS breeds.
Collapse
Affiliation(s)
- Libo Zhang
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, China; (L.Z.); (M.X.); (F.L.); (R.L.)
| | - Mengru Xu
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, China; (L.Z.); (M.X.); (F.L.); (R.L.)
| | - Fang Liu
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, China; (L.Z.); (M.X.); (F.L.); (R.L.)
| | - Ru Li
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, China; (L.Z.); (M.X.); (F.L.); (R.L.)
| | - Mahmoud M. Azzam
- Animal Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Xinyang Dong
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, China; (L.Z.); (M.X.); (F.L.); (R.L.)
| |
Collapse
|
7
|
Corion M, Monteiro Belo Dos Santos S, Everaert N, Lammertyn J, De Ketelaere B, Hertog M. Noninvasive Assessment of Chicken Egg Fertility during Incubation Using HSSE-GC-MS VOC Profiling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8434-8443. [PMID: 38572831 DOI: 10.1021/acs.jafc.3c09824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Volatile organic compounds (VOCs) carry crucial information about chicken egg fertility. Assessing the fertility before incubation holds immense potential for poultry industry efficiency. Our study used headspace sorptive extraction-gas chromatography-mass spectrometry to analyze egg VOCs before and during the initial 12 incubation days. A total of 162 VOCs were identified. Hexanal was significantly higher in unfertilized eggs, whereas compounds such as propan-2-ol, propan-2-one, and carboxylic acids were higher in fertilized eggs. Furthermore, the obtained multiple logistic regression model outperformed the partial least-squares-discriminant analysis (PLS-DA) model, demonstrating lower complexity and superior performance. Fertile eggs were accurately identified in the validation set in 68-75% of the cases during the initial 4 days, to 85 and 100% on days 6 and 8. Finally, hierarchical cluster analysis in fertilized eggs revealed the clustering of VOCs of the same chemical class, indicative of their shared biochemical origin. This suggests a promising direction for future research aimed at understanding the biological information embedded in VOCs and their relationship to biochemical processes during embryo development.
Collapse
Affiliation(s)
- Matthias Corion
- MeBioS Biosensors Group, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | | | - Nadia Everaert
- A2H Nutrition & Animal EcoSystems (NAMES) Lab, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, 3001 Leuven, Belgium
| | - Jeroen Lammertyn
- MeBioS Biosensors Group, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Bart De Ketelaere
- MeBioS Biostatistics Group, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, 3001 Leuven, Belgium
| | - Maarten Hertog
- MeBioS Postharvest Group, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| |
Collapse
|
8
|
Zhang W, Yang Y, Su Y, Gu L, Chang C, Li J. Investigating the mechanism of antioxidants as egg white powder flavor modifiers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2621-2629. [PMID: 37985210 DOI: 10.1002/jsfa.13146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/23/2023] [Accepted: 11/21/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND The uses of egg white powder (EWP) are restricted because of its odor. It is necessary to find a method to improve its flavor. In this paper, three different antioxidants - green tea extract (GTE), sodium ascorbate (SA), and glutathione (GSH) - were selected to modify the flavor. The physicochemical and structural properties of EWP were investigated to study the mechanism of the formation and release of volatile compounds. RESULTS Antioxidants can modify the overall flavor of EWP significantly, inhibiting the generation or release of nonanal, 3-methylbutanal, heptanal, decanal, geranyl acetone, and 2-pemtylfuran. A SA-EWP combination showed the lowest concentration of 'off' flavor compounds; GTE-EWP and GSH-EWP could reduce several 'off' flavor compounds but increased the formation of geranyl acetone and furans. The changes in the carbonyl content and the amino acid composition confirmed the inhibition of antioxidants with the oxidative degradation of proteins or characteristic amino acids. The results of fluorescence spectroscopy and Fourier transform infrared (FTIR) spectroscopy provided structural information regarding EWP, which showed the release of volatile compounds decreased due to structural changes. For example, the surface hydrophobicity increased and the protein aggregation state changed. CONCLUSIONS Antioxidants reduce the 'off' flavor of EWP in two ways: they inhibit protein oxidation and Maillard reactions (they inhibit formation of 3-methylbutanal and 2-pemtylfuran) and they enhance the binding ability of heat-denatured proteins (reducing the release of nonanal, decanal, and similar compounds). © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weijian Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, PR China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, PR China
| | - Yujie Su
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, PR China
| | - Luping Gu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, PR China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, PR China
| | - Junhua Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, PR China
| |
Collapse
|
9
|
Corion M, Portillo-Estrada M, Santos S, Lammertyn J, De Ketelaere B, Hertog M. Non-destructive egg breed separation using advanced VOC analytical techniques HSSE-GC-MS, PTR-TOF-MS, and SIFT-MS: Assessment of performance and systems' complementarity. Food Res Int 2024; 176:113802. [PMID: 38163682 DOI: 10.1016/j.foodres.2023.113802] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/24/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
Over the past decade, advanced analytical techniques have been utilized to examine volatile organic compounds (VOCs) in eggs. These VOCs offer valuable insights into factors such as freshness, fertility, the presence of cracks, embryo sex, and breed. In our study, we assessed three mass spectrometry-based systems (headspace sorptive extraction gas chromatography-mass spectrometry; HSSE-GC-MS, proton transfer reaction time-of-flight-mass spectrometry; PTR-TOF-MS; and selected ion flow tube mass spectrometry; SIFT-MS) to analyze and identify VOCs present in intact hatching eggs from three distinct breeds (Dekalb white layer, Shaver brown layer, and Ross 308 broiler). The eggs were sampled on incubation days 2 and 8, to identify VOCs that distinguish breeds irrespective of incubation day. VOC measurements were conducted on 15 eggs per breed by placing them together with PDMS-coated stir bars inside inert Teflon® air sampling bags. After an accumulation period of 2 h, the headspace was analyzed using PTR-TOF-MS and SIFT-MS, while the VOCs adsorbed onto the stir bars were analyzed using GC-MS for additional compound identification. Partial least squares discriminant analysis (PLS-DA) models were constructed for breed differentiation, and variable selection was performed. As a result, 111 VOCs were identified using HSSE-GC-MS, with alcohols and esters being the most abundant. The PLS-DA models demonstrated the efficacy of breed discrimination, with the HSSE-GC-MS and the PTR-TOF-MS exhibiting the highest balanced accuracy of 95.5 % using a reduced set of 11 VOCs and 5 product ions, respectively. The SIFT-MS model had a balanced accuracy of 92.8 % with a reduced set of 11 product ions. Furthermore, complementarity was observed between HSSE-GC-MS, which primarily selected higher molecular weight VOCs, and PTR-TOF-MS and SIFT-MS. A higher correlation was found for compound abundances between the HSSE-GC-MS and the PTR-TOF-MS relative to the SIFT-MS, indicating that the PTR-TOF-MS was better suited to quantify specific compounds identified by the HSSE-GC-MS. Finally, the findings support the presence of VOCs originating from both synthetic and natural sources, highlighting the ability of the VOC analysis systems to non-destructively perform quality control and reveal differences in management practices or biological information encoded in eggs.
Collapse
Affiliation(s)
- Matthias Corion
- KU Leuven, BIOSYST-MeBioS Biosensors Group, Department of Biosystems, Leuven, Belgium
| | | | - Simão Santos
- KU Leuven, BIOSYST-MeBioS Biosensors Group, Department of Biosystems, Leuven, Belgium
| | - Jeroen Lammertyn
- KU Leuven, BIOSYST-MeBioS Biosensors Group, Department of Biosystems, Leuven, Belgium
| | - Bart De Ketelaere
- KU Leuven, BIOSYST-MeBioS Biostatistics Group, Department of Biosystems, Leuven, Belgium
| | - Maarten Hertog
- KU Leuven, BIOSYST-MeBioS Postharvest Group, Department of Biosystems, Leuven, Belgium.
| |
Collapse
|
10
|
Voica C, Cristea G, Iordache AM, Roba C, Curean V. Elemental Profile in Chicken Egg Components and Associated Human Health Risk Assessment. TOXICS 2023; 11:900. [PMID: 37999552 PMCID: PMC10675580 DOI: 10.3390/toxics11110900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
Egg is a food product of high nutritional quality, extensively consumed worldwide. The objectives of this study were the determination of the elemental profile in eggs (egg white, yolk, and eggshell), the estimation of the non-carcinogenic health risk associated with the presence of heavy metals in investigated egg samples, and the development of statistical models to identify the best predictors for the differentiation of egg components. The assessments were carried out in a total set of 210 samples, comprising home-produced and commercial eggs, using inductively coupled plasma mass spectrometry. The results suggested measurable differences amongst hen eggs coming from different husbandry systems. The statistical models employed in this study identified several elemental markers that can be used for discriminating between market and local producer samples. The non-carcinogenic risk related to the consumption of the analyzed egg samples was generally in the safe range for the consumers, below the maximum permitted levels set by Romanian and European legislation. Food contamination is a public health problem worldwide, and the risk associated with exposure to trace metals from food products has aroused widespread concern in human health, so assessing the heavy metal content in food products is mandatory to evaluate the health risk.
Collapse
Affiliation(s)
- Cezara Voica
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania;
| | - Gabriela Cristea
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania;
| | - Andreea Maria Iordache
- National Research and Development Institute for Cryogenics and Isotopic Technologies, ICSI, 240050 Ramnicu Valcea, Romania;
| | - Carmen Roba
- Research Department, Faculty of Environmental Science and Engineering, Babes-Bolyai University, 400294 Cluj-Napoca, Romania;
| | - Victor Curean
- Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
11
|
Yang W, Yang Y, Wang L, Lv X, Li J, Cui H, Tang C, Zhao Q, Jia Y, Qin Y, Zhang J. Comparative characterization of flavor precursors and volatiles of Taihe black-boned silky fowl and Hy-line Brown yolks using multiomics and GC-O-MS-based volatilomics. Food Res Int 2023; 172:113168. [PMID: 37689921 DOI: 10.1016/j.foodres.2023.113168] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 09/11/2023]
Abstract
Eggs are nutritious and highly valued by consumers. However, egg flavor varies greatly among different hen breeds. The present study used gas chromatography-olfactometry-mass spectrometry-based volatilomics to identify and compare volatile compounds in Taihe black-boned silky fowl (TS) and Hy-line Brown (HL) egg yolks. In addition, the relationships between the levels of different metabolites and lipids and flavor-associated differences were investigated using multiomics. Twenty-eight odorants in total were identified; among them, the levels of 3-methyl-butanal, 1-octen-3-ol, 2-pentylfuran, and (E, E)-2,4-decadienal differed significantly (P < 0.05) between TS and HL egg yolks. The difference in flavor compounds results in TS egg yolks having a stronger overall odor and flavor and a higher acceptance level than HL egg yolks. Metabolomic analysis revealed that 112 metabolites in the egg yolks were significantly different between the two breeds. Furthermore, these different metabolites in the egg yolks of both breeds were significantly enriched in phenylalanine, tyrosine, and tryptophan biosynthesis pathways and phenylalanine metabolism, alanine, aspartate, and glutamate metabolism pathways (P < 0.05), as identified by both metabolite set enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses. Lipidomic analysis revealed significant differences in the lipid subclasses, lipid molecules, and fatty acid profiles between the egg yolks from the two breeds. As a result, 48 lipid molecules had variable influence in projection values > 1 based on the partial least squares regression model, which may play a role in the differences in aroma characteristics between the two breeds through oxidative degradation of fatty acids. Our study revealed the metabolite, lipid, and volatility profiles of TS and HL egg yolks and may provide an important basis for improving egg flavor to satisfy various consumer preferences.
Collapse
Affiliation(s)
- Weifang Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; Beijing General Station of Animal Husbandry, Beijing 100107, China
| | - Youyou Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liang Wang
- Beijing General Station of Animal Husbandry, Beijing 100107, China
| | - Xueze Lv
- Beijing General Station of Animal Husbandry, Beijing 100107, China
| | - Jing Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huanxian Cui
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yaxiong Jia
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
12
|
Xie S, Hai C, He S, Lu H, Xu L, Fu H. Discrimination of Free-Range and Caged Eggs by Chemometrics Analysis of the Elemental Profiles of Eggshell. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2023; 2023:1271409. [PMID: 36895427 PMCID: PMC9991470 DOI: 10.1155/2023/1271409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/22/2022] [Accepted: 09/16/2022] [Indexed: 06/18/2023]
Abstract
As one of the foods commonly eaten all over the world, eggs have attracted more and more attention for their quality and price. A method based on elemental profiles and chemometrics to discriminate between free-range and caged eggs was established. Free-range (n1 = 127) and caged (n2 = 122) eggs were collected from different producing areas in China. The content of 16 elements (Zn, Pb, Cd, Co, Ni, Fe, Mn, Cr, Mg, Cu, Se, Ca, Al, Sr, Na, and K) in the eggshell was determined using a inductively coupled plasma atomic emission spectrometer (ICP-AES). Outlier diagnosis is performed by robust Stahel-Donoho estimation (SDE) and the Kennard and Stone (K-S) algorithm for training and test set partitioning. Partial least squares discriminant analysis (PLS-DA) and least squares support vector machine (LS-SVM) were used for classification of the two types of eggs. As a result, Cd, Mn, Mg, Se, and K make an important contribution to the classification of free-range and caged eggs. By combining column-wise and row-wise rescaling of the elemental data, the sensitivity, specificity, and accuracy were 91.9%, 91.1%, and 92.7% for PLS-DA, while the results of LS-SVM were 95.3%, 95.6%, and 95.1%, respectively. The result indicates that chemometrics analysis of the elemental profiles of eggshells could provide a useful and effective method to discriminate between free-range and caged eggs.
Collapse
Affiliation(s)
- Shunping Xie
- Technology Center, China Tobacco Guizhou Industrial Co., Ltd., Guiyang 550009, Guizhou, China
| | - Chengying Hai
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central Minzu University, Wuhan 430074, China
| | - Song He
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central Minzu University, Wuhan 430074, China
| | - Huanhuan Lu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central Minzu University, Wuhan 430074, China
| | - Lu Xu
- College of Material and Chemical Engineering, Tongren University, Tongren 554300, Guizhou, China
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
13
|
Fei C, Xue Q, Li W, Xu Y, Mou L, Li W, Lu T, Yin W, Li L, Yin F. Variations in volatile flavour compounds in Crataegi fructus roasting revealed by E-nose and HS-GC-MS. Front Nutr 2023; 9:1035623. [PMID: 36761989 PMCID: PMC9905410 DOI: 10.3389/fnut.2022.1035623] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/13/2022] [Indexed: 01/26/2023] Open
Abstract
Introduction Crataegi fructus (CF) is an edible and medicinal functional food used worldwide that enhances digestion if consumed in the roasted form. The odour of CF, as a measure of processing degree during roasting, significantly changes. However, the changes remain unclear, but are worth exploring. Methods Herein, the variations in volatile flavour compounds due to CF roasting were investigated using an electronic nose (E-nose) and headspace gas chromatography-mass spectrometry (HS-GC-MS). Results A total of 54 components were identified by GC-MS. Aldehydes, ketones, esters, and furans showed the most significant changes. The Maillard reaction, Strecker degradation, and fatty acid oxidation and degradation are the main reactions that occur during roasting. The results of grey relational analysis (GRA) showed that 25 volatile compounds were closely related to odour (r > 0.9). Finally, 9 volatile components [relative odour activity value, (ROAV) ≥ 1] were confirmed as key substances causing odour changes. Discussion This study not only achieves the objectification of odour evaluation during food processing, but also verifies the applicability and similarity of the E-nose and HS-GC-MS.
Collapse
Affiliation(s)
- Chenghao Fei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qianqian Xue
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenjing Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liyan Mou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weidong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tulin Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wu Yin
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China,Wu Yin,
| | - Lin Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China,Lin Li,
| | - Fangzhou Yin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China,*Correspondence: Fangzhou Yin,
| |
Collapse
|
14
|
Liu L, Zhao Y, Lu S, Liu Y, Xu X, Zeng M. Metabolomics investigation on the volatile and non-volatile composition in enzymatic hydrolysates of Pacific oyster ( Crassostrea gigas). Food Chem X 2023; 17:100569. [PMID: 36845524 PMCID: PMC9945435 DOI: 10.1016/j.fochx.2023.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/15/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
To investigate the differences of volatile and non-volatile metabolites between oyster enzymatic hydrolysates and boiling concentrates, molecular sensory analysis and untargeted metabolomics were employed. "Grassy," "fruity," "oily/fatty," "fishy," and "metallic" were identified as sensory attributes used to evaluate different processed oyster homogenates. Sixty-nine and 42 volatiles were identified by gas chromatography-ion mobility spectrometry and gas chromatography-mass spectrometry, respectively. Pentanal, 1-penten-3-ol, hexanal, (E)-2-pentenal, heptanal, (E)-2-hexenal, 4-octanone, (E)-4-heptenal, 3-octanone, octanal, nonanal, 1-octen-3-ol, benzaldehyde, (E)-2-nonenal, and (E, Z)-2,6-nonadienal were detected as the key odorants (OAV > 1) after enzymatic hydrolysis. Hexanal, (E)-4-heptenal, and (E)-2-pentenal were significantly associated with off-odor, and 177 differential metabolites were classified. Aspartate, glutamine, alanine, and arginine were the key precursors affecting the flavor profile. Linking sensory descriptors to volatile and nonvolatile components of different processed oyster homogenates will provide information for the process and quality improvement of oyster products.
Collapse
Affiliation(s)
| | | | | | | | - Xinxing Xu
- Corresponding authors at: No.5 Yushan Road, Shinan District, Beijing 100083, China.
| | - Mingyong Zeng
- Corresponding authors at: No.5 Yushan Road, Shinan District, Beijing 100083, China.
| |
Collapse
|
15
|
Qian S, Liu K, Wang J, Bai F, Gao R, Zeng M, Wu J, Zhao Y, Xu X. Capturing the impact of oral processing behavior and bolus formation on the dynamic sensory perception and composition of steamed sturgeon meat. Food Chem X 2022; 17:100553. [PMID: 36624817 PMCID: PMC9823118 DOI: 10.1016/j.fochx.2022.100553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/26/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The effect of oral processing on flavor release and change in composition of steamed sturgeon meat was investigated. Oral processing caused changes in the concentrations of taste compounds including amino acids, 5'-nucleotides, organic acids, and Na+. Sensory omics demonstrated that the concentrations of 12 volatile compounds increased significantly (p < 0.05) during the initial stage of oral processing. There is no significant difference in microstructure, texture, and particle size of meat bolus. The top fifteen differential lipids which including eight phospholipids in all processed samples significantly (p < 0.05) correlated with the flavor release. A total of 589 differential proteins were detected in three samples with different chewing times (0, 12, and 30 s). Analysis of the correlations between odorants and 19 differential proteins was performed. Enriched pathways including fatty acid degradation, valine, leucine and isoleucine degradation, glycine, serine and threonine metabolism, and arachidonic acid metabolism were associated with flavor release during oral processing. This study aimed to investigate potential links between flavor release and biological processes during oral processing from a proteomics perspective.
Collapse
Affiliation(s)
- Siyu Qian
- College of Food Science and Engineering, Ocean University of China, 266003 Qingdao, China
| | - Kang Liu
- College of Food Science and Engineering, Ocean University of China, 266003 Qingdao, China
| | - Jinlin Wang
- Quzhou Sturgeon Aquatic Food Science and Technology Development Co., Ltd., Quzhou 324002, China
| | - Fan Bai
- Quzhou Sturgeon Aquatic Food Science and Technology Development Co., Ltd., Quzhou 324002, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mingyong Zeng
- College of Food Science and Engineering, Ocean University of China, 266003 Qingdao, China
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, 266003 Qingdao, China,Corresponding authors at: No.5 Yushan Road, Shinan District, Qingdao, Shandong 266003, China.
| | - Xinxing Xu
- College of Food Science and Engineering, Ocean University of China, 266003 Qingdao, China,Corresponding authors at: No.5 Yushan Road, Shinan District, Qingdao, Shandong 266003, China.
| |
Collapse
|
16
|
A Comparison between the Egg Yolk Flavor of Indigenous 2 Breeds and Commercial Laying Hens Based on Sensory Evaluation, Artificial Sensors, and GC-MS. Foods 2022; 11:foods11244027. [PMID: 36553769 PMCID: PMC9778236 DOI: 10.3390/foods11244027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
The focus of this study was to compare the yolk flavor of eggs from laying hens of Chinese indigenous and commercial, based on detection of volatile compounds, fatty acids, and texture characteristics determination, using sensory evaluation, artificial sensors (electronic nose (E-nose), electronic tongue (E-tongue)), and gas chromatography-mass spectrometry (GC-MS). A total of 405 laying hens (Hy-Line Brown (n = 135), Xueyu White (n = 135), and Xinyang Blue (n = 135)) were used for the study, and 540 eggs (180 per breed) were collected within 48 h of being laid and used for sensory evaluation and the instrument detection of yolk flavor. Our research findings demonstrated significant breed differences for sensory attributes of egg yolk, based on sensory evaluation and instrument detection. The milky flavor, moisture, and compactness scores (p < 0.05) of egg yolk from Xueyu White and Xinyang Blue were significantly higher than that of Hy-Line Brown. The aroma preference scores of Xinyang Blue (p < 0.05) were significantly higher, compared to Hy-Line Brown and Xueyu White. The sensor responses of WIW and W2W from E-nose and STS from E-tongue analysis were significantly higher foe egg yolks of Hy-Line Brown (p < 0.05), compared to that of Xueyu White and Xinyang Blue. Additionally, the sensor responses of umami from E-tongue analysis, was significantly higher for egg yolks of Xueyu White (p < 0.05), compared to that of Hy-Line Brown and Xinyang Blue. Besides, the contents of alcohol and fatty acids, such as palmitic acid, oleic acid, and arachidonic acid, in egg yolk were positively correlated with egg flavor. The texture analyzer showed that springiness, gumminess, and hardness of Hy-Line Brown and Xueyu White (p < 0.05) were significantly higher, compared to Xinyang Blue. The above findings demonstrate that the egg yolk from Chinese indigenous strain had better milky flavor, moisture, and compactness, as well as better texture. The egg yolk flavors were mainly due to presence of alcohol and fatty acids, such as palmitic acid, oleic acid, and arachidonic acid, which would provide research direction on improvement in egg yolk flavor by nutrition. The current findings validate the strong correlation between the results of egg yolk flavor and texture, based on sensory evaluation, artificial sensors, and GC-MS. All these indicators would be beneficial for increased preference for egg yolk flavor by consumers and utilization by food processing industry, as well as a basis for the discrimination of eggs from different breeds of laying hens.
Collapse
|
17
|
Xiang X, Hu G, Yu Z, Li X, Wang F, Ma X, Huang Y, Liu Y, Chen L. Changes in the textural and flavor characteristics of egg white emulsion gels induced by lipid and thermal treatment. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Moran L, Vivanco C, Lorenzo JM, Barron LJR, Aldai N. Characterization of volatile compounds of cooked wild Iberian red deer meat extracted with solid phase microextraction and analysed by capillary gas chromatography - mass spectrometry. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Gouda M, Tadda MA, Zhao Y, Farmanullah F, Chu B, Li X, He Y. Microalgae Bioactive Carbohydrates as a Novel Sustainable and Eco-Friendly Source of Prebiotics: Emerging Health Functionality and Recent Technologies for Extraction and Detection. Front Nutr 2022; 9:806692. [PMID: 35387198 PMCID: PMC8979111 DOI: 10.3389/fnut.2022.806692] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/16/2022] [Indexed: 12/16/2022] Open
Abstract
There is a global interest in the novel consumption, nutritional trends, and the market of new prebiotic sources and their potential functional impacts. Commercially available nutritional supplements based on microalgae that are approved to be edible by FDA, like Arthrospira platensis (Cyanobacteria) and Chlorella vulgaris (Chlorophyta) become widely attractive. Microalgae are rich in carbohydrates, proteins, and polyunsaturated fatty acids that have high bioactivity. Recently, scientists are studying the microalgae polysaccharides (PS) or their derivatives (as dietary fibers) for their potential action as a novel prebiotic source for functional foods. Besides, the microalgae prebiotic polysaccharides are used for medication due to their antioxidant, anticancer, and antihypertensive bioactivities. This review provides an overview of microalgae prebiotics and other macromolecules' health benefits. The phytochemistry of various species as alternative future sources of novel polysaccharides were mentioned. The application as well as the production constraints and multidisciplinary approaches for evaluating microalgae phytochemistry were discussed. Additionally, the association between this potential of combining techniques like spectroscopic, chromatographic, and electrochemical analyses for microalgae sensation and analysis novelty compared to the chemical methods was emphasized.
Collapse
Affiliation(s)
- Mostafa Gouda
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Department of Nutrition and Food Science, National Research Centre, Giza, Egypt
| | - Musa A. Tadda
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Department of Agricultural and Environmental Engineering, Faculty of Engineering, Bayero University, Kano, Nigeria
| | - Yinglei Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Institute of Agricultural Equipment, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - F. Farmanullah
- Faculty of Veterinary and Animal Sciences, National Center for Livestock Breeding Genetics and Genomics LUAWMS, Uthal, Pakistan
| | - Bingquan Chu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Yu Z, Xu R, Duan H, Ma L. Comparative analysis of lipid profiles and flavor composition of marinated eggs from different species. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhihui Yu
- College of Food Science and Engineering Shanxi Agricultural University Taigu China
| | - Ruonan Xu
- College of Food Science and Engineering Shanxi Agricultural University Taigu China
| | - Huiling Duan
- College of Food Science and Engineering Shanxi Agricultural University Taigu China
| | - Ling Ma
- College of Food Science and Engineering Shanxi Agricultural University Taigu China
| |
Collapse
|
21
|
Characterisation of Flavour Attributes in Egg White Protein Using HS-GC-IMS Combined with E-Nose and E-Tongue: Effect of High-Voltage Cold Plasma Treatment Time. Molecules 2022; 27:molecules27030601. [PMID: 35163870 PMCID: PMC8838924 DOI: 10.3390/molecules27030601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/21/2022] Open
Abstract
Egg white protein (EWP) is susceptible to denaturation and coagulation when exposed to high temperatures, adversely affecting its flavour, thereby influencing consumers' decisions. Here, we employ high-voltage cold plasma (HVCP) as a novel nonthermal technique to investigate its influence on the EWP's flavour attributes using E-nose, E-tongue, and headspace gas-chromatography-ion-mobilisation spectrometry (HS-GC-IMS) due to their rapidness and high sensitivity in identifying flavour fingerprints in foods. The EWP was investigated at 0, 60, 120, 180, 240, and 300 s of HVCP treatment time. The results revealed that HVCP significantly influences the odour and taste attributes of the EWP across all treatments, with a more significant influence at 60 and 120 s of HVCP treatment. Principal component analyses of the E-nose and E-tongue clearly distinguish the odour and taste sensors' responses. The HS-GC-IMS analysis identified 65 volatile compounds across the treatments. The volatile compounds' concentrations increased as the HVCP treatment time was increased from 0 to 300 s. The significant compounds contributing to EWP characterisation include heptanal, ethylbenzene, ethanol, acetic acid, nonanal, heptacosane, 5-octadecanal, decanal, p-xylene, and octanal. Thus, this study shows that HVCP could be utilised to modify and improve the EWP flavour attributes.
Collapse
|
22
|
Chen D, Qin L, Geng Y, Kong Q, Wang S, Lin S. The Aroma Fingerprints and Discrimination Analysis of Shiitake Mushrooms from Three Different Drying Conditions by GC-IMS, GC-MS and DSA. Foods 2021; 10:2991. [PMID: 34945542 PMCID: PMC8701041 DOI: 10.3390/foods10122991] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/16/2021] [Accepted: 12/01/2021] [Indexed: 11/22/2022] Open
Abstract
The aroma fingerprints and discrimination analysis of shiitake mushrooms under different drying conditions were performed by GC-IMS, GC-MS, and descriptive sensory analysis (DSA) with advanced chemometric methods. Three samples (A, B, and C) were treated with varied drying degree and rate. The sample A and C were at the same drying degree and the sample B and C were at the same drying rate. The GC-IMS volatile fingerprints, including the three-dimensional topographic map, topographic map, and gallery plot, showed that 29 compounds showed higher signal intensities in sample B. Moreover, 28 volatile compounds were identified by HS-SPME-GC-MS and only 8 compounds were ever detected by GC-IMS. The sample B not only had more varieties of volatile compounds, but also showed significant higher contents than sample A and C, especially C8 compounds (p < 0.05). Additionally, sample B showed the highest intensity in mushroom-like, chocolate-like, caramel, sweat, seasoning-like, and cooked potato-like odors by DSA. PCA, fingerprint similarity analysis (FSA) and PLSR further demonstrated that the sample B was different from sample A and C. These results revealed that samples with different drying degree were different and drying degree exerted more influence on the volatile flavor quality than the drying rate. This study will provide a foundation and establish a set of comprehensive and objective methods for further flavor analysis.
Collapse
Affiliation(s)
| | | | | | | | | | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (D.C.); (L.Q.); (Y.G.); (Q.K.); (S.W.)
| |
Collapse
|
23
|
Dong XG, Gao LB, Zhang HJ, Wang J, Qiu K, Qi GH, Wu SG. Discriminating Eggs from Two Local Breeds Based on Fatty Acid Profile and Flavor Characteristics Combined with Classification Algorithms. Food Sci Anim Resour 2021; 41:936-949. [PMID: 34796322 PMCID: PMC8564318 DOI: 10.5851/kosfa.2021.e47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/04/2021] [Accepted: 08/20/2021] [Indexed: 11/29/2022] Open
Abstract
This study discriminated fatty acid profile and flavor characteristics of Beijing You Chicken (BYC) as a precious local breed and Dwarf Beijing You Chicken (DBYC) eggs. Fatty acid profile and flavor characteristics were analyzed to identify differences between BYC and DBYC eggs. Four classification algorithms were used to build classification models. Arachidic acid, oleic acid (OA), eicosatrienoic acid, docosapentaenoic acid (DPA), hexadecenoic acid, monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), unsaturated fatty acids (UFA) and 35 volatile compounds had significant differences in fatty acids and volatile compounds by gas chromatography-mass spectrometry (GC-MS) (p<0.05). For fatty acid data, k-nearest neighbor (KNN) and support vector machine (SVM) got 91.7% classification accuracy. SPME-GC-MS data failed in classification models. For electronic nose data, classification accuracy of KNN, linear discriminant analysis (LDA), SVM and decision tree was all 100%. The overall results indicated that BYC and DBYC eggs could be discriminated based on electronic nose with suitable classification algorithms. This research compared the differentiation of the fatty acid profile and volatile compounds of various egg yolks. The results could be applied to evaluate egg nutrition and distinguish avian eggs.
Collapse
Affiliation(s)
- Xiao-Guang Dong
- Institute of Feed Research, Chinese
Academy of Agricultural Sciences, Beijing 100081,
China
| | - Li-Bing Gao
- Institute of Feed Research, Chinese
Academy of Agricultural Sciences, Beijing 100081,
China
| | - Hai-Jun Zhang
- Institute of Feed Research, Chinese
Academy of Agricultural Sciences, Beijing 100081,
China
| | - Jing Wang
- Institute of Feed Research, Chinese
Academy of Agricultural Sciences, Beijing 100081,
China
| | - Kai Qiu
- Institute of Feed Research, Chinese
Academy of Agricultural Sciences, Beijing 100081,
China
| | - Guang-Hai Qi
- Institute of Feed Research, Chinese
Academy of Agricultural Sciences, Beijing 100081,
China
| | - Shu-Geng Wu
- Institute of Feed Research, Chinese
Academy of Agricultural Sciences, Beijing 100081,
China
| |
Collapse
|
24
|
Huang Q, Dong K, Wang Q, Huang X, Wang G, An F, Luo Z, Luo P. Changes in volatile flavor of yak meat during oxidation based on multi-omics. Food Chem 2021; 371:131103. [PMID: 34537608 DOI: 10.1016/j.foodchem.2021.131103] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 12/20/2022]
Abstract
Hydroxyl radical system combined with GC-IMS and metabolomics were used to assess the effect of oxidation on the formation of volatile flavor emitted from yak meat. The formation of volatile compounds, including heptanal, octanal, nonanal, 2,3-glutaraldehyde, 3-hydroxy-2-butanone, etc. were promoted by oxidation. Among them, 2,3-pentanedione and 3-hydroxy-2-butanone, etc. maybe contributed most to the overall aroma of yak meat, while octanal, nonanal and benzaldehyde maybe related to the formation of off-odor or acidification. Meanwhile, the content of metabolites such as oleic acid, linoleic acid, etc. fatty acids and 3-dehydromangiferic acid, tyrosine were increased or decreased with the time of oxidation. More importantly, the formation of most flavor components in yak meat during the course of oxidation were related to stearidonic acid, acetylleucine, dehydroshikimate, 6-phosphate-glucose etc. differential metabolic components. Moreover, starch and sucrose metabolism (prediction), and amino acid metabolism (enrichment) etc. pathways maybe related with the process of oxidation.
Collapse
Affiliation(s)
- Qun Huang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550000, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition of Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan 610106, China
| | - Kai Dong
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550000, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition of Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qia Wang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition of Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiang Huang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition of Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Guoze Wang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550000, China
| | - Fengping An
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition of Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhang Luo
- College of Food Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet Autonomous Region 860000, China.
| | - Peng Luo
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550000, China.
| |
Collapse
|
25
|
Comparison of Sensory Qualities in Eggs from Three Breeds Based on Electronic Sensory Evaluations. Foods 2021; 10:foods10091984. [PMID: 34574094 PMCID: PMC8471538 DOI: 10.3390/foods10091984] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
The present study was conducted on three commercial laying breeder strains to evaluate differences of sensory qualities, including texture, smell, and taste parameters. A total of 140 eggs for each breed were acquired from Beinong No.2 (B) laying hens, Hy-Line Brown (H) laying hens, and Wuhei (W) laying hens. Sensory qualities of egg yolks and albumen from three breeds were detected and discriminated based on different algorithms. Texture profile analysis (TPA) showed that the eggs from three breeds had no differences in hardness, adhesiveness, springiness, and chewiness other than cohesiveness. The smell profiles measured by electronic nose illustrated that differences existed in all 10 sensors for albumen and 8 sensors for yolks. The taste profiles measured by electronic tongue found that the main difference of egg yolks and albumen existed in bitterness and astringency. Principal component analysis (PCA) successfully showed grouping of three breeds based on electronic nose data and failed in grouping based on electronic tongue data. Based on electronic nose data, linear discriminant analysis (LDA), fine k-nearest neighbor (KNN) and linear support vector machine (SVM) were performed to discriminate yolks, albumen, and the whole eggs with 100% classification accuracy. While based on electronic tongue data, the best classification accuracy was 96.7% for yolks by LDA and fine tree, 88.9% for albumen by LDA, and 87.5% for the whole eggs by fine KNN. The experiment results showed that three breeds’ eggs had main differences in smells and could be successfully discriminated by LDA, fine KNN, and linear SVM algorithms based on electronic nose.
Collapse
|
26
|
McClements DJ, Grossmann L. The science of plant-based foods: Constructing next-generation meat, fish, milk, and egg analogs. Compr Rev Food Sci Food Saf 2021; 20:4049-4100. [PMID: 34056859 DOI: 10.1111/1541-4337.12771] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
Consumers are increasingly demanding foods that are more ethical, sustainable and nutritious to improve the health of themselves and the planet. The food industry is currently undergoing a revolution, as both small and large companies pivot toward the creation of a new generation of plant-based products to meet this consumer demand. In particular, there is an emphasis on the production of plant-based foods that mimic those that omnivores are familiar with, such as meat, fish, egg, milk, and their products. The main challenge in this area is to simulate the desirable appearance, texture, flavor, mouthfeel, and functionality of these products using ingredients that are isolated entirely from botanical sources, such as proteins, carbohydrates, and lipids. The molecular, chemical, and physical properties of plant-derived ingredients are usually very different from those of animal-derived ones. It is therefore critical to understand the fundamental properties of plant-derived ingredients and how they can be assembled into structures resembling those found in animal products. This review article provides an overview of the current status of the scientific understanding of plant-based foods and highlights areas where further research is required. In particular, it focuses on the chemical, physical, and functional properties of plant-derived ingredients; the processing operations that can be used to convert these ingredients into food products; and, the science behind the formulation of vegan meat, fish, eggs, and milk alternatives.
Collapse
Affiliation(s)
| | - Lutz Grossmann
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
27
|
Potential correlation between volatiles and microbiome of Xiang xi sausages from four different regions. Food Res Int 2021; 139:109943. [DOI: 10.1016/j.foodres.2020.109943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/08/2020] [Accepted: 11/27/2020] [Indexed: 12/30/2022]
|
28
|
Li Z, Zhao L, Xie F, Yang C, Jayamanne VS, Tan H, Jiang X, Yang H. Study of assessment of green tea’ grades in GC‐MS determination of aromatic components based on principal component analysis (PCA). J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhanbin Li
- Testing Department Guizhou Academy of Testing and Analysis Guiyang China
- College of Science Beijing University of Chemical Technology Beijing China
| | - Lijun Zhao
- Guizhou Machinery Industry School Guiyang China
| | - Feng Xie
- Testing Department Guizhou Academy of Testing and Analysis Guiyang China
| | - Changbiao Yang
- Testing Department Guizhou Academy of Testing and Analysis Guiyang China
| | - Vijith Samantha Jayamanne
- Department of Food Science & Technology Faculty of Agriculture University of Ruhuna Matara Sri Lanka
| | - Hong Tan
- College of Science Beijing University of Chemical Technology Beijing China
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control Ministry of Education Guizhou Medical University Guiyang China
| | - Xun Jiang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control Ministry of Education Guizhou Medical University Guiyang China
| | - Hongbo Yang
- Testing Department Guizhou Academy of Testing and Analysis Guiyang China
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control Ministry of Education Guizhou Medical University Guiyang China
| |
Collapse
|
29
|
Chen X, Chen H, Xiao J, Liu J, Tang N, Zhou A. Variations of volatile flavour compounds in finger citron (Citrus medica L. var. sarcodactylis) pickling process revealed by E-nose, HS-SPME-GC-MS and HS-GC-IMS. Food Res Int 2020; 138:109717. [PMID: 33292962 DOI: 10.1016/j.foodres.2020.109717] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 11/18/2022]
Abstract
The pickled products of finger citron are famous in southern China for their unique taste and flavor. Although pickling process involves complex treatments including salting, desalting, sugaring, cooking and drying, extended shelf-life up to ten years after pickling can be achieved. In this study, the variations of volatile flavour components in the pickling process of finger citron were investigated by electronic nose (E-nose), headspace solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). HS-SPME-GC-MS identified 85 substances, and HS-GC-IMS identified 81 substances, including terpenoids (21), aromatic hydrocarbons (11), alcohols (11), aldehydes (10), esters (7), phenols (6), acids (5), ethers (2), ketones (2), and other species (10). Linalool, limonene, (E)-3,7-dimethyl-1,3,6-octatriene, myrcene, 3-carene, β-pinene, α-pinene, terpinolene, 1-methyl-4-(1-methylethyl)-1,4-cyclohexadiene, α-terpinene, (S)-β-bisabolene, 1-isopropyl-2-methylbenzene and 1-methyl-4-(1-methylethenyl)-benzene were the stable substances at relatively high contents in finger citron at different pickling process. Salting and drying steps in the pickling process exerted greatest influence on the volatile components of finger citron. Salting promoted the generation of aldehydes, esters and acids, but led to the disappearance of alcohols, while drying promoted the generation of alcohols, phenols, aldehydes and acids at the expense of reduction in terpenoids. Our study revealed that the characteristic volatile compounds of finger citron pickled products was mainly formed by the biological reactions in the salting stage and thermal chemical transformations in the drying stage. This study also validated the suitability of E-nose combined with HS-SPME-GC-MS and HS-GC-IMS in tracking the changes of volatile components in finger citron during the pickling process.
Collapse
Affiliation(s)
- Xiaoai Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Haiqiang Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jingyi Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Niang Tang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Aimei Zhou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Zhancui Food Co. Ltd., Chaozhou 515634, China; Huanong (Chaozhou) Food Research Institute Co. Ltd., Chaozhou 521021, China.
| |
Collapse
|
30
|
Bojke A, Tkaczuk C, Bauer M, Kamysz W, Gołębiowski M. Application of HS-SPME-GC-MS for the analysis of aldehydes produced by different insect species and their antifungal activity. J Microbiol Methods 2020; 169:105835. [PMID: 31917975 DOI: 10.1016/j.mimet.2020.105835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/04/2020] [Accepted: 01/04/2020] [Indexed: 01/08/2023]
Abstract
In this study, a procedure was developed to determine aldehydes using headspace solid-phase microextraction (HS-SPME) followed by gas chromatography (GC) coupled with mass spectrometry (MS). The aldehydes selected for research had previously been identified in various species of insects. Minimal inhibitory concentrations of the compounds against strains of entomopathogenic fungi were also determined. At the outset, the best SPME extraction conditions were chosen for the analysis to obtain good chromatographic separation. The analysis was carried out using a BZ-5 column and different SPME fibers were used to isolate the aldehydes. DVB/CAR/PDMS fiber appeared to be the most efficient coating for undertaking the measurements. The best parameters of separation by HS-SPME and analysis by GC-MS were selected. In addition, the aldehydes were tested for their potential antifungal activity. A procedure was developed to determine the aldehydes using HS-SPME-GC-MS. Heptanal, 2,4-nonadienal, 2-decenal and undecanal were the most effective antifungal compounds against entomopathogenic fungi.
Collapse
Affiliation(s)
- Alekandra Bojke
- Laboratory of Analysis of Natural Compounds, Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Cezary Tkaczuk
- Department of Plant Protection and Breeding, Siedlce University of Natural Sciences and Humanities, Prusa 14, 08-110 Siedlce, Poland
| | - Marta Bauer
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland
| | - Marek Gołębiowski
- Laboratory of Analysis of Natural Compounds, Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
| |
Collapse
|
31
|
|
32
|
Mi S, Shang K, Zhang CH, Fan YQ. Characterization and discrimination of selected chicken eggs in China's retail market based on multi-element and lipidomics analysis. Food Res Int 2019; 126:108668. [DOI: 10.1016/j.foodres.2019.108668] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 08/30/2019] [Accepted: 09/09/2019] [Indexed: 10/26/2022]
|
33
|
González Ariza A, Arando Arbulu A, Navas González FJ, Ruíz Morales FDA, León Jurado JM, Barba Capote CJ, Camacho Vallejo ME. Sensory Preference and Professional Profile Affinity Definition of Endangered Native Breed Eggs Compared to Commercial Laying Lineages' Eggs. Animals (Basel) 2019; 9:ani9110920. [PMID: 31694158 PMCID: PMC6912648 DOI: 10.3390/ani9110920] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 11/24/2022] Open
Abstract
Simple Summary A local breed’s particularities may provide eggs with sensory properties which may overcome laying lineage, regardless of their production system characteristics. Hence, methods clarifying what the appreciation of a certain product is like can outline the actions required to improve the market value of that product. Affine and non-affine profiles were defined based on the information provided by sixty-four professionally-instructed panelists on sensory attributes, diet habits, production context awareness, product consciousness, cuisine applicability and panelist attributes. Egg consumption was lower in non-affine profile professionals, as were the scores provided to sensory attributes. The higher the knowledge about Utrerana breed, the greater the importance provided to the ecological and autochthonous nature of the products. The level of study, gender and age are crucial factors to consider when approaching the commercialization of Utrerana hen eggs. Conclusively, defining consumer profiles among professionals of the cuisine sector may improve the profitability of Utrerana eggs and may help educating non-affine profiles, something key to the success in product appreciation. Abstract This study aimed to compare Utrerana native hen eggs’ sensory properties to Leghorn Lohmann LSL-Classic lineage’s commercial and ecological eggs through free-choice profiling. Second, affine and non-affine profiles were defined using the information provided by professionally-instructed panelists on six sets (sensory attributes, diet habits, production context awareness, product consciousness, cuisine applicability and panelist attributes) using nonlinear canonical correlation analysis. Sixty-four instructed professional panelists rated 96 eggs on 39 variables comprising the above-mentioned sets. Observers reported a significantly higher appreciation (p > 0.05) towards yolk color, odor, flavor, texture, overall score, and whole and on plate broken egg visual value when Utrerana eggs were compared to the rest of categories. Professional Profile A (PPA), or egg non-affine profile, consumed less eggs and provided lower scores to sensory attributes than Professional Profile B (PPB), or affine profile. Additionally, PPB accounted for higher knowledge about the Utrerana breed and provided greater importance to a product’s ecological and autochthonous nature. PPA was generally characterized by women under 20 years old with no higher studies, while PPB comprised 21–40 years old men with secondary studies. In conclusion, defining professional profiles enables correctly approaching market needs to improve the profitability of Utrerana eggs, meeting professional demands and educating non-affine profiles.
Collapse
Affiliation(s)
- Antonio González Ariza
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain; (A.G.A.); (A.A.A.)
| | - Ander Arando Arbulu
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain; (A.G.A.); (A.A.A.)
| | - Francisco Javier Navas González
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain; (A.G.A.); (A.A.A.)
- Correspondence: ; Tel.: +34-651-679-262
| | | | - José Manuel León Jurado
- Centro Agropecuario Provincial de Córdoba, Diputación Provincial de Córdoba, 14071 Córdoba, Spain;
| | - Cecilio José Barba Capote
- Department of Animal Production, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain;
| | | |
Collapse
|
34
|
Zhang Y, Ma X, Dai Z. Comparison of nonvolatile and volatile compounds in raw, cooked, and canned yellowfin tuna (
Thunnus albacores
). J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14111] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yiqi Zhang
- Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood Zhejiang Gongshang University Hangzhou P.R. China
| | - Xuting Ma
- Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood Zhejiang Gongshang University Hangzhou P.R. China
| | - Zhiyuan Dai
- Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood Zhejiang Gongshang University Hangzhou P.R. China
| |
Collapse
|