1
|
Basak S, Mahale S, Chakraborty S. Changes in quality attributes of pulsed light and thermally treated mixed fruit beverages during refrigerated storage (4 °C) condition. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
2
|
Mukhopadhyay S, Ukuku DO, Olanya OM, Sokorai K, Fan X. Effects of pulsed light and aerosolized formic acid treatments on inactivation of Salmonella enterica on cherry tomato, reduction of microbial loads, and preservation of fruit quality. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
3
|
Omac B, Moreira RG, Castell‐Perez EM. Integrated electron beam irradiation treatment with hydrogen peroxide aqueous solution to inactivate
Salmonella
on grape tomatoes. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Basri Omac
- Department of Biological and Agricultural Engineering Texas A&M University College Station Texas USA
- Department of Food Processing Munzur University Tunceli Turkey
| | - Rosana G. Moreira
- Department of Biological and Agricultural Engineering Texas A&M University College Station Texas USA
| | - Elena M. Castell‐Perez
- Department of Biological and Agricultural Engineering Texas A&M University College Station Texas USA
| |
Collapse
|
4
|
Wang J, Wu Z, Wang H. Combination of ultrasound-peracetic acid washing and ultrasound-assisted aerosolized ascorbic acid: A novel rinsing-free disinfection method that improves the antibacterial and antioxidant activities in cherry tomato. ULTRASONICS SONOCHEMISTRY 2022; 86:106001. [PMID: 35405541 PMCID: PMC9011114 DOI: 10.1016/j.ultsonch.2022.106001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/19/2022] [Accepted: 04/03/2022] [Indexed: 05/15/2023]
Abstract
Traditional ultrasound (US)-assisted disinfection is only effective during washing. Coating is an effective method to control microbial growth after washing; however, cross-contamination can occur during immersion in the coating aqueous solution. Tap water (TW) rinsing is generally used to remove sanitizer residues after US-assisted washing; however, the Food and Drug Administration stated that rinsing is unnecessary when the peracetic acid (PAA) concentration does not exceed 80 ppm. In this study, we proposed a novel US-assisted hurdle technology of 80 ppm PAA combined with low-frequency US (25 kHz) during washing, followed by US-assisted aerosolization processing (nonimmersion coating). Ascorbic acid (AA), a safe and low-cost agent, was selected as the aerosolization solution. Cherry tomatoes were selected as the model, and the proposed method was compared with traditional US-assisted disinfection methods (US-10 ppm free chlorine washing + TW rinsing and US-5 ppm chlorine dioxide washing + TW rinsing) to analyze the disinfection efficacy and quality changes. During storage, US-PAA + 1%AA facilitated additional 0.7-0.9, 0.6-0.8, 0.7-1.0, and 0.5-1.0 log CFU/g reductions in the counts of Escherichia coli O157:H7, Salmonella Typhimurium, aerobic mesophilic counts, and molds and yeasts, respectively, as compared with traditional US-assisted methods. Sensory properties, color index, total soluble solids, titratable acidity, and weight loss were not negatively affected by any of the treatments. Firmness was slightly reduced after all treatments; however, the firmness of the samples was maintained during storage, in contrast with the decreased firmness observed in the control. Phenolic content and antioxidant activity significantly increased after all treatments. Further analysis of two key enzymes (phenylalanine ammonia-lyase and 4-coumarate-CoA ligase) involved in phenolic synthesis showed that their levels significantly increased following all treatments, leading to an increase in phenolic content and antioxidant activity. This result also indicated that US-assisted washing could act as an abiotic elicitor to increase nutritional content. Overall, US-PAA + 1%AA treatment served as an effective method for disinfecting produce during washing and for controlling microbial growth after washing without prolonging the processing time, which is an advantage over traditional US-assisted washing.
Collapse
Affiliation(s)
- Jiayi Wang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China.
| | - Zhaoxia Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110000, China
| | | |
Collapse
|
5
|
Gurtler JB, Dong X, Zhong B, Lee R. Efficacy of a Mixed Peroxyorganic Acid Antimicrobial Wash Solution against Salmonella, Escherichia coli O157:H7, or Listeria monocytogenes on Cherry Tomatoes. J Food Prot 2022; 85:773-777. [PMID: 35085398 DOI: 10.4315/jfp-21-368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/25/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT A study was conducted to evaluate a new organic mixed peroxyacid solution produce wash composed of a combination of organic acids (lactic acid and one or more fruit acids) and hydrogen peroxide for activity against foodborne pathogens. The mixed peroxyacid was challenged against Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes in suspension or on the surface of dip-inoculated cherry tomatoes. Cherry tomatoes were also treated with 8 ppm of free chlorine in the form of sodium hypochlorite. When tested against planktonic cells of Salmonella and E. coli O157:H7 in pure culture for 120 s, these pathogens were reduced by 7.5 and 7.1 log CFU/mL, respectively, by the 0.40% peroxyacid solution, and L. monocytogenes was decreased by 5.0 log CFU/mL by the 0.80% solution. When cherry tomatoes were dip inoculated and treated with 8 ppm of free chlorine, Salmonella and E. coli O157:H7 populations decreased by 2.5 and 2.6 log CFU/g, respectively; these reductions were not significantly different from those obtained after sterile water rinses. However, the 1.0% peroxyacid solution reduced the same microorganisms by 3.8 and 3.4 log CFU/g, respectively, which was significantly greater (P < 0.05) than the reductions achieved by the 2-min sterile water rinse. For tomatoes dip inoculated with L. monocytogenes, populations were reduced by 3.5 log CFU/g by the 1.0% peroxyacid solution, which was significantly greater (P < 0.05) than reductions achieved by 8 ppm of free chlorine (2.6 log CFU/g) or sterile water (1.7 log CFU/g). These results indicate that this peroxyacid combination is an effective organic antimicrobial agent for preventing cross-contamination during the washing of cherry tomatoes and can inactivate S. enterica, E. coli O157:H7, and L. monocytogenes by up to 3.8, 3.4, and 3.5 log CFU/g, respectively. HIGHLIGHTS
Collapse
Affiliation(s)
- Joshua B Gurtler
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Food Safety and Intervention Technologies Research Unit, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038-8551
| | - Xiaoling Dong
- Mantrose-Haeuser Co., 6 Blackstone Valley Place, Unit 601-603, Lincoln, Rhode Island 02865, USA
| | - Bin Zhong
- Mantrose-Haeuser Co., 6 Blackstone Valley Place, Unit 601-603, Lincoln, Rhode Island 02865, USA
| | - Rensun Lee
- Mantrose-Haeuser Co., 6 Blackstone Valley Place, Unit 601-603, Lincoln, Rhode Island 02865, USA
| |
Collapse
|
6
|
Wang J, Wu Z. Combined use of ultrasound-assisted washing with in-package atmospheric cold plasma processing as a novel non-thermal hurdle technology for ready-to-eat blueberry disinfection. ULTRASONICS SONOCHEMISTRY 2022; 84:105960. [PMID: 35240411 PMCID: PMC8891714 DOI: 10.1016/j.ultsonch.2022.105960] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Ultrasound (US) has limited disinfection efficacy, and it has been recommended to combine it with chemical disinfectants during fresh produce washing. After washing and before packaging, the disinfection effect of US-assisted washing can be weakened; thus, in-package disinfection is important. As a nutritious fruit, there are no packaged blueberries can be directly eaten. Therefore, in this study, blueberry was selected as the model, and the two most commonly used disinfectants (free chlorine [FC] at 10 ppm and peracetic acid [PAA] at 80 ppm) were combined with low-frequency US (25 kHz) during washing, followed by in-package disinfection using dielectric barrier discharge cold plasma (CP). The disinfection efficacy of US-FC and US-PAA against Escherichia coli O157:H7 and Salmonella Typhimurium was significantly higher than that of US, PAA, or FC alone. The highest disinfection efficacy of CP was observed at the pulse frequency range of 400-800 Hz. For US-FC (1 min) + CP (1 min), an additional 0.86, 0.71, 0.42, and 0.29 log CFU/g of reduction for E. coli O157:H7, S. Typhimurium, aerobic mesophilic counts, and mold and yeast was achieved, respectively, compared with US-FC (2 min) alone. For US-PAA (1 min) + CP (1 min) an additional 0.71, 0.59, 0.32, and 0.21 log CFU/g of reduction was achieved for the above organisms, respectively, compared with US-PAA (2 min) alone. Quality loss (in total color difference, firmness, and anthocyanin content) was not observed after treatment with US-FC + CP, US-PAA + CP, US-FC, or US-PAA. After treatment with US-FC + CP or US-PAA + CP, the reactive oxygen species (ROS) content was significantly lower than that in the other groups, and antioxidant enzyme activity was significantly higher than that in the other groups, suggesting that in-package CP can activate the blueberry antioxidant system to scavenge ROS, thereby lowering the risk of quality loss. US-CP combination not only improves the disinfection efficacy but also lowers quality loss caused by ROS, without prolonging the processing time.
Collapse
Affiliation(s)
- Jiayi Wang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China.
| | - Zhaoxia Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110000, China
| |
Collapse
|
7
|
Salehi F. Application of pulsed light technology for fruits and vegetables disinfection: A review. J Appl Microbiol 2021; 132:2521-2530. [PMID: 34839567 DOI: 10.1111/jam.15389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 11/11/2021] [Accepted: 11/24/2021] [Indexed: 11/29/2022]
Abstract
Non-thermal technologies can maintain fruit and vegetable products quality better than traditional thermal processing. Pulsed light (PL) is a non-thermal method for microbial inactivation (vegetative cells and spores) in fruits and vegetables. The PL treatment involves the application of intense and short-duration pulses of broad spectrum wavelengths ranging from UV to near-infrared (100-1100 nm). This review summarized application of PL technology to control microbial contamination and increasing shelf-life of some fruits and vegetables including apple, blueberries, grape, orange, strawberries, carrot, lettuce, spinach, and tomato. The microbial inactivation in very short treatment times, low energy used by this system, flexibility for solid or liquid samples, few residual compounds and no synthetic chemicals that cause environmental pollution or harm humans, is benefits of PL technique. The efficiency of PL disinfection is closely associated with the input voltage, fluence (energy dose), composition of the emitted light spectrum, number of lamps, the distance between samples and light source, and frequency and number of applied pulses. The PL treatments control pathogenic and spoilage microorganisms, so it facilitates the growth and development of the starter microorganisms affecting product quality.
Collapse
|
8
|
Craighead S, Huang R, Chen H, Kniel KE. The use of pulsed light to inactivate Cryptosporidium parvum oocysts on high-risk commodities (Cilantro, mesclun lettuce, spinach, and tomatoes). Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Franco-Vega A, Reyes-Jurado F, González-Albarrán D, Ramírez-Corona N, Palou E, López-Malo A. Developments and Advances of High Intensity Pulsed Light and its Combination with Other Treatments for Microbial Inactivation in Food Products. FOOD ENGINEERING REVIEWS 2021. [DOI: 10.1007/s12393-021-09280-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Gurtler JB. Two Generally Recognized as Safe Surfactants plus Acidulants Inactivate Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes in Suspension or on Dip-Inoculated Grape Tomatoes. J Food Prot 2020; 83:637-643. [PMID: 32221569 DOI: 10.4315/0362-028x.jfp-19-286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/04/2019] [Indexed: 11/11/2022]
Abstract
ABSTRACT Contamination of fresh produce with the foodborne pathogens Salmonella enterica, Listeria monocytogenes, and Escherichia coli O157:H7 continues to be problematic, resulting in outbreaks of foodborne illness and costly corporate recalls. Various individual concentrations of citric or lactic acids (0.35 to 0.61%) or isopropyl citrate (0.16 to 0.54%) combined with two generally recognized as safe surfactants, 0.025% sodium-2-ethyl-hexyl sulfate and 0.025% sodium dodecylbenzene-sulfonate, were tested against these three pathogens in suspension and when inoculated and dried on the surface of grape tomatoes. The efficacy of sodium hypochlorite (NaClO; at 46 ppm) was also evaluated under dirty and clean conditions in suspension after addition of 0.3 or 0.03% bovine serum albumin, respectively, as an organic load. NaClO (46 ppm) inactivated the three pathogens in suspension by <0.76 log CFU/mL after 5 min in the presence of 0.3% bovine serum albumin, whereas 9 and 15 ppm of free chlorine inactivated the pathogens by 0.64 and 2.77 log CFU/mL, respectively, after 5 min under clean conditions. Isopropyl citrate (0.16% acidulant) plus 0.05% total concentration of the two surfactants inactivated the pathogens in suspension by up to 7.0 log CFU/mL within 2 min. When applied to grape tomatoes for 2 min, 0.54% isopropyl citrate plus 0.025% concentrations of each of the two surfactants reduced Salmonella, E. coli O157:H7, and L. monocytogenes by as much as ca. 5.47, 4.89, and 4.19 log CFU/g, respectively. These reductions were significantly greater than those achieved with 49 ppm of free chlorine. Citric acid and lactic acid plus surfactant washes achieved greater inactivation than water-only washes, reducing Salmonella, E. coli O157:H7, and L. monocytogenes on tomatoes by up to 4.90, 4.37, and 3.98 log CFU/g, respectively. These results suggest that these combinations of acidulants and surfactants may be an effective tool for preventing cross-contamination during the washing of grape tomatoes, for reducing pathogens on the fruit itself, and as an alternative to chlorine for washing fresh produce. HIGHLIGHTS
Collapse
Affiliation(s)
- Joshua B Gurtler
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Food Safety and Intervention Technologies Research Unit, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038-8551, USA (ORCID: https://orcid.org/0000-0001-5844-7794)
| |
Collapse
|
11
|
Leng J, Mukhopadhyay S, Sokorai K, Ukuku DO, Fan X, Olanya M, Juneja V. Inactivation of Salmonella in cherry tomato stem scars and quality preservation by pulsed light treatment and antimicrobial wash. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Cao X, Huang R, Chen H. Evaluation of Food Safety and Quality Parameters for Shelf Life Extension of Pulsed Light Treated Strawberries. J Food Sci 2019; 84:1494-1500. [PMID: 31059142 DOI: 10.1111/1750-3841.14613] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/28/2019] [Accepted: 03/18/2019] [Indexed: 11/26/2022]
Abstract
Strawberry is a healthy fruit with numerous health-benefit compounds. Unfortunately, it is highly perishable and occasionally can be contaminated with foodborne pathogens. The overall goal of this study is to evaluate pulsed light (PL) processing for disinfection of strawberries, extension of shelf life, and preservation of quality attributes and compounds that are beneficial to health. Preliminary screening of PL conditions based on visual appearance of strawberries was conducted, and 3 PL treatments were identified for full evaluation. Salmonella inoculum was artificially deposited onto the skin of strawberries via spot-inoculation or dip-inoculation. The 3 PL treatments slightly reduced the level of inoculated Salmonella on strawberries, ranging from approximately 0.4 to 0.8 log reduction. They also slowed down the visible mold development on strawberries by 2 to 4 days compared with the untreated control. Regarding the natural yeasts and molds, the quality attributes (weight loss and firmness), and the bioactive compounds (total anthocyanin, total phenolics, and total antioxidant activity). The 3 PL treatment showed no significant or negligible difference comparing to the control group. Overall, the 3 PL treatments demonstrated potential in extending the shelf life of strawberries. The quality attributes or the bioactive compounds of strawberries showed no significant or minimal change after these PL treatments. PRACTICAL APPLICATION: Pulsed light (PL) processing for strawberry decontamination and shelf life extension was evaluated. Results demonstrated that PL processing could have the potency to improve strawberry shelf life without significantly affecting the quality and bioactive compounds of strawberries.
Collapse
Affiliation(s)
- Xinang Cao
- Dept. of Animal and Food Sciences, Univ. of Delaware, Newark, DE, 19716-2150, U.S.A
| | - Runze Huang
- Dept. of Animal and Food Sciences, Univ. of Delaware, Newark, DE, 19716-2150, U.S.A
| | - Haiqiang Chen
- Dept. of Animal and Food Sciences, Univ. of Delaware, Newark, DE, 19716-2150, U.S.A
| |
Collapse
|
13
|
Huang R, Chen H. Comparison of Water-Assisted Decontamination Systems of Pulsed Light and Ultraviolet for Salmonella Inactivation on Blueberry, Tomato, and Lettuce. J Food Sci 2019; 84:1145-1150. [PMID: 31012975 DOI: 10.1111/1750-3841.14510] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/20/2019] [Indexed: 11/30/2022]
Abstract
Fresh produce are vulnerable to pathogens during pre- and postharvest stages. Most fresh vegetable and fruits are consumed directly or merely washed with chlorine. We investigated two emerging decontamination technologies, pulse light (PL) and ultraviolet (UV), in combination with washing (referred as water-assisted PL [WPL] and water-assisted UV [WUV]). Blueberries, grape tomatoes, and iceberg lettuce shreds were tested in this study to represent fresh vegetables and fruits with smooth and rough surfaces. Salmonella spp. were used as a model microorganism due to its prevalence in outbreaks. Spot-inoculation and dip-inoculation were used to simulate potential contaminations during irrigation, harvest, transportation, and processing. Two intensity levels of PL (∼0.15 and 0.3 J/cm2 per pulse; 3 pulses/s) and UV (∼13 and 28 mW/cm2 ) were tested for 1 and 2 min. For all three types of fresh produce, blueberries, grape tomatoes, and iceberg lettuce shreds, WPL and WUV showed similar Salmonella inactivation effects on fresh produce. For spot-inoculated fresh produce, WPL and WUV treatments reduced 4.5 to 5.7, 4.4 to 5.4, and 1.9 to 3.1 logs of Salmonella on blueberries, tomatoes, and lettuce shreds, respectively. For dip-inoculated fresh produce, WPL and WUV treatments reduced 1.8 to 2.3, 1.9 to 2.5, and 1.9 to 2.6 logs of Salmonella on blueberries, tomatoes, and lettuce shreds, respectively. The majority of the WUV and WPL treatments could eliminate Salmonella in the wash water for blueberries and tomatoes, but not for lettuce. PRACTICAL APPLICATION: Two light systems, pulsed light and UV, for decontamination of fresh produce were evaluated and compared. Results demonstrated that the two systems showed similar decontamination effect on fresh produce, demonstrating that the UV system could be used to replace the pulsed light system to reduce equipment cost.
Collapse
Affiliation(s)
- Runze Huang
- Dept. of Animal and Food Sciences, Univ. of Delaware, Newark, DE, 19716, U.S.A
| | - Haiqiang Chen
- Dept. of Animal and Food Sciences, Univ. of Delaware, Newark, DE, 19716, U.S.A
| |
Collapse
|