1
|
Li YD, Liu YC, Jiang YX, Namisy A, Chung WH, Sun YH, Chen SY. Analyzing genetic diversity in luffa and developing a Fusarium wilt-susceptible linked SNP marker through a single plant genome-wide association (sp-GWAS) study. BMC PLANT BIOLOGY 2024; 24:307. [PMID: 38644483 PMCID: PMC11034075 DOI: 10.1186/s12870-024-05022-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
BACKGROUND Luffa (Luffa spp.) is an economically important crop of the Cucurbitaceae family, commonly known as sponge gourd or vegetable gourd. It is an annual cross-pollinated crop primarily found in the subtropical and tropical regions of Asia, Australia, Africa, and the Americas. Luffa serves not only as a vegetable but also exhibits medicinal properties, including anti-inflammatory, antidiabetic, and anticancer effects. Moreover, the fiber derived from luffa finds extensive applications in various fields such as biotechnology and construction. However, luffa Fusarium wilt poses a severe threat to its production, and existing control methods have proven ineffective in terms of cost-effectiveness and environmental considerations. Therefore, there is an urgent need to develop luffa varieties resistant to Fusarium wilt. Single-plant GWAS (sp-GWAS) has been demonstrated as a promising tool for the rapid and efficient identification of quantitative trait loci (QTLs) associated with target traits, as well as closely linked molecular markers. RESULTS In this study, a collection of 97 individuals from 73 luffa accessions including two major luffa species underwent single-plant GWAS to investigate luffa Fusarium wilt resistance. Utilizing the double digest restriction site associated DNA (ddRAD) method, a total of 8,919 high-quality single nucleotide polymorphisms (SNPs) were identified. The analysis revealed the potential for Fusarium wilt resistance in accessions from both luffa species. There are 6 QTLs identified from 3 traits, including the area under the disease progress curve (AUDPC), a putative disease-resistant QTL, was identified on the second chromosome of luffa. Within the region of linkage disequilibrium, a candidate gene homologous to LOC111009722, which encodes peroxidase 40 and is associated with disease resistance in Cucumis melo, was identified. Furthermore, to validate the applicability of the marker associated with resistance from sp-GWAS, an additional set of 21 individual luffa plants were tested, exhibiting 93.75% accuracy in detecting susceptible of luffa species L. aegyptiaca Mill. CONCLUSION In summary, these findings give a hint of genome position that may contribute to luffa wild resistance to Fusarium and can be utilized in the future luffa wilt resistant breeding programs aimed at developing wilt-resistant varieties by using the susceptible-linked SNP marker.
Collapse
Affiliation(s)
- Yun-Da Li
- Department of Agronomy, National Chung-Hsing University, Taichung, Taiwan
| | - Yu-Chi Liu
- Department of Agronomy, National Chung-Hsing University, Taichung, Taiwan
| | - Yu-Xuan Jiang
- Department of Agronomy, National Chung-Hsing University, Taichung, Taiwan
| | - Ahmed Namisy
- Department of Plant Pathology, National Chung-Hsing University, Taichung, Taiwan
| | - Wen-Hsin Chung
- Department of Plant Pathology, National Chung-Hsing University, Taichung, Taiwan
| | - Ying-Hsuan Sun
- Department of Forestry, National Chung-Hsing University, Taichung, Taiwan
| | - Shu-Yun Chen
- Department of Agronomy, National Chung-Hsing University, Taichung, Taiwan.
| |
Collapse
|
2
|
Gui Y, Fu G, Li X, Dai Y. Identification and analysis of isoflavone reductase gene family in Gossypium hirsutum L. Sci Rep 2023; 13:5703. [PMID: 37029187 PMCID: PMC10082034 DOI: 10.1038/s41598-023-32213-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
Isoflavone reductase (IFR) is a key enzyme controlling isoflavone synthesis and widely involved in response to various stresses. In this study, the IFR genes in four Gossypium species and other 7 species were identified and analyzed in the whole genome, and the physicochemical properties, gene structures, cis-acting elements, chromosomal locations, collinearity relationships and expression patterns of IFR genes were systematically analyzed. 28, 28, 14 and 15 IFR genes were identified in Gossypium hirsutum, Gossypium barbadense, Gossypium arboreum and Gossypium raimondii, respectively, which were divided into five clades according to the evolutionary tree and gene structure. Collinear analysis showed that segmental duplication and whole genome duplication were the main driving forces in the process of evolution, and most genes underwent pure selection. Gene structure analysis showed that IFR gene family was relatively conserved. Cis-element analysis of promoter showed that most GhIFR genes contain cis-elements related to abiotic stresses and plant hormones. Analysis of GhIFR gene expression under different stresses showed that GhIFR genes were involved in the response to drought, salt, heat and cold stresses through corresponding network mechanisms, especially GhIFR9A. Phenotypic analysis after silencing GhIFR9A gene by VIGS was shown that GhIFR9A gene was involved in the response to salt stress. This study laid a foundation for the subsequent functional study of cotton IFR genes.
Collapse
Affiliation(s)
- Yanting Gui
- College of Agronomy, Henan University of Science and Technology, Luoyang, 471023, People's Republic of China
| | - Guozhan Fu
- College of Agronomy, Henan University of Science and Technology, Luoyang, 471023, People's Republic of China.
| | - Xuelin Li
- College of Agronomy, Henan University of Science and Technology, Luoyang, 471023, People's Republic of China
| | - Yinghao Dai
- College of Agronomy, Henan University of Science and Technology, Luoyang, 471023, People's Republic of China
| |
Collapse
|
3
|
Tang W, Arisha MH, Zhang Z, Yan H, Kou M, Song W, Li C, Gao R, Ma M, Wang X, Zhang Y, Li Z, Li Q. Comparative transcriptomic and proteomic analysis reveals common molecular factors responsive to heat and drought stresses in sweetpotaoto ( Ipomoea batatas). FRONTIERS IN PLANT SCIENCE 2023; 13:1081948. [PMID: 36743565 PMCID: PMC9892860 DOI: 10.3389/fpls.2022.1081948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Introduction Crops are affected by various abiotic stresses, among which heat (HT) and drought (DR) stresses are the most common in summer. Many studies have been conducted on HT and DR, but relatively little is known about how drought and heat combination (DH) affects plants at molecular level. Methods Here, we investigated the responses of sweetpotato to HT, DR, and DH stresses by RNA-seq and data-independent acquisition (DIA) technologies, using controlled experiments and the quantification of both gene and protein levels in paired samples. Results Twelve cDNA libraries were created under HT, DR, and DH conditions and controls. We identified 536, 389, and 907 DEGs in response to HT, DR, and DH stresses, respectively. Of these, 147 genes were common and 447 were specifically associated with DH stress. Proteomic analysis identified 1609, 1168, and 1535 DEPs under HT, DR, and DH treatments, respectively, compared with the control, of which 656 were common and 358 were exclusive to DH stress. Further analysis revealed the DEGs/DEPs were associated with heat shock proteins, carbon metabolism, phenylalanine metabolism, starch and cellulose metabolism, and plant defense, amongst others. Correlation analysis identified 6465, 6607, and 6435 co-expressed genes and proteins under HT, DR, and DH stresses respectively. In addition, a combined analysis of the transcriptomic and proteomic data identified 59, 35, and 86 significantly co-expressed DEGs and DEPs under HT, DR, and DH stresses, respectively. Especially, top 5 up-regulated co-expressed DEGs and DEPs (At5g58770, C24B11.05, Os04g0679100, BACOVA_02659 and HSP70-5) and down-regulated co-expressed DEGs and DEPs (AN3, PMT2, TUBB5, FL and CYP98A3) were identified under DH stress. Discussion This is the first study of differential genes and proteins in sweetpotato under DH stress, and it is hoped that the findings will assist in clarifying the molecular mechanisms involved in sweetpotato resistance to heat and drought stress.
Collapse
Affiliation(s)
- Wei Tang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Mohamed Hamed Arisha
- Department of Horticulture, Faculty of Agriculture, Zagazig University, Zagazig, Sharkia, Egypt
| | - Zhenyi Zhang
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Hui Yan
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Meng Kou
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Weihan Song
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Chen Li
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Runfei Gao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Meng Ma
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xin Wang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Yungang Zhang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Zongyun Li
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Qiang Li
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| |
Collapse
|
4
|
Wang SY, Zhang YJ, Zhu GY, Shi XC, Chen X, Herrera-Balandrano DD, Liu FQ, Laborda P. Occurrence of isoflavones in soybean sprouts and strategies to enhance their content: A review. J Food Sci 2022; 87:1961-1982. [PMID: 35411587 DOI: 10.1111/1750-3841.16131] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/08/2022] [Accepted: 03/06/2022] [Indexed: 12/22/2022]
Abstract
Sprouting is a common strategy to enhance the nutritional value of seeds. Here, all the reports regarding the occurrence of isoflavones in soybean sprouts have been covered for the first time. Isoflavones were detected with concentrations ranging from 1 × 10-2 to 1 × 101 g/kg in soybean sprouts. Isoflavone concentration depends on the cultivar, germination time, part of the sprout, light, and temperature. Aglycon isoflavones increased during germination, especially in the hypocotyl, while 6″-O-malonyl-7-O-β-glucoside isoflavones decreased in the hypocotyl and increased in the cotyledon and root. Cooking reduced total isoflavone content. Regarding the strategies to enhance isoflavone contents, fermentation with Aspergillus sojae and external irradiation with UV-A or far-infrared were the methods that caused the greatest increases in aglycon, 7-O-β-glucoside, and total isoflavones. However, the largest increases in 6″-O-malonyl-7-O-β-glucoside and 6″-O-acetyl-7-O-β-glucosides isoflavones were detected after treatment with chitohexaose and calcium chloride, respectively. PRACTICAL APPLICATION: Soybean sprouts are widely consumed and provide essential proteins, antioxidants, and minerals. They are rich in isoflavones, which exhibit numerous health benefits, and have been studied as alternative therapies for a range of hormone-dependent conditions, such as cancer, menopausal symptoms, cardiovascular disease, and osteoporosis. Despite numerous reports being published to date regarding the occurrence of isoflavones in soybean sprouts, the publications in this field are highly dispersed, and a review has not yet been published. This review aims to (1) highlight the particular isoflavones that have been detected in soybean sprouts and their concentrations, (2) compared the effects of temperature, light, cooking and soybean cultivar affect the isoflavone levels on the different parts of the sprout, and (3) discuss the efficacy of the methods to enhance isoflavone contents. This review will provide a better understanding of the current state of this field of research by comparing the general trends and the different treatments for soybean sprouts.
Collapse
Affiliation(s)
- Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yun-Jiao Zhang
- School of Life Sciences, Nantong University, Nantong, China
| | - Gui-Yang Zhu
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin Chen
- School of Life Sciences, Nantong University, Nantong, China
| | | | - Feng-Quan Liu
- Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
5
|
Jiang J, Hou R, Yang N, Li L, Deng J, Qin G, Ding D. Physiological and TMT-labeled proteomic analyses reveal important roles of sugar and secondary metabolism in Citrus junos under cold stress. J Proteomics 2021; 237:104145. [PMID: 33581353 DOI: 10.1016/j.jprot.2021.104145] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/24/2021] [Accepted: 02/01/2021] [Indexed: 11/16/2022]
Abstract
Citrus junos is a widely used citrus grafting rootstock in china because of its excellent tolerance to cold stress. However, the physiological and molecular mechanisms underlying this process remain unknown. In this study, physiological and tandem mass tag-based proteomic analyses were performed to elucidate the mechanism of the Citrus junos response to cold stress. Physiological data showed that severe cold stress decreased photosynthetic parameters and caused cell membrane damage and membrane lipid peroxidation in Citrus junos leaves compared to the control. A total of 6, 678 distinct proteins species were identified, and 413 proteins species were significantly differentially accumulated in the leaves of Citrus junos seedling after cold stress. Bioinformatics analysis revealed that the differentially abundance protein species mainly related to the starch and sucrose metabolism, secondary metabolites biosynthesis and phenylpropanoid biosynthesis in the leaves of Citrus junos seedling after cold stress. Further physiological assays showed that the contents of soluble starch, fructose, glucose and phenols were significantly increased in Citrus junos leaves after cold stress. Collectively, our data reveals that sugar and secondary metabolism could play important roles in Citrus junos in response to cold stress.
Collapse
Affiliation(s)
- Jinglong Jiang
- School of Biological Science and Engineering, School of Chemical and Environmental Sciences, Shaanxi University of Technology, Hanzhong 723000, PR China.
| | - Ruping Hou
- School of Biological Science and Engineering, School of Chemical and Environmental Sciences, Shaanxi University of Technology, Hanzhong 723000, PR China
| | - Ni Yang
- School of Biological Science and Engineering, School of Chemical and Environmental Sciences, Shaanxi University of Technology, Hanzhong 723000, PR China
| | - Li Li
- School of Biological Science and Engineering, School of Chemical and Environmental Sciences, Shaanxi University of Technology, Hanzhong 723000, PR China
| | - Jiarui Deng
- Chenggu Fruit Industry Technical Guidance Station, Chenggu 723200, Shaanxi, China
| | - Gongwei Qin
- School of Biological Science and Engineering, School of Chemical and Environmental Sciences, Shaanxi University of Technology, Hanzhong 723000, PR China
| | - Dekuan Ding
- Chenggu Fruit Industry Technical Guidance Station, Chenggu 723200, Shaanxi, China
| |
Collapse
|
6
|
Ding Z, Fu L, Tie W, Yan Y, Wu C, Hu W, Zhang J. Extensive Post-Transcriptional Regulation Revealed by Transcriptomic and Proteomic Integrative Analysis in Cassava under Drought. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3521-3534. [PMID: 30830777 DOI: 10.1021/acs.jafc.9b00014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cassava is a major tropical/subtropical food crop and its yield is greatly restrained by drought; however, the mechanism underlying the drought stress remains largely unknown. In this study, totally 1242 and 715 differentially expressed genes (DEGs), together with 237 and 307 differentially expressed proteins (DEPs), were respectively identified in cassava leaves and roots through RNA-seq and iTRAQ techniques. The majority of DEGs and DEPs were exclusively regulated at the mRNA and protein level, respectively, whereas only a few were commonly regulated, indicating the major involvement of post-transcriptional regulation under drought. Subsequently, the functions of these specifically or commonly regulated DEGs and DEPs were analyzed, and the post-transcriptional regulation of genes involved in heat shock protein, secondary metabolism biosynthesis, and hormone biosynthesis was extensively discussed. This is the first report on an integration of transcriptomic and proteomic analysis in cassava, and it provides new insights into the post-transcriptional regulation of cassava drought stress.
Collapse
Affiliation(s)
- Zehong Ding
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology , Chinese Academy of Tropical Agricultural Sciences , Xueyuan Road 4 , Haikou , Hainan 571101 , China
| | - Lili Fu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology , Chinese Academy of Tropical Agricultural Sciences , Xueyuan Road 4 , Haikou , Hainan 571101 , China
| | - Weiwei Tie
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology , Chinese Academy of Tropical Agricultural Sciences , Xueyuan Road 4 , Haikou , Hainan 571101 , China
| | - Yan Yan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology , Chinese Academy of Tropical Agricultural Sciences , Xueyuan Road 4 , Haikou , Hainan 571101 , China
| | - Chunlai Wu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology , Chinese Academy of Tropical Agricultural Sciences , Xueyuan Road 4 , Haikou , Hainan 571101 , China
- Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology , Chinese Academy of Tropical Agricultural Sciences , Xueyuan Road 4 , Haikou , Hainan 571101 , China
| | - Jiaming Zhang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology , Chinese Academy of Tropical Agricultural Sciences , Xueyuan Road 4 , Haikou , Hainan 571101 , China
| |
Collapse
|