1
|
Kemsley EK. Graphical exploration of 600- and 60-MHz proton NMR spectral datasets from ground roast coffee extracts. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:236-251. [PMID: 37311710 DOI: 10.1002/mrc.5373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
This article uses a variety of graphical and mathematical approaches to analyse 600- and 60-MHz ('benchtop') proton NMR spectra acquired from lipophilic and hydrophilic extracts of roasted coffee beans. The collection of 40 authenticated samples comprised various coffee species, cultivars and hybrids. The spectral datasets were analysed by a combination of metabolomics approaches, cross-correlation and whole spectrum methods, assisted by visualisation and mathematical techniques not conventionally employed to treat NMR data. A large amount of information content was shared between the 600-MHz and benchtop datasets, including in its magnitude spectral form, suggesting the potential for a lower cost, lower tech route to conducting informative metabolomics studies.
Collapse
Affiliation(s)
- E Kate Kemsley
- Core Science Resources Group, Quadram Institute Bioscience, Norwich, UK
| |
Collapse
|
2
|
Yan M, Pang Y, Shao W, Ma C, Zheng W. Utilization of spent coffee grounds as charring agent to prepare flame retardant poly(lactic acid) composites with improved toughness. Int J Biol Macromol 2024; 264:130534. [PMID: 38432276 DOI: 10.1016/j.ijbiomac.2024.130534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
The objective was to utilize spent coffee grounds (SCG) as charring agent to combine with ammonium polyphosphate (APP) to prepare flame retardant poly(lactic acid) (PLA) composites with improved toughness. PLA/APP-SCG and PLA/APP-SCG/KH560 composites were prepared, and silane coupling agent KH560 was applied to improve particle-matrix interfacial compatibility. The particle-matrix interface, char formation, flame retardancy, mechanical properties and fracture morphology of PLA composites were studied. Results showed that PLA/APP-SCG5% and PLA/APP-SCG20% passed UL-94 V-0 rating, and increase in charred residues was favorable for improving flame retardancy. Improved toughness was also obtained compared to PLA, attributed to debonding of APP from matrix under external force as well as plasticization effect of coffee oil contained in SCG. PLA/APP-SCG5%/KH560 and PLA/APP-SCG20%/KH560 showed smaller elongation at break and impact strength compared to PLA/APP-SCG5% and PLA/APP-SCG20%, respectively. The improved interfacial compatibility was unfavorable for debonding of APP from matrix, and both APP and SCG played the role of enhancing strength, thus decreasing toughness. PLA/APP-SCG/KH560 counterparts were actually set as parallel samples to prove that PLA/APP-SCG composites showed improved toughness with weak interfacial compatibility. This study has provided a practical approach to utilize bio-derived wastes as charring agent to prepare flame retardant PLA composites with enhanced toughness.
Collapse
Affiliation(s)
- Ming Yan
- School of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning Province, China; Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang Province, China
| | - Yongyan Pang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang Province, China.
| | - Weiwei Shao
- School of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning Province, China; Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang Province, China
| | - Chi Ma
- School of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning Province, China
| | - Wenge Zheng
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang Province, China
| |
Collapse
|
3
|
Novaes FJM, da Silva MAE, Silva DC, de Aquino Neto FR, Rezende CM. Extraction of Diterpene-Phytochemicals in Raw and Roasted Coffee Beans and Beverage Preparations and Their Relationship. PLANTS (BASEL, SWITZERLAND) 2023; 12:1580. [PMID: 37111804 PMCID: PMC10145731 DOI: 10.3390/plants12081580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 06/19/2023]
Abstract
Cafestol and kahweol are expressive furane-diterpenoids from the lipid fraction of coffee beans with relevant pharmacological properties for human health. Due to their thermolability, they suffer degradation during roasting, whose products are poorly studied regarding their identity and content in the roasted coffee beans and beverages. This article describes the extraction of these diterpenes, from the raw bean to coffee beverages, identifying them and understanding the kinetics of formation and degradation in roasting (light, medium and dark roasts) as the extraction rate for different beverages of coffee (filtered, Moka, French press, Turkish and boiled). Sixteen compounds were identified as degradation products, ten derived from kahweol and six from cafestol, produced by oxidation and inter and intramolecular elimination reactions, with the roasting degree (relationship between time and temperature) being the main factor for thermodegradation and the way of preparing the beverage responsible for the content of these substances in them.
Collapse
Affiliation(s)
| | - Maria Alice Esteves da Silva
- Aroma Analysis Laboratory, Chemistry Institute, Federal University of Rio de Janeiro, Avenida Athos da Silveira Ramos, 149, Bloco A, Sala 626A, Rio de Janeiro 21941-895, RJ, Brazil
| | - Diana Cardoso Silva
- Chemistry Department, Federal University of Viçosa, Peter Henry Rolfs Avenue, Viçosa 36570-900, MG, Brazil
| | - Francisco Radler de Aquino Neto
- Laboratory for the Support of Technological Development (LADETEC), Chemistry Institute, Federal University of Rio de Janeiro, Avenida Horácio Macedo, 1281, Polo de Química, Bloco C, Rio de Janeiro 21941-598, RJ, Brazil
| | - Claudia Moraes Rezende
- Aroma Analysis Laboratory, Chemistry Institute, Federal University of Rio de Janeiro, Avenida Athos da Silveira Ramos, 149, Bloco A, Sala 626A, Rio de Janeiro 21941-895, RJ, Brazil
| |
Collapse
|
4
|
das Graças Souza K, de Oliveira MA, Alcantara GU, Paulino GM, de Lima RP, Ferreira OE, da Silva Bezerra AC, Pimenta LPS, Machado ART. Effect of pyrolysis temperature on the properties of the coffee grounds biochar and composition of its leachates. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
5
|
Jiménez-Mendoza JA, Santos-Sánchez NF, Pérez-Santiago AD, Sánchez-Medina MA, Matías-Pérez D, García-Montalvo IA. Preliminary Analysis of Unsaturated Fatty Acid Profiles of Coffea arabica L., in Samples with a Denomination of Origin and Speciality of Oaxaca, Mexico. J Oleo Sci 2023; 72:153-160. [PMID: 36740249 DOI: 10.5650/jos.ess22254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In February 2020, Coffea arabica L. grown on the coast and in the Southern Sierra Madre of the state of Oaxaca, Mexico obtained the denomination of origin. Which does not have data on color and chemical composition, the first associated with the degree of roasting and the second with lipids (17-18%), as the group of compounds responsible, in part, for flavor, consistency, and may contribute to health benefits. In the present work, color was determined on the CIE L*a*b* scale and the unsaturated fatty acids by Nuclear Magnetic Resonance (NMR) of 1H and 13C in samples of medium roasted specialty coffee from the "Pluma" coffee-growing region, Oaxaca, Mexico. The average value of L* luminosity in ground coffee was 42.1 ± 0.1 reported for a light roast. Unsaturated fatty acids were quantified from the lipid fraction of the gr1 ound grain by NMR 1H and 13C, obtaining on average the highest abundance of linoleic (41.7 ± 0.5 by 1 H and 41.24 ± 0.5 by 13C), followed by oleic (9.2 ± 0.2 by 1H and 7.4 ± 0.2 by 13C) and linolenic (1.5 ± 0.1 by H and 1.1 ± 0.2 by 13C). This study indicates that 1H and 13C NMR spectroscopy is a useful tool for the quantification of linolenic, linoleic, and oleic fatty acids by the method of key signal shifts of these acids found in lipid samples in roasted coffee grains.
Collapse
Affiliation(s)
- Jesica Ariadna Jiménez-Mendoza
- Bioactive Principles Laboratory, Institute of Agroindustry. Technological University of the Mixteca.,Graduate Studies and Research Division, National Technological Institute of Mexico/Technological Institute of Oaxaca
| | | | - Alma Dolores Pérez-Santiago
- Graduate Studies and Research Division, National Technological Institute of Mexico/Technological Institute of Oaxaca
| | - Marco Antonio Sánchez-Medina
- Graduate Studies and Research Division, National Technological Institute of Mexico/Technological Institute of Oaxaca
| | - Diana Matías-Pérez
- Graduate Studies and Research Division, National Technological Institute of Mexico/Technological Institute of Oaxaca
| | - Iván Antonio García-Montalvo
- Graduate Studies and Research Division, National Technological Institute of Mexico/Technological Institute of Oaxaca
| |
Collapse
|
6
|
Barreto Peixoto JA, Silva JF, Oliveira MBPP, Alves RC. Sustainability issues along the coffee chain: From the field to the cup. Compr Rev Food Sci Food Saf 2023; 22:287-332. [PMID: 36479852 DOI: 10.1111/1541-4337.13069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/07/2022] [Accepted: 10/11/2022] [Indexed: 12/14/2022]
Abstract
The coffee industry is one of the most important commercial value chains worldwide. Nonetheless, it is also associated to several social, economic, and environmental concerns that impair its sustainability. The present review is focused on these main sustainability concerns from the field to the coffee cup, as well as on the strategies that are being developed and/or implemented to attain sustainability and circular economy principles in the different chain segments. In this context, distinct approaches have been applied, such as sustainable certifications (e.g., voluntary sustainability standards), corporate sustainability initiatives, direct trade, relationship coffee concepts, geographical indication, legislations, waste management, and byproducts valorization, among others. These strategies are addressed and discussed throughout this review, as well as their recognized advantages and limitations. Overall, there is still a long way to go to attain the much-desired sustainability in the coffee chain, being essential to join the efforts of all actors and entities directly or indirectly involved, namely, producers, retailers, roasters, governments, educational institutions (such as universities and scientific research institutes), and organizations.
Collapse
Affiliation(s)
- Juliana A Barreto Peixoto
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Joana F Silva
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - M Beatriz P P Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Rita C Alves
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
7
|
Effect of green coffee oil as a natural active emulsifying agent on the properties of corn starch-based films. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Williamson K, Banker T, Zhao X, Ortega-Anaya J, Jimenez-Flores R, Vodovotz Y, Hatzakis E. Spent coffee ground oil as a valuable source of epoxides and epoxidation derivatives: Quantitation and characterization using low-field NMR. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Jin Cho E, Gyo Lee Y, Song Y, Nguyen DT, Bae HJ. An integrated process for conversion of spent coffee grounds into value-added materials. BIORESOURCE TECHNOLOGY 2022; 346:126618. [PMID: 34954357 DOI: 10.1016/j.biortech.2021.126618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Spent coffee grounds (SCG) are inexpensive materials with a complex composition that makes them promising feedstocks for a biorefinery.Here, conversion of SCG into a wide range of high value-added products (coffee oil, bio-ethanol, D-mannose, manno-oligosaccharide (MOS), cafestol and kahweol) using a novel integrated system was evaluated. The process involves oil extraction, MOS production by mannanase obtained from Penicillium purpurogenum, NaOH (Na) and hydrogen peroxide (HP) pretreatment for the degradation of lignin and phenolic compounds, diterpenes extraction, enzymatic hydrolysis, and fermentation, which can be performed using environmentally friendly technologies. Approximately 97 mL of coffee oil, 164 g of D-mannose, 102 g of MOS, 99 g of bioethanol and a dash of cafestol/kahweol were produced from 1 kg of dry SCG. Producing high-value co-products from SCG using an integrated approach as demonstrated here may be an efficient strategy to reduce waste generation, while improving the economics of the biorefinery production process.
Collapse
Affiliation(s)
- Eun Jin Cho
- Bio-Energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Yoon Gyo Lee
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Younho Song
- Bio-Energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | - Hyeun-Jong Bae
- Bio-Energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea; Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea.
| |
Collapse
|
10
|
Analysis of Phytosterols Content in Italian-Standard Espresso Coffee. BEVERAGES 2021. [DOI: 10.3390/beverages7030061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study aims to assess for the first time the content of phytosterols (PS) in espresso coffee (EC) to deepen the knowledge about the phytochemicals and health potentials of coffee brews. PS were extracted by hot saponification from 14 EC samples produced with coffee originating from 13 coffee-producing countries. PS were identified and quantified by high-performance liquid chromatography (HPLC) after derivatization. Among the detected PS, β-sitosterol (4.1–18.2 mg/L) was the most abundant followed by stigmasterol (1.1–4.9 mg/L), campesterol (0.9–4.7 mg/L), and cycloartenol (0.3–2.0 mg/L). Total PS fraction ranged from 6.5 mg/L to 30.0 mg/L with an average level of 15.7 ± 5.8 mg/L. Therefore, a standard cup of EC (25 mL) could provide 0.4 ± 0.1 mg of PS.
Collapse
|
11
|
Coffee beyond the cup: analytical techniques used in chemical composition research—a review. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-020-03679-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Kaur A, Bhardwaj N, Kaur A, Abida K, Nagaraja TP, Ali A, Prakash R. Proton Nuclear Magnetic Resonance‐Based Method for the Quantification of Epoxidized Methyl Oleate. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Avneet Kaur
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology Patiala 147004 India
| | - Neha Bhardwaj
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology Patiala 147004 India
| | - Amanpreet Kaur
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology Patiala 147004 India
| | - Km Abida
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology Patiala 147004 India
| | - Tejo Prakash Nagaraja
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology Patiala 147004 India
| | - Amjad Ali
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology Patiala 147004 India
| | - Ranjana Prakash
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology Patiala 147004 India
| |
Collapse
|
13
|
Tang F, Green HS, Wang SC, Hatzakis E. Analysis and Authentication of Avocado Oil Using High Resolution NMR Spectroscopy. Molecules 2021; 26:molecules26020310. [PMID: 33435322 PMCID: PMC7828049 DOI: 10.3390/molecules26020310] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 11/16/2022] Open
Abstract
Avocado oil is a food product of high commercial and nutritional value. As a result, it can be a subject of adulteration similar to other high-value edible oils, such as olive oil. For olive oil and many other foods products, NMR spectroscopy has been successfully used for authentication and quality assessment. In this study, we apply NMR analysis to avocado oil to differentiate it from other oils including olive, canola, high-oleic (HO) safflower, HO sunflower and soybean oil using commercial and lab-made samples of avocado oils. NMR allowed the rapid analysis of the fatty acid profile and detection of minor compounds, such as sterols, oxidation products, and hydrolysis products, which can be used to assess oil quality and authenticity. The NMR assignment was conducted using traditional 2D NMR and the novel NOAH super-sequences. Combining chemometrics with NMR enabled us to differentiate between avocado oil and other oils. Avocado oil has compositional similarities with other vegetable oils, such as HO sunflower and HO safflower oil, which can be used as potential adulterants. Despite these similarities, NMR-based metabolomics captured differences in the levels of certain compounds including fatty acids, terpenes, sterols, and oxidation products to detect adulteration and for quality control purposes.
Collapse
Affiliation(s)
- Fenfen Tang
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA;
| | - Hilary S. Green
- Department of Food Science and Technology, University of California Davis, Davis, CA 95616, USA; (H.S.G.); (S.C.W.)
| | - Selina C. Wang
- Department of Food Science and Technology, University of California Davis, Davis, CA 95616, USA; (H.S.G.); (S.C.W.)
- Olive Center, University of California Davis, Davis, CA 95616, USA
| | - Emmanuel Hatzakis
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA;
- Foods for Health Discovery Theme, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: ; Tel.: +1-614-688-2731
| |
Collapse
|
14
|
Marcheafave GG, Tormena CD, Mattos LE, Liberatti VR, Ferrari ABS, Rakocevic M, Bruns RE, Scarminio IS, Pauli ED. The main effects of elevated CO 2 and soil-water deficiency on 1H NMR-based metabolic fingerprints of Coffea arabica beans by factorial and mixture design. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:142350. [PMID: 33370915 DOI: 10.1016/j.scitotenv.2020.142350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 06/12/2023]
Abstract
The metabolic response of Coffea arabica trees in the face of the rising atmospheric concentration of carbon dioxide (CO2) combined with the reduction in soil-water availability is complex due to the various (bio)chemical feedbacks. Modern analytical tools and the experimental advance of agronomic science tend to advance in the understanding of the metabolic complexity of plants. In this work, Coffea arabica trees were grown in a Free-Air Carbon Dioxide Enrichment dispositive under factorial design (22) conditions considering two CO2 levels and two soil-water availabilities. The 1H NMR mixture design-fingerprinting effects of CO2 and soil-water levels on beans were strategically investigated using the principal component analysis (PCA), analysis of variance (ANOVA) - simultaneous component analysis (ASCA) and partial least squares-discriminant analysis (PLS-DA). From the ASCA, the CO2 factor had a significant effect on changing the 1H NMR profile of fingerprints. The soil-water factor and interaction (CO2 × soil-water) were not significant. 1H NMR fingerprints with PCA, ASCA and PLS-DA analysis determined spectral profiles for fatty acids, caffeine, trigonelline and glucose increases in beans from current CO2, while quinic acid/chlorogenic acids, malic acid and kahweol/cafestol increased in coffee beans from elevated CO2. PLS-DA results revealed a good classification performance between the significant effect of the atmospheric CO2 levels on the fingerprints, regardless of the soil-water availabilities. Finally, the PLS-DA model showed good prediction ability, successfully classifying validation data-set of coffee beans collected over the vertical profile of the plants and included several fingerprints of different extracting solvents. The results of this investigation suggest that the association of experimental design, mixture design, PCA, ASCA and PLS-DA can provide accurate information on a series of metabolic changes provoked by climate changes in products of commercial importance, in addition to minimizing the extra work necessary in classic analytical approaches, encouraging the development of similar strategies.
Collapse
Affiliation(s)
- Gustavo Galo Marcheafave
- Laboratory of Chemometrics in Natural Sciences (LQCN), Department of Chemistry, State University of Londrina, CP 6001, 86051-990 Londrina, PR, Brazil.
| | - Cláudia Domiciano Tormena
- Laboratory of Chemometrics in Natural Sciences (LQCN), Department of Chemistry, State University of Londrina, CP 6001, 86051-990 Londrina, PR, Brazil
| | - Lavínia Eduarda Mattos
- Laboratory of Chemometrics in Natural Sciences (LQCN), Department of Chemistry, State University of Londrina, CP 6001, 86051-990 Londrina, PR, Brazil
| | - Vanessa Rocha Liberatti
- Department of Chemistry, State University of Londrina, CP 6001, 86051-990 Londrina, PR, Brazil
| | | | - Miroslava Rakocevic
- Northern Rio de Janeiro State University - UENF, Plant Physiology Lab, Av. Alberto Lamego 2000, 28013-602 Campos dos Goytacazes, RJ, Brazil; Embrapa Environment, Rodovia SP 340, Km 127.5, 13820-000 Jaguariúna, SP, Brazil
| | - Roy Edward Bruns
- Institute of Chemistry, State University of Campinas, CP 6154, 13083-970 Campinas, SP, Brazil
| | - Ieda Spacino Scarminio
- Laboratory of Chemometrics in Natural Sciences (LQCN), Department of Chemistry, State University of Londrina, CP 6001, 86051-990 Londrina, PR, Brazil.
| | - Elis Daiane Pauli
- Institute of Chemistry, State University of Campinas, CP 6154, 13083-970 Campinas, SP, Brazil
| |
Collapse
|
15
|
Iriondo-DeHond A, Iriondo-DeHond M, del Castillo MD. Applications of Compounds from Coffee Processing By-Products. Biomolecules 2020; 10:E1219. [PMID: 32825719 PMCID: PMC7564712 DOI: 10.3390/biom10091219] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
To obtain the coffee beverage, approximately 90% of the edible parts of the coffee cherry are discarded as agricultural waste or by-products (cascara or husk, parchment, mucilage, silverskin and spent coffee grounds). These by-products are a potential source of nutrients and non-nutrient health-promoting compounds, which can be used as a whole ingredient or as an enriched extract of a specific compound. The chemical composition of by-products also determines food safety of the novel ingredients. To ensure the food safety of coffee by-products to be used as novel ingredients for the general consumer population, pesticides, mycotoxins, acrylamide and gluten must be analyzed. According with the priorities proposed by the Food Agriculture Organization of the United Nations (FAO) to maximize the benefit for the environment, society and economy, food waste generation should be avoided in the first place. In this context, the valorization of food waste can be carried out through an integrated bio-refinery approach to produce nutrients and bioactive molecules for pharmaceutical, cosmetic, food and non-food applications. The present research is an updated literature review of the definition of coffee by-products, their composition, safety and those food applications which have been proposed or made commercially available to date based on their chemical composition.
Collapse
Affiliation(s)
- Amaia Iriondo-DeHond
- Food Bioscience Group, Department of Bioactivity and Food Analysis, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Calle Nicolás Cabrera, 9, 28049 Madrid, Spain;
| | - Maite Iriondo-DeHond
- Food Quality Group, Department of Agricultural and Food Research, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), N-II km 38, 28800 Alcalá de Henares, Spain;
| | - María Dolores del Castillo
- Food Bioscience Group, Department of Bioactivity and Food Analysis, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Calle Nicolás Cabrera, 9, 28049 Madrid, Spain;
| |
Collapse
|
16
|
Moeenfard M, Alves A. New trends in coffee diterpenes research from technological to health aspects. Food Res Int 2020; 134:109207. [PMID: 32517949 DOI: 10.1016/j.foodres.2020.109207] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/09/2020] [Accepted: 03/28/2020] [Indexed: 01/03/2023]
Abstract
The coffee oil is rich in diterpenes, mainly cafestol and kahweol, which are predominantly present in the esterified form with different fatty acids. Despite their beneficial effects including anti-angiogenic and anti-carcinogenic properties, they have been also associated with negative consequences such as elevation of blood cholesterol. Considering the coffee, it is an important human beverage with biological effects, including potentially health benefits or risks. Therefore, it may have important public health implications due to its widespread massive consumption, with major incidence in the varieties Arabica and Robusta. According to literatures, cafestol (182-1308 mg/100 g), kahweol (0-1265 mg/100 g) and 16-O-methycafestol (0-223 mg/100 g) are the main diterpenes in green and roasted coffee beans. Nevertheless, the coffee species, genetic background, and technological parameters like roasting and brewing have a clear effect on coffee diterpene content. Besides that, bibliographic data indicated that limited studies have specifically addressed the recent analytical techniques used for determination of this class of compounds, being HPLC and GC the most common approaches. For these reasons, this review aimed to actualize the occurrence and the profile of diterpenes in coffee matrices, focusing on the effect of species, roasting and brewing and on the other hand, introduce the current state on knowledge regarding coffee diterpenes determination which are nowadays highly regarded and widely used. In general, since diterpenes exhibit different health effects depending on their consumption dosage, several parameters needs to be carefully analyzed and considered when comparing the results.
Collapse
Affiliation(s)
- Marzieh Moeenfard
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Azadi Square, PO Box: 9177948944, Mashhad, Iran.
| | - Arminda Alves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
17
|
dos Santos HD, Alvarenga YA, Boffo EF. 1H NMR metabolic fingerprinting of Chapada Diamantina/Bahia (Brazil) coffees as a tool to assessing their qualities. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Williamson K, Hatzakis E. Evaluating the effect of roasting on coffee lipids using a hybrid targeted-untargeted NMR approach in combination with MRI. Food Chem 2019; 299:125039. [DOI: 10.1016/j.foodchem.2019.125039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 11/25/2022]
|