1
|
Tisler S, Kristiansen N, Christensen JH. Chemical migration from reusable plastic bottles: Silicone, polyethylene, and polypropylene show highest hazard potential in LC-HRMS analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136391. [PMID: 39541882 DOI: 10.1016/j.jhazmat.2024.136391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/21/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Estimating the chemical hazards of drinking water stored in reusable plastic bottles is challenging due to the numerous intentionally and unintentionally added chemicals. To address this, we developed a broad screening strategy using evaporation enrichment and liquid chromatography high-resolution mass spectrometry (LC-HRMS) to evaluate migration of non-volatile chemicals from various reusable plastic bottles. The study analyzed a wide range of materials, revealing significant variability in chemical profiles across different bottle types. Over 70 % of nearly 1000 unknown compounds were unique to specific bottles. Silicone, HDPE, LDPE, and PP bottles showed the highest migration rates, with silicone releasing the most unknowns, but also phthalates and plasticizers. PP bottles exhibited concerning migration of clarifying agents and bisphenol A derivatives. In contrast, PS, PET, PETG, and PCTG had minimal migration, indicating lower health risks. These findings highlight the need for comprehensive assessments of plastic materials to improve consumer safety.
Collapse
Affiliation(s)
- Selina Tisler
- Analytical Chemistry Group, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark.
| | - Nastacha Kristiansen
- Analytical Chemistry Group, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
| | - Jan H Christensen
- Analytical Chemistry Group, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
| |
Collapse
|
2
|
Krauss M, Huber C, Schulze T, Bartel-Steinbach M, Weber T, Kolossa-Gehring M, Lermen D. Assessing background contamination of sample tubes used in human biomonitoring by non-targeted liquid chromatography-high resolution mass spectrometry. ENVIRONMENT INTERNATIONAL 2024; 183:108426. [PMID: 38228043 DOI: 10.1016/j.envint.2024.108426] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/30/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024]
Abstract
Controlling and minimising background contamination is crucial for maintaining a high quality of samples in human biomonitoring targeting organic chemicals. We assessed the contamination of three previous types and one newly introduced medical-grade type of sample tubes used for storing human body fluids at the German Environmental Specimen Bank. Aqueous extracts from these tubes were analysed by non-targeted liquid chromatography-high resolution mass spectrometry (LC-HRMS) before and after a dedicated cleaning procedure. After peak detection using MZmine, Bayesian hypothesis testing was used to group peaks into those originating either from instrumental and laboratory background contamination, or actual tube contaminants, based on if their peak height was reduced, increased or not affected by the cleaning procedure. For all four tube types 80-90% of the 2475 peaks (1549 in positive and 926 in negative mode) were assigned to laboratory/instrumental background, which we have to consider as potential sample tube contaminants. Among the tube contaminants, results suggest a considerable difference in the contaminant peak inventory and the absolute level of contamination among the different sample tube types. The cleaning procedure did not affect the largest fraction of peaks (50-70%). For the medical grade tubes, the removal of contaminants by the cleaning procedure was strongest compared to the previous tubes, but in all cases a small fraction increased in intensity after cleaning, probably due to a release of oligomers or additives. The identified laboratory background contaminants were mainly semi-volatile polymer additives such as phthalates and phosphate esters. A few compounds could be assigned solely as tube-specific contaminants, such as N,N-dibutylformamide and several constituents of the oligomeric light stabiliser Tinuvin-622. A cleaning procedure before use is an effective way to standardise the used sample tubes and minimises the background contamination, and therefore increases sample quality and therewith analytical results.
Collapse
Affiliation(s)
- Martin Krauss
- Helmholtz Centre for Environmental Research - UFZ, Department Exposure Science, Permoserstr. 15, 04318 Leipzig, Germany.
| | - Carolin Huber
- Helmholtz Centre for Environmental Research - UFZ, Department Exposure Science, Permoserstr. 15, 04318 Leipzig, Germany; Institute of Ecology, Diversity and Evolution, Goethe University Frankfurt Biologicum, Campus Riedberg, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Tobias Schulze
- Helmholtz Centre for Environmental Research - UFZ, Department Exposure Science, Permoserstr. 15, 04318 Leipzig, Germany
| | - Martina Bartel-Steinbach
- Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
| | - Till Weber
- German Environment Agency (UBA), Corrensplatz 1, 14195 Berlin, Germany
| | | | - Dominik Lermen
- Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany.
| |
Collapse
|
3
|
Wu S, Zheng J, Chen Y, Yi L, Liu C, Li G. Chemometrics-based Discrimination of Virgin and Recycled Acrylonitrile-Butadiene-Styrene Plastics Toys via Non-targeted Screening of Volatile Substances. J Chromatogr A 2023; 1711:464442. [PMID: 37844445 DOI: 10.1016/j.chroma.2023.464442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023]
Abstract
Owing to the growing emphasis on child safety, it is greatly urgent to identify and assess the unknown compounds and discriminate the recycled materials for plastic toys. In this study, gas chromatography mass spectrometry coupled with static headspace has been optimized by response surface methodology for non-targeted screening of unknown volatiles in acrylonitrile-butadiene-styrene (ABS) plastic toys. Optimum conditions for static headspace were 120 °C for extraction temperature and 48 min for extraction time. A total of 83 volatiles in 11 categories were qualitatively identified by matching the NIST database library, retention index and standard materials. Considering high positive rate and potential toxicity, high-risk volatiles in ABS plastic toys were listed and traced for safety pre-warning. Moreover, the differential volatiles between virgin and recycled ABS plastics were screened out by orthogonal partial least-squares discrimination analysis. Principal component analysis, hierarchical cluster analysis and linear discrimination analysis were employed to successfully discriminate recycled ABS plastic toys based on the differential volatiles. The proposed strategy represents an effective and promising analytical method for non-targeted screening and risk assessment of unknown volatiles and discrimination of recycled materials combining with various chemometric techniques for children's plastic products to safeguard children's health.
Collapse
Affiliation(s)
- Shanshan Wu
- Toys & Juvenile Products Testing Institute, Guangzhou Customs Technology Center, Guangzhou 510623, China; School of chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Jianguo Zheng
- Toys & Juvenile Products Testing Institute, Guangzhou Customs Technology Center, Guangzhou 510623, China
| | - Yang Chen
- Toys & Juvenile Products Testing Institute, Guangzhou Customs Technology Center, Guangzhou 510623, China
| | - Lezhou Yi
- Toys & Juvenile Products Testing Institute, Guangzhou Customs Technology Center, Guangzhou 510623, China
| | - Chonghua Liu
- Toys & Juvenile Products Testing Institute, Guangzhou Customs Technology Center, Guangzhou 510623, China.
| | - Gongke Li
- School of chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Lestido-Cardama A, Barbosa-Pereira L, Sendón R, Paseiro Losada P, Rodríguez Bernaldo de Quirós A. Migration of Dihydroxy Alkylamines and Their Possible Impurities from Packaging into Foods and Food Simulants: Analysis and Safety Evaluation. Polymers (Basel) 2023; 15:2656. [PMID: 37376302 DOI: 10.3390/polym15122656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Alkyl diethanolamines are a group of compounds commonly used as antistatic agents in plastic food packaging materials. These additives and their possible impurities have the ability to transfer into the food; hence, the consumer may be exposed to these chemicals. Recently, scientific evidence of unknown adverse effects associated with these compounds was reported. N,N-bis(2-hydroxyethyl)alkyl (C8-C18) amines as well as other related compounds and their possible impurities were analyzed in different plastic packaging materials and coffee capsules using target and non-target LC-MS methods. N,N-bis(2-hydroxyethyl)alkyl amines, precisely, C12, C13, C14, C15, C16, C17 and C18, 2-(octadecylamino)ethanol and octadecylamine, among others, were identified in most of the analyzed samples. It should be emphasized that the latter compounds are not listed in the European Regulation 10/2011 and 2-(octadecylamino)ethanol was classified as high toxicity according to Cramer rules. Migration tests were carried out in foods and in the food simulants Tenax and 20% ethanol (v/v). The results showed that stearyldiethanolamine migrated into the tomato, salty biscuits, salad and Tenax. Lastly, as a crucial step in the risk assessment process, the dietary exposure to stearyldiethanolamine transferred from the food packaging into the food was determined. The estimated values ranged from 0.0005 to 0.0026 µg/kg bw/day.
Collapse
Affiliation(s)
- Antía Lestido-Cardama
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Letricia Barbosa-Pereira
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Instituto de Materiales (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Raquel Sendón
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Instituto de Materiales (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Perfecto Paseiro Losada
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ana Rodríguez Bernaldo de Quirós
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Instituto de Materiales (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
5
|
Wrona M, Román A, Song XC, Nerín C, Dreolin N, Goshawk J, Asensio E. Ultra-high performance liquid chromatography coupled to ion mobility quadrupole time-of-flight mass spectrometry for the identification of non-volatile compounds migrating from 'natural' dishes. J Chromatogr A 2023; 1691:463836. [PMID: 36724720 DOI: 10.1016/j.chroma.2023.463836] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 01/29/2023]
Abstract
Although most new biomaterials for food industry applications are labelled '100% natural fabrication' and 'chemical-free', certain compounds may migrate from those materials to the food, compromising the organoleptic characteristics and safety of the product. In this work, the degree of compound migration from dishes made with four different biomaterials: bamboo, palm leaf, wood and wheat pulp was investigated. Migration tests were carried out using three food simulants, 10% ethanol (simulant A), 3% acetic acid (simulant B), and 95% ethanol (simulant D2). Unequivocal identification of non-intentionally added substances (NIAS) is challenging even when using high-resolution mass spectrometry techniques however, a total of 25 different non-volatile compounds from the migration tests were identified and quantified using Ultra-high performance liquid chromatography coupled to ion mobility quadrupole time-of-flight mass spectrometry (UPLC-IMS-MS). In the bamboo samples three oligomers, cyclic diethylene glycol adipate, 3,6,9,16,19,22-hexaoxabicyclo[22.3.1]-octacosa-1(28),24,26-triene-2,10,15,23-tetrone and 1,4,7,14,17,20-hexaoxacyclohexacosane-8,13,21,26-tetrone exceeded the specified limits of migration.
Collapse
Affiliation(s)
- Magdalena Wrona
- Department of Analytical Chemistry, Aragon Institute of Engineering Research I3A, EINA-University of Zaragoza, Torres Quevedo Building, María de Luna St. 3, E-50018 Zaragoza, Spain.
| | - Ana Román
- Department of Analytical Chemistry, Aragon Institute of Engineering Research I3A, EINA-University of Zaragoza, Torres Quevedo Building, María de Luna St. 3, E-50018 Zaragoza, Spain.
| | - Xue-Chao Song
- Department of Analytical Chemistry, Aragon Institute of Engineering Research I3A, EINA-University of Zaragoza, Torres Quevedo Building, María de Luna St. 3, E-50018 Zaragoza, Spain.
| | - Cristina Nerín
- Department of Analytical Chemistry, Aragon Institute of Engineering Research I3A, EINA-University of Zaragoza, Torres Quevedo Building, María de Luna St. 3, E-50018 Zaragoza, Spain.
| | | | - Jeff Goshawk
- Waters Corporation, Wilmslow, SK9 4AX, United Kingdom.
| | - Esther Asensio
- Department of Analytical Chemistry, Aragon Institute of Engineering Research I3A, EINA-University of Zaragoza, Torres Quevedo Building, María de Luna St. 3, E-50018 Zaragoza, Spain.
| |
Collapse
|
6
|
Asensio E, Uranga J, Nerín C. Analysis of potential migration compounds from silicone molds for food contact by SPME-GC-MS. Food Chem Toxicol 2022; 165:113130. [PMID: 35569599 DOI: 10.1016/j.fct.2022.113130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/02/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
Abstract
Four commercially available silicone cupcake molds have been studied. An evaluation of the post-cure treatment applied to the silicone molds was carried out and the loss of volatile organic compounds after cure treatment was quantified. The two higher quality molds showed losses at the 0.5% (w/w) (recommended by BfR standard), while the two lower quality molds exceeded this limit. The migration studies were carried out using Tenax® as a solid food simulant. The volatile compounds that migrate were identified and quantified using SPME-GC-MS. Up to fourteen silicone oligomers were quantified. When the molds were subjected to post-cure treatment, none of them exceeded the global migration of 10 mg/dm2; while those lower quality molds showed migrations higher than 10 mg/dm2, so their use in contact with food is not recommended.
Collapse
Affiliation(s)
- Esther Asensio
- Department of Analytical Chemistry, Aragon Institute of Engineering Research I3A, CPS-University of Zaragoza, Torres Quevedo Building, María de Luna 3, 50018, Zaragoza, Spain.
| | - Joaquín Uranga
- Department of Analytical Chemistry, Aragon Institute of Engineering Research I3A, CPS-University of Zaragoza, Torres Quevedo Building, María de Luna 3, 50018, Zaragoza, Spain.
| | - Cristina Nerín
- Department of Analytical Chemistry, Aragon Institute of Engineering Research I3A, CPS-University of Zaragoza, Torres Quevedo Building, María de Luna 3, 50018, Zaragoza, Spain.
| |
Collapse
|
7
|
Tisler S, Christensen JH. Non-target screening for the identification of migrating compounds from reusable plastic bottles into drinking water. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128331. [PMID: 35091188 DOI: 10.1016/j.jhazmat.2022.128331] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 05/25/2023]
Abstract
Reusable plastic sports bottles are used extensively worldwide, and little is known about the migration of chemicals from the bottles into drinking water. In this study, we investigated the chemical migration into drinking water stored for 24 h in new bottles, used bottles and bottles washed in the dishwasher. Non-target screening (NTS) by liquid-chromatography - high-resolution mass spectrometry (LC-HRMS) was performed to identify these compounds. We detected > 3500 dishwasher related compounds, with 430 showing migration even after subsequent flushing of the bottles. In addition, more than 400 plastic related compounds were detected, with high peaks for oligomers suspected to originate from the biodegradable polyester polycaprolactone, and aromatic amines, which may have been introduced as slip agents or antioxidants. These compounds have never been reported before in bottled water. Most of the identified compounds migrating out of the used bottles were plasticizers, antioxidants or photoinitiators. The presence of photoinitiators are of particular concern, due to possible endocrine disrupting effects. Furthermore, diethyltoluamide (DEET) was detected, which may have been formed from the plasticizer laurolactam. Typically, the dishwashing process enhanced the leaching of plastic related compounds, and even after additional water flushing, the average peak intensity of these compounds was only reduced by half.
Collapse
Affiliation(s)
- Selina Tisler
- Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark.
| | - Jan H Christensen
- Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| |
Collapse
|
8
|
He YJ, Qin Y, Zhang TL, Zhu YY, Wang ZJ, Zhou ZS, Xie TZ, Luo XD. Migration of (non-) intentionally added substances and microplastics from microwavable plastic food containers. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126074. [PMID: 34015709 DOI: 10.1016/j.jhazmat.2021.126074] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/23/2021] [Accepted: 05/05/2021] [Indexed: 05/24/2023]
Abstract
Microwavable plastic food containers (MPFCs) are extensively used for food storage, cooking, rapid heating and as take-out containers. There is an urgent need to investigate whether MPFCs pose potential health risks, as a result of the migration of chemicals into foods. Herein, 42 intentionally added substances (IAS) and > 100 non-IAS (NIAS) migrating from MPFCs were identified in food simulants according to Regulation (EU). The migration of major IAS and NIAS was higher in 95% ethanol compared to other simulants, and gradually decreased following repeated use. NIAS, including Cramer class III toxic compounds, such as PEG oligomers of N,N-bis(2-hydroxyethyl) alkyl(C8-C18)amines, isomers of hexadecanamide and oleamide, and Irgafos 168 OXO were detected and exceeded the recommended limits in some MPFCs. Furthermore, microplastics (MPs) were detected with high values of over one million particles/L in some MPFCs in a single test, and migration behaviors of MPs in different MPFCs were diverse. Surprisingly, this rigorous migration might result in an annual intake of IAS/NIAS up to 55.15 mg and 150 million MPs particles if take-out food was consumed once a day. Multi-safety evaluation studies on the migration of various chemicals from MPFCs to foodstuffs during food preparation should be assessed.
Collapse
Affiliation(s)
- Ying-Jie He
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Yan Qin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Tie-Li Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Yan-Yan Zhu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Zhao-Jie Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Zhong-Shun Zhou
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Tian-Zhen Xie
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Xiao-Dong Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| |
Collapse
|
9
|
Bhagia S, Bornani K, Ozcan S, Ragauskas AJ. Terephthalic Acid Copolyesters Containing Tetramethylcyclobutanediol for High-Performance Plastics. ChemistryOpen 2021; 10:830-841. [PMID: 34402603 PMCID: PMC8369847 DOI: 10.1002/open.202100171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/20/2021] [Indexed: 11/14/2022] Open
Abstract
There is a need for high-performance applications for terephthalic acid (TPA) polyesters with high heat resistance, impact toughness, and optical clarity. Bisphenol A (BPA) based polycarbonates and polyarylates have such properties, but BPA is an endocrine disruptor. Therefore, new TPA polyesters that are less hazardous to health and the environment are becoming popular. Tetramethylcyclobutanediol (TMCD) is a difunctional monomer that can be polymerized with TPA and other diols to yield copolyesters with superior properties to conventional TPA polyesters. It has a cyclobutyl ring that makes it more rigid than cyclohexanedimethanol (CHDM) and EG. Thus, TMCD containing TPA copolyesters can have high heat resistance and impact strength. TPA can be made from abundantly available upcycled polyethylene terephthalate (PET). Therefore, this review discusses the synthesis of monomers and copolyesters, the impact of diol composition on material properties, molecular weight, effects of photodegradation, health safety, and substitution of cyclobutane diols for future polyesters.
Collapse
Affiliation(s)
- Samarthya Bhagia
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennessee 37831USA
| | - Kamlesh Bornani
- Department of Mechanical EngineeringUniversity of VermontBurlingtonVermont 05405USA
| | - Soydan Ozcan
- Manufacturing Science DivisionOak Ridge National LaboratoryOak RidgeTennessee37831USA
| | - Arthur J. Ragauskas
- Department of Chemical and Biomolecular EngineeringUniversity of TennesseeKnoxvilleTennessee 37996USA
- Joint Institute of Biological SciencesBiosciences DivisionOak Ridge National LaboratoryOak RidgeTennessee 37831USA
- Center for Renewable CarbonDepartment of ForestryWildlifeand FisheriesUniversity of Tennessee Institute of AgricultureKnoxvilleTennessee 37996USA
| |
Collapse
|
10
|
Hu Y, Du Z, Sun X, Ma X, Song J, Sui H, Debrah AA. Non-targeted analysis and risk assessment of non-volatile compounds in polyamide food contact materials. Food Chem 2020; 345:128625. [PMID: 33601649 DOI: 10.1016/j.foodchem.2020.128625] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/17/2020] [Accepted: 11/09/2020] [Indexed: 01/07/2023]
Abstract
Small molecules in food contact materials may migrate into food during their contact. To extensively analyze the migrants, non-targeted screening is needed to detect the migrants. The migrants' detection is difficult because of the complexity and the trace amount of the migrants. In this work, the dissolution precipitation method was used to extract small molecules in Polyamide (PA) kitchenware. The extract solutions were screened by ultra-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry (UPLC-QTOF-MS) for non-targeted analysis and 64 different small molecules in materials were identified through the screening of a self-built database. Then, migration tests were performed to analyze migrants in food simulants. It suggests that the abundance of PA oligomers was the highest in migrants. The risk assessment of migrants revealed that the exposure of most migrants was at a safer level unlike the exposure of PA oligomers that exceeded their threshold of toxicological concern (TTC).
Collapse
Affiliation(s)
- Yajing Hu
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhenxia Du
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xuechun Sun
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Ma
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jingdan Song
- Beijing Plastic Products Quality Supervision and Inspection Station, Beijing 100009, China
| | - Haixia Sui
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Augustine Atta Debrah
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
11
|
Mikami-Saito Y, Maekawa M, Wada Y, Kanno T, Kurihara A, Sato Y, Yamamoto T, Arai-Ichinoi N, Kure S. Essential oils can cause false-positive results of medium-chain acyl-CoA dehydrogenase deficiency. Mol Genet Metab Rep 2020; 25:100674. [PMID: 33204637 PMCID: PMC7653163 DOI: 10.1016/j.ymgmr.2020.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 10/25/2020] [Indexed: 11/30/2022] Open
Abstract
Newborn screening is a public health care program worldwide to prevent patients from critical illness or conditions. Tandem mass spectrometry allows multiplex, inexpensive, and rapid newborn screening. However, mass spectrometry used for newborn screening to date is not able to separate peaks of compounds with similar m/z, which could lead to false-positive results without additional second-tier tests, such as fragmentation. We experienced three neonatal cases with high levels of markers, octanoylcarnitine and octanoylcarnitine/decanoylcarnitine ratio used to pick up possible cases of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency. The babies were born consecutively in a maternity hospital. Their second acylcarnitine profiles were normal, and the genetic tests for ACADM were negative. Analysis of samples extracted from their first Guthrie cards where blood was not stained also showed peaks equivalent to octanoylcarnitine and decanoylcarnitine, indicating contamination. Environmental surveillance in the maternity ward suggested that essential oils used there might contain the contaminated compound. LC-HRMS/MS and in silico analysis revealed that false-positive results might be due to contamination with the essential oils in Guthrie cards, and causal agents were sphinganine (d17:0) and 2-[2-hydroxyethyl(pentadecyl)amino]ethanol. Thus, health care providers should be cautioned about use of essential oils when collecting blood samples on Guthrie cards. False-positive results can waste costly social resources and cause a physical and psychological burden for children and parents.
Collapse
Key Words
- C10, decanoylcarnitine,
- C8, octanoylcarnitine,
- Decanoylcarnitine
- Essential oils
- FAOD, fatty acid oxidation disorder,
- False-positive
- LC-HRMS/MS, liquid chromatography-high resolution-tandem mass spectrometry
- LC-MS/MS, liquid chromatography-tandem mass spectrometry,
- MCAD deficiency
- MCAD, medium-chain acyl-CoA dehydrogenase,
- NBS, newborn screening
- Newborn screening
- Octanoylcarnitine
Collapse
Affiliation(s)
- Yasuko Mikami-Saito
- Department of Pediatrics, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Yoichi Wada
- Department of Pediatrics, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
- Corresponding author.
| | - Tomoe Kanno
- Public Health Society of Miyagi Prefecture, 7-1 Tsutsumishita, Matsumori, Izumi-ku, Sendai, Miyagi 981-3111, Japan
| | - Ai Kurihara
- Public Health Society of Miyagi Prefecture, 7-1 Tsutsumishita, Matsumori, Izumi-ku, Sendai, Miyagi 981-3111, Japan
| | - Yuko Sato
- Public Health Society of Miyagi Prefecture, 7-1 Tsutsumishita, Matsumori, Izumi-ku, Sendai, Miyagi 981-3111, Japan
| | - Toshio Yamamoto
- Public Health Society of Miyagi Prefecture, 7-1 Tsutsumishita, Matsumori, Izumi-ku, Sendai, Miyagi 981-3111, Japan
| | - Natsuko Arai-Ichinoi
- Department of Pediatrics, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan
| |
Collapse
|
12
|
Liu W, Liu A, Zhao R, Pan F, Liu Z, Sui H, Li J. Development of packaging factors for the risk assessment of food contact substances from food consumption survey of Chinese infants and toddlers. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Wrona M, Nerín C. Analytical Approaches for Analysis of Safety of Modern Food Packaging: A Review. Molecules 2020; 25:E752. [PMID: 32050512 PMCID: PMC7037176 DOI: 10.3390/molecules25030752] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 12/23/2022] Open
Abstract
Nowadays, food packaging is a crucial tool for preserving food quality and has become an inseparable part of our daily life. Strong consumer demand and market trends enforce more advanced and creative forms of food packaging. New packaging development requires safety evaluations that always implicate the application of complex analytical methods. The present work reviews the development and application of new analytical methods for detection of possible food contaminants from the packaging origin on the quality and safety of fresh food. Among food contaminants migrants, set-off migrants from printing inks, polymer degradation products, and aromatic volatile compounds can be found that may compromise the safety and organoleptic properties of food. The list of possible chemical migrants is very wide and includes antioxidants, antimicrobials, intentionally added substances (IAS), non-intentionally added substances (NIAS), monomers, oligomers, and nanoparticles. All this information collected prior to the analysis will influence the type of analyzing samples and molecules (analytes) and therefore the selection of a convenient analytical method. Different analytical strategies will be discussed, including techniques for direct polymer analysis.
Collapse
Affiliation(s)
| | - Cristina Nerín
- Department of Analytical Chemistry, Aragon Institute of Engineering Research I3A, University of Zaragoza, María de Luna, 3, 50018 Zaragoza, Spain;
| |
Collapse
|