1
|
Zhang L, Xiao F, Hu S, Bi A, Du M, Xu X. Rennet-assisted modification for enhanced freeze-thaw stability in sodium caseinate-stabilized high internal phase emulsions. Food Chem 2025; 477:143599. [PMID: 40037040 DOI: 10.1016/j.foodchem.2025.143599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/13/2025] [Accepted: 02/23/2025] [Indexed: 03/06/2025]
Abstract
Poor freeze-thaw stability seriously limits the application of Pickering emulsions in the frozen food industry. This study developed sodium caseinate-stabilized high internal phase emulsions (NaCas-HIPEs) with enhanced freeze-thaw stability through rennet modification. The freeze-thaw stability and 3D printing properties of NaCas-HIPEs significantly improved as rennet addition increased from 0 % to 0.5 (w/v). NaCas-HIPEs with 0.5 % rennet even maintained a stable oil-in-water emulsion structure after five freeze-thaw cycles. Changes in enthalpy and freezing/thawing point demonstrated that rennet modification improved freeze-thaw stability by reducing the ice crystal formation. Additionally, increasing rennet concentration significantly enhanced the apparent viscosity and viscoelasticity of NaCas-HIPEs, restricting ice crystal growth and preventing droplet aggregation during freezing and thawing. This improvement is attributed to the strong gel networks formed by rennet-induced casein between droplets, as shown by the cryo-SEM microscopy and SDS-PAGE analysis. This study presents an effective method for producing freeze-thaw stable emulsions, offering promising applications in the rapidly growing ready-to-eat food industry.
Collapse
Affiliation(s)
- Ling Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Feng Xiao
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Sijie Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Anqi Bi
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ming Du
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xianbing Xu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
2
|
He X, Wang B, Xue Y, Li Y, Hu M, He X, Chen J, Meng Y. Effects of high acyl gellan gum on the rheological properties, stability, and salt ion stress of sodium caseinate emulsion. Int J Biol Macromol 2023; 234:123675. [PMID: 36801230 DOI: 10.1016/j.ijbiomac.2023.123675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
Sodium caseinate (SC) is widely used as a biological macromolecular emulsifier in oil-in-water (O/W) emulsions. However, the SC-stabilized emulsions were unstable. High-acyl gellan gum (HA) is an anionic macromolecular polysaccharide that improves emulsion stability. This study aimed to investigate the effects of HA addition on the stability and rheological properties of SC-stabilized emulsions. Study results revealed that HA concentrations >0.1 % could increase Turbiscan stability, reduce the volume average particle size, and increase the zeta-potential absolute value of the SC-stabilized emulsions. In addition, HA increased the triple-phase contact angle of SC, transformed SC-stabilized emulsions into non-Newtonian fluids, and effectively inhibited the movement of emulsion droplets. The effect of 0.125 % HA concentration was the most effective, allowing SC-stabilized emulsions to maintain good kinetic stability over a 30-d period. NaCl destabilized SC-stabilized emulsions but had no significant effect on HA-SC emulsions. In summary, HA concentration had a significant effect on the stability of SC-stabilized emulsions. HA altered the rheological properties and reduced creaming and coalescence by forming a three-dimensional network structure, increasing the electrostatic repulsion of the emulsion and the adsorption capacity of SC at the oil-water interface, and thereby improving the stability of SC-stabilized emulsions during storage and in the presence of NaCl.
Collapse
Affiliation(s)
- Xingfen He
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Bin Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Yuhang Xue
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Yanhua Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Mingxiang Hu
- Zhejiang Tech-way Biotechnology Co., Ltd., Shaoxing 311811, People's Republic of China
| | - Xingwang He
- Zhejiang Tech-way Biotechnology Co., Ltd., Shaoxing 311811, People's Republic of China
| | - Jie Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China.
| | - Yuecheng Meng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
3
|
Development and characterization of a fucoidan-based nanoemulsion using Nigella sativa oil for improvement of anti-obesity activity of fucoxanthin in an obese rat model. Int J Biol Macromol 2023; 235:123867. [PMID: 36870664 DOI: 10.1016/j.ijbiomac.2023.123867] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
The anti-obesity activity of encapsulated fucoxanthin in fucoidan-based nanoemulsion was investigated. Then, high-fat diet (HFD) induced-obese rats were fed along with different treatments including administration of encapsulated fucoxanthin (10 mg/kg and 50 mg/kg/day), fucoidan (70 mg/kg), Nigella sativa oil (250 mg/kg), metformin (200 mg/kg), and free form of fucoxanthin (50 mg/kg) by oral gavage daily for 7 weeks. The study discovered that fucoidan-based nanoemulsions with a low and high dose of fucoxanthin had droplet size in the range of 181.70-184.87 nm and encapsulation efficacy of 89.94-91.68 %, respectively. Also exhibited 75.86 % and 83.76 % fucoxanthin in vitro release. The TEM images and FTIR spectera confirmed the particle size and encapsulation of fucoxanthin, respectively. Moreover, in vivo results revealed that encapsulated fucoxanthin reduced body and liver weight compared with a HFD group (p < 0.05). Biochemical parameters (FBS, TG, TC, HDL, LDL) and liver enzymes (ALP, AST, and ALT) were decreased after fucoxanthin and fucoidan administration. According to the histopathological analysis, fucoxanthin and fucoidan attenuated lipid accumulation in the liver.
Collapse
|
4
|
Heat treatment in the presence of arginine increases the emulsifying properties of soy proteins. Food Chem X 2023; 17:100567. [PMID: 36845474 PMCID: PMC9945471 DOI: 10.1016/j.fochx.2023.100567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
This study aimed to improve the emulsifying properties of commercial soy protein isolates (CSPIs). CSPIs were thermally denatured without additives (CSPI_H) and with arginine (CSPI_A), urea (CSPI_U), and guanidine hydrochloride (CSPI_G), which improve protein solubility to prevent aggregation. These additives were removed by dialysis, and the samples were lyophilized. CSPI_A resulted in high emulsifying properties. FT-IR analysis showed that the β-sheet content in CSPI_A was reduced compared to that of untreated CSPI (CSPI_F). Fluorescence analysis showed that the tryptophan-derived emission peak of CSPI_A shifted between CSPI_F and CSPI_H which was exposed to hydrophobic amino acid chains with aggregation. As a result, the structure of CSPI_A became moderately unfolded and exposed the hydrophobic amino acid chains without aggregation. The CSPI_A solution had a more reduced oil-water interface tension than other CSPIs. These results support that CSPI_A attaches efficiently to the oil-water interface and produces small, less flocculated emulsions.
Collapse
|
5
|
Effects of the degree of oral processing on the properties of saliva-participating emulsions: using stewed pork with brown sauce as the model. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Preparation of Fucoxanthin Nanoemulsion Stabilized by Natural Emulsifiers: Fucoidan, Sodium Caseinate, and Gum Arabic. Molecules 2022; 27:molecules27196713. [PMID: 36235250 PMCID: PMC9573593 DOI: 10.3390/molecules27196713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 01/21/2023] Open
Abstract
This study was proposed to investigate the possibility of O/W nanoemulsion stabilization via natural emulsifiers as a delivery system for fucoxanthin. Nanoemulsions were prepared using ultrasonic treatment (150 W, amplitude 80%, 10 min) with different levels (0.5%, 1%, and 2% wt) of fucoidan, gum Arabic, and sodium caseinate as natural emulsifires and they were compared with tween 80. Then, the creaming index, stability, encapsulation efficacy, Fourier-transform infrared (FT-IR) spectroscopy, and in vitro release were evaluated. The best stability and lowest creaming index were observed at 2% wt of emulsifiers. Nanoemulsions with droplet sizes (113.27−127.50 nm) and zeta potentials (−32.27 to −58.87 mV) were prepared. The droplet size of nanoemulsions was reduced by increasing the emulsifier concentration, and the best nanoemulsion stability after 15 days of storage was in the following order: tween 80 > sodium caseinate > fucoidan > gum Arabic. The encapsulation efficacy of nanoemulsions stabilized by sodium caseinate, fucoidan, and gum Arabic were 88.51 ± 0.11%, 79.32 ± 0.09%, and 60.34 ± 0.13%, respectively. The in vitro gastrointestinal fucoxanthin release of nanoemulsion stabilized with tween 80, sodium caseinate, fucoidan, and gum Arabic were 85.14 ± 0.16%, 76.91 ± 0.34%, 71.41 ± 0.14%, and 68.98 ± 0.36%, respectively. The release of fucoxanthin from nanoemulsions followed Fickian diffusion. The FTIR also confirmed the encapsulation of fucoxanthin.
Collapse
|
7
|
Wang C, Li X, Sang S, Julian McClements D, Chen L, Long J, Jiao A, Wang J, Jin Z, Qiu C. Preparation, characterization and in vitro digestive behaviors of emulsions synergistically stabilized by γ-cyclodextrin/sodium caseinate/alginate. Food Res Int 2022; 160:111634. [DOI: 10.1016/j.foodres.2022.111634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 01/11/2023]
|
8
|
Caffeic acid phenethyl ester loaded in a targeted delivery system based on a solid-in-oil-in-water multilayer emulsion: characterization, stability, and fate of the emulsion during in vivo digestion. Food Res Int 2022; 161:111756. [DOI: 10.1016/j.foodres.2022.111756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/02/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022]
|
9
|
Nanoemulsions with sea buckthorn oil and κ-carrageenan. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Oliyaei N, Moosavi-Nasab M, Tanideh N. WITHDRAWN: Preparation of fucoxanthin nanoemulsion stabilized by natural emulsifiers: fucoidan, sodium caseinate and gum Arabic. Heliyon 2022. [DOI: 10.1016/j.heliyon.2022.e09970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
11
|
Buecker S, Grossmann L, Loeffler M, Leeb E, Weiss J. Thermal and acidic denaturation of phycocyanin from Arthrospira platensis: Effects of complexation with λ-carrageenan on blue color stability. Food Chem 2022; 380:132157. [DOI: 10.1016/j.foodchem.2022.132157] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/21/2021] [Accepted: 01/11/2022] [Indexed: 11/30/2022]
|
12
|
Influence of creamer addition on chlorogenic acid bioaccessibility and antioxidant activity of instant coffee during in vitro digestion. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Ma X, Chatterton DE. Strategies to improve the physical stability of sodium caseinate stabilized emulsions: A literature review. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106853] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
Structural characteristics of binary biopolymers-based emulsion-filled gels: A case of mixed sodium caseinate/methyl cellulose emulsion gels. FOOD STRUCTURE 2021. [DOI: 10.1016/j.foostr.2021.100233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
15
|
Current Progress in the Utilization of Soy-Based Emulsifiers in Food Applications-A Review. Foods 2021; 10:foods10061354. [PMID: 34199220 PMCID: PMC8231891 DOI: 10.3390/foods10061354] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Soy-based emulsifiers are currently extensively studied and applied in the food industry. They are employed for food emulsion stabilization due to their ability to absorb at the oil–water interface. In this review, the emulsifying properties and the destabilization mechanisms of food emulsions were briefly introduced. Herein, the effect of the modification process on the emulsifying characteristics of soy protein and the formation of soy protein–polysaccharides for improved stability of emulsions were discussed. Furthermore, the relationship between the structural and emulsifying properties of soy polysaccharides and soy lecithin and their combined effect on the protein stabilized emulsion were reviewed. Due to the unique emulsifying properties, soy-based emulsifiers have found several applications in bioactive and nutrient delivery, fat replacer, and plant-based creamer in the food industry. Finally, the future trends of the research on soy-based emulsifiers were proposed.
Collapse
|
16
|
Bot F, Cossuta D, O'Mahony JA. Inter-relationships between composition, physicochemical properties and functionality of lecithin ingredients. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
El-Messery TM, Altuntas U, Altin G, Özçelik B. The effect of spray-drying and freeze-drying on encapsulation efficiency, in vitro bioaccessibility and oxidative stability of krill oil nanoemulsion system. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105890] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Kan X, Yan Y, Ran L, Lu L, Mi J, Zhang Z, Li X, Zeng X, Cao Y. Evaluation of bioaccessibility of zeaxanthin dipalmitate from the fruits of Lycium barbarum in oil-in-water emulsions. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105781] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Effect of salt on the inter-relationship between the morphological, emulsifying and interfacial rheological properties of O/W emulsions at oil/water interface. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2019.109871] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
20
|
Zhang R, Belwal T, Li L, Lin X, Xu Y, Luo Z. Recent advances in polysaccharides stabilized emulsions for encapsulation and delivery of bioactive food ingredients: A review. Carbohydr Polym 2020; 242:116388. [PMID: 32564856 DOI: 10.1016/j.carbpol.2020.116388] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/17/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022]
Abstract
Many bioactive food ingredients were encapsulated in different forms to improve their stability and bioavailability. Emulsions have showed excellent properties in encapsulation, controlled release, and targeted delivery of bioactives. Polysaccharides are widely available and have different structures with different advantages including non-toxic, easily digested, biocompatible and can keep stable over a wide range of pH and temperatures. In this review, the most common polysaccharides and polysaccharide based complexes as emulsifiers to stabilize emulsions in recent ten years are described. The close relationships between the types and structures of polysaccharides and their emulsifying capacities are discussed. In addition, the absorption and bioavailability of bioactive food components loaded in polysaccharide stabilized emulsions are summarized. The main goal of the review is to emphasize the important roles of polysaccharides in stabilizing emulsions. Moreover, speculations regarded to some issues for the further exploration and possible onward developments of polysaccharides stabilized emulsions are also discussed.
Collapse
Affiliation(s)
- Ruyuan Zhang
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, People's Republic of China
| | - Tarun Belwal
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, People's Republic of China
| | - Li Li
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, People's Republic of China
| | - Xingyu Lin
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, People's Republic of China
| | - Yanqun Xu
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, People's Republic of China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, People's Republic of China
| | - Zisheng Luo
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, People's Republic of China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, People's Republic of China; Fuli Institute of Food Science, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
21
|
Fontes-Candia C, Ström A, Lopez-Sanchez P, López-Rubio A, Martínez-Sanz M. Rheological and structural characterization of carrageenan emulsion gels. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101873] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
McClements DJ. Development of Next-Generation Nutritionally Fortified Plant-Based Milk Substitutes: Structural Design Principles. Foods 2020; 9:E421. [PMID: 32260061 PMCID: PMC7231295 DOI: 10.3390/foods9040421] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022] Open
Abstract
Consumers are increasingly interested in decreasing their dietary intake of animal-based food products, due to health, sustainability, and ethical concerns. For this reason, the food industry is creating new products from plant-based ingredients that simulate many of the physicochemical and sensory attributes associated with animal-derived foods, including milk, eggs, and meat. An understanding of how the ingredient type, amount, and organization influence the desirable physicochemical, sensory, and nutritional attributes of these plant-based foods is required to achieve this goal. A potential problem with plant-based diets is that they lack key micronutrients, such as vitamin B12, vitamin D, calcium, and ω-3 fatty acids. The aim of this review is to present the science behind the creation of next-generation nutritionally fortified plant-based milk substitutes. These milk-like products may be formed by mechanically breaking down certain plant materials (including nuts, seeds, and legumes) to produce a dispersion of oil bodies and other colloidal matter in water, or by forming oil-in-water emulsions by homogenizing plant-based oils and emulsifiers with water. A brief overview of the formulation and fabrication of plant-based milks is given. The relationship between the optical properties, rheology, and stability of plant-based milks and their composition and structure is then covered. Approaches to fortify these products with micronutrients that may be missing from a plant-based diet are also highlighted. In conclusion, this article highlights how the knowledge of structural design principles can be used to facilitate the creation of higher quality and more sustainable plant-based food products.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA;
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou 310018, China
| |
Collapse
|