1
|
Brishti MR, Venkatraman G, Baba ASBH, Yajit NLM, Karsani SA. Natural Bioactive Compounds Enriched Functional Yogurt: Impact on the Probiotic Bacteria and Its Potential Health Benefits. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10461-1. [PMID: 39934501 DOI: 10.1007/s12602-025-10461-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 02/13/2025]
Abstract
Recently, there has been a high demand for the development of yogurt-based nutraceuticals and functional medications. This surge is primarily driven by the increasing global need for pharmaceutical and nutraceutical products, arising from widespread nutrient deficiencies and the emergence of various communicable and non-communicable diseases (NCDs), including respiratory infections, cancer, gastrointestinal, diabetes, obesity, and cardiovascular diseases. Probiotic yogurt provides an effective medium for delivering essential nutrients to the human body. Additionally, various prebiotic combinations, such as bioactive compounds from plants, animals, and microbes, can enrich the viability of probiotics, nutritional value, and efficacy. However, the gastric environment can significantly impact the viability of probiotic microorganisms as well as the absorption of nutrients and bioactive molecules. Therefore, utilizing biopolymer-based encapsulation for functional nutrients, metal nanostructures, and medications can improve the bioavailability of these compounds, protect the probiotics from gastric enzymes, increase nutrient and microbial absorption in colonic fluids, and enhance the antioxidant level in the body. This review investigates various methods for producing yogurt enriched with prebiotic and probiotic combinations alongside techniques such as microencapsulation, emulsification, and the incorporation of metal nanoparticles. Key factors such as viability, texture, and syneresis are examined to optimize yogurt-based nutraceuticals and functional medications.
Collapse
Affiliation(s)
- Moumika Rahman Brishti
- Department of Biochemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Gopinath Venkatraman
- Universiti Malaya Centre for Proteomics Research (UMCPR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical @ Technical Sciences, Saveetha University, Chennai, 600 077, India.
| | | | - Noor Liana Mat Yajit
- Universiti Malaya Centre for Proteomics Research (UMCPR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Saiful Anuar Karsani
- Department of Biochemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Universiti Malaya Centre for Proteomics Research (UMCPR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Shi H, Jiang M, Zhang X, Xia G, Shen X. Characteristics and food applications of aquatic collagen and its derivatives: A review. Food Res Int 2025; 202:115531. [PMID: 39967124 DOI: 10.1016/j.foodres.2024.115531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/05/2024] [Accepted: 12/28/2024] [Indexed: 02/20/2025]
Abstract
Collagen and its hydrolysates have high bioavailability, good biocompatibility, biodegradability, and biological activity which has meant that they have been widely used in food, medicine, cosmetics, and other industries. Although the properties and applications of collagen have been reviewed recently, few studies have focused on aquatic collagen. To provide readers with a deeper understanding of aquatic collagen, this review addresses the structure and properties of aquatic collagen and compares them with mammalian collagen, as well as the differences between collagen, gelatin, and collagen peptides. In contrast to mammalian collagen, aquatic collagen prevents zoonotic diseases, reduces environmental pollution, improves the utilization of aquatic resources, and facilitates the extraction and separation of active oligopeptides. Additionally, methods for screening functional peptides using in vitro digestion have been introduced. Finally, the review focuses on the applications of collagen and its derivatives in food preservation (packaging films, coatings, additives, and antifreeze peptides), drug delivery (microcapsules, emulsions, nanoparticles, and hydrogels), nutrition, and healthcare.
Collapse
Affiliation(s)
- Haohao Shi
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Mengqi Jiang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Xueying Zhang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China.
| | - Xuanri Shen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China; College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China.
| |
Collapse
|
3
|
Wang X, Wang L, Wei X, Xu C, Cavender G, Lin W, Sun S. Invited review: Advances in yogurt development-Microbiological safety, quality, functionality, sensory evaluation, and consumer perceptions across different dairy and plant-based alternative sources. J Dairy Sci 2025; 108:33-58. [PMID: 39369892 DOI: 10.3168/jds.2024-25322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/14/2024] [Indexed: 10/08/2024]
Abstract
Yogurt, as a globally prevalent fermented dairy product, is renowned for its substantial nutritional value and a myriad of health benefits, particularly pertaining to the digestive system. This narrative review elucidates the latest advancements in yogurt development from 2019 to 2024, addressing aspects of microbiological safety, quality, functionality, sensory evaluation, and consumer perceptions across diverse protein sources. The intrinsic quality of yogurt is notably influenced by its primary ingredient, milk, traditionally derived from animals such as cows, goats, and sheep. In recent years, plant-based yogurt (PBY) have emerged as a popular alternative to traditional dairy yogurts, that are made from plant sources and offer similar textures and flavors, catering to those seeking nondairy options. This discussion encompasses the advantages and limitations of various sources and explores methodologies to enhance yogurt quality using these diverse sources. Ensuring the microbiological safety of yogurt is thus paramount to its quality, as it involves both preventing the presence of harmful pathogens and managing spoilage to maintain freshness. This article encapsulates the potential hazards and corresponding antibacterial strategies that safeguard yogurt consumption. These strategies include the use of natural preservatives, advancements in packaging technologies, and the implementation of stringent hygiene practices throughout the production process. Moreover, the quality of yogurt is dependent not only on the source but also on the fermentation process and additional ingredients used. By addressing both the prevention of pathogen contamination and the control of spoilage organisms, this article explores comprehensive approaches but also examines the use of high-quality starter cultures, the role of prebiotics in enhancing probiotic efficacy, and genetic advancements, as well as improvements in the overall nutritional profile and shelf life of yogurt. Techniques to improve texture, flavor, and nutrient content are also discussed, providing a comprehensive overview of current quality enhancement methods. This analysis delves into the intricate mechanisms underpinning probiotic development, including the roles of prebiotics, supplementary starter cultures, and genetic factors that facilitate probiotic proliferation. These benefits include improved digestive health, enhanced immune function, and potential reductions in the risk of certain chronic diseases. Beyond quality and functionality, the sensory evaluation of yogurt remains crucial for consumer acceptance. In recent years, the incorporation of diverse additional ingredients into yogurt has been observed, aimed at augmenting its sensory attributes. This examination reveals these ingredients and their respective functions, such as natural flavorings, sweeteners, and texturizing agents, with the ultimate goal of enhancing overall consumer satisfaction. Consumer preferences exert a profound influence on yogurt production, rendering the understanding of customer opinions essential for devising competitive industry strategies. This article consolidates consumer feedback and preferences, striving to elevate yogurt quality and promote dietary diversity. The analysis includes trends such as the growing demand for organic and nondairy yogurts, the importance of sustainable practices, and the impact of marketing and packaging on consumer choices. This comprehensive overview serves as a valuable reference for the dairy industry and researchers dedicated to the advancement of yogurt development.
Collapse
Affiliation(s)
- Xiaojun Wang
- Yantai Key Laboratory of Special Medical Food, School of Food and Biological Engineering, Yantai Institute of Technology, Yantai, Shandong, 264003, China
| | - Linlin Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100085, China
| | - Xinyao Wei
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350014, China
| | - Changmou Xu
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - George Cavender
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634
| | - Walker Lin
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695
| | - Shengqian Sun
- Yantai Key Laboratory of Special Medical Food, School of Food and Biological Engineering, Yantai Institute of Technology, Yantai, Shandong, 264003, China.
| |
Collapse
|
4
|
Camelo-Silva C, Mota E Souza B, Vicente R, Arend GD, Sanches MAR, Barreto PLM, Ambrosi A, Verruck S, Di Luccio M. Polyfunctional sugar-free white chocolate fortified with Lacticaseibacillus rhamnosus GG co-encapsulated with beet residue extract (Beta vulgaris L.). Food Res Int 2024; 179:114016. [PMID: 38342537 DOI: 10.1016/j.foodres.2024.114016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 02/13/2024]
Abstract
Chocolate is a worldwide consumed food. This study investigated the fortification of sugar-free white chocolate with Lacticaseibacillus rhamnosus GG microcapsule co-encapsulated with beet residue extract. The chocolates were evaluated for moisture, water activity, texture, color properties, melting, physicochemical, and probiotic stability during storage. Furthermore, the survival of L. rhamnosus GG and the bioaccessibility of phenolic compounds were investigated under in vitro simulated gastrointestinal conditions. Regarding the characterization of probiotic microcapsules, the encapsulation efficiency of L. rhamnosus GG was > 89 % while the encapsulation efficiency of phenolic compounds was > 62 %. Chocolates containing probiotic microcapsules were less hard and resistant to breakage. All chocolates had a similar melting behavior (endothermic peaks between 32.80 and 34.40 °C). After 120 days of storage at 4 °C, probiotic populations > 6.77 log CFU/g were detected in chocolate samples. This result demonstrates the potential of this matrix to carry L. rhamnosus GG cells. Regarding the resistance of probiotic strains during gastric simulation, the co-encapsulation of L. rhamnosus GG with beet extract contributed to high counts during gastrointestinal transit, reaching the colon (48 h) with viable cell counts equal to 11.80 log CFU/g. Finally, one of our main findings was that probiotics used phenolic compounds as a substrate source, which may be an observed prebiotic effect.
Collapse
Affiliation(s)
- Callebe Camelo-Silva
- Laboratory of Membrane Processes, Department of Chemical and Food Engineering, Federal University of Santa Catarina, 88040-970 Florianópolis, SC, Brazil.
| | - Bianca Mota E Souza
- Department of Food Science and Technology, Agricultural Sciences Center, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil
| | - Renata Vicente
- Laboratory of Membrane Processes, Department of Chemical and Food Engineering, Federal University of Santa Catarina, 88040-970 Florianópolis, SC, Brazil
| | - Giordana Demaman Arend
- Laboratory of Membrane Processes, Department of Chemical and Food Engineering, Federal University of Santa Catarina, 88040-970 Florianópolis, SC, Brazil
| | - Marcio Augusto Ribeiro Sanches
- Department of Food Engineering and Technology, State University of São Paulo, 15054-000 São José do Rio Preto, SP, Brazil
| | - Pedro Luiz Manique Barreto
- Department of Food Science and Technology, Agricultural Sciences Center, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil
| | - Alan Ambrosi
- Laboratory of Membrane Processes, Department of Chemical and Food Engineering, Federal University of Santa Catarina, 88040-970 Florianópolis, SC, Brazil.
| | - Silvani Verruck
- Department of Food Science and Technology, Agricultural Sciences Center, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil.
| | - Marco Di Luccio
- Laboratory of Membrane Processes, Department of Chemical and Food Engineering, Federal University of Santa Catarina, 88040-970 Florianópolis, SC, Brazil.
| |
Collapse
|
5
|
Xing M, Li X, Zhang Y. Analysis of Bifidobacterium animalis subsp. lactis BB-12 ® and Lactobacillus rhamnosus GG on underweight and malabsorption in premature infants. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20230636. [PMID: 38422245 PMCID: PMC10890203 DOI: 10.1590/1806-9282.20230636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/24/2023] [Indexed: 03/02/2024]
Abstract
OBJECTIVE This study aimed to explore and analyze the therapeutic effect of the combination of Bifidobacterium animalis subsp. lactis BB-12® and Lactobacillus rhamnosus GG on underweight and malabsorption in premature infants. METHODS This is a retrospective study. The clinical data of 68 premature infants admitted to Beijing United Family Hospital (Private Secondary Comprehensive Hospital, Chaoyang District, Beijing, China) from January 2016 to January 2022 were analyzed retrospectively. Preterm infants less than 37 weeks of gestational age admitted to the neonatal intensive care unit were included in the study. Patients with intestinal malformations, necrotizing enterocolitis, etc., who require long-term fasting were excluded. A telephone follow-up was performed 3-6 months after discharge. They were classified as treatment groups A and B according to the treatment plan. The treatment group A included parenteral nutrition, enteral nutrition, etc. In treatment group B, based on treatment group A, the premature infants were treated with Bifidobacterium animalis subsp. lactis BB-12® and Lactobacillus rhamnosus GG. The time to regain birthweight and the weight on day 30 were compared between the two groups, as was the duration of transition from parenteral nutrition to total enteral nutrition. RESULTS The time of weight regain birthweight in group B was shorter than that in group A (t=-2.560; t=-4.287; p<0.05). The increase of weight on day 30 in group B was significantly higher than that in group A (t=2.591; t=2.651; p<0.05). The time from parenteral nutrition to total enteral nutrition in group B was shorter than that in group A (z=-2.145; z=-2.236; p<0.05). CONCLUSION In the treatment of premature infants, the combination of Bifidobacterium animalis subsp. lactis BB-12® and Lactobacillus rhamnosus GG can have a better therapeutic effect on the underweight and malabsorption of premature infants, and this treatment method can be popularized in clinics.
Collapse
Affiliation(s)
- Meng Xing
- Beijing United Family Hospital, Department of Pediatrics - Beijing, China
| | - Xuran Li
- Beijing United Family Jingbei Women and Children's Hospital, Department of Pediatrics - Beijing, China
| | - Yinzhu Zhang
- Beijing United Family Jingbei Women and Children's Hospital, Department of Pediatrics - Beijing, China
| |
Collapse
|
6
|
Szopa K, Szajnar K, Pawlos M, Znamirowska-Piotrowska A. Probiotic Fermented Goat's and Sheep's Milk: Effect of Type and Dose of Collagen on Survival of Four Strains of Probiotic Bacteria during Simulated In Vitro Digestion Conditions. Nutrients 2023; 15:3241. [PMID: 37513662 PMCID: PMC10384213 DOI: 10.3390/nu15143241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/28/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Microbial tolerance of digestive stresses depends not only on the bacterial strain but also on the structure and physicochemical properties of the supply chain and the foods that contain it. In the present study, we aimed to evaluate the effects of the type of milk (ovine, caprine) and the type and dose of collagen on the viability of four probiotic strains, Lacticaseibacillus paracasei L-26, Lacticaseibacillus casei 431, Lactobacillus acidophilus LA-5, and Lacticaseibacillus rhamnosus Lr-32, during in vitro gastrointestinal digestion. The highest survival rate under simulated in vitro digestion conditions compared to the number of cells before digestion was found in two strains, L. casei and L. paracasei, where survival rates were greater than 50% in each batch. The survival rate of the L. rhamnosus strain ranged from 41.05% to 64.23%. In caprine milk fermented by L. acidophilus, a higher survival rate was found in milk with 1.5% hydrolysate than the control, by about 6%. Survival of the L. rhamnosus strain was favorably affected by the 3% addition of bovine collagen in caprine milk, which increased survival by about 14% compared to the control sample. Adding 3% of hydrolysate to sheep's and goat's milk enhanced the survival of the L. rhamnosus strain by 3% and 19%, respectively. This study reports that fermented caprine and ovine milk may be suitable matrices for the probiotic supply of commercial dairy starter cultures and promote gut homeostasis.
Collapse
Affiliation(s)
- Kamil Szopa
- Department of Dairy Technology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 2D, 35601 Rzeszow, Poland
| | - Katarzyna Szajnar
- Department of Dairy Technology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 2D, 35601 Rzeszow, Poland
| | - Małgorzata Pawlos
- Department of Dairy Technology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 2D, 35601 Rzeszow, Poland
| | - Agata Znamirowska-Piotrowska
- Department of Dairy Technology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 2D, 35601 Rzeszow, Poland
| |
Collapse
|
7
|
Zhang Y, Zou G, Islam MS, Liu K, Xue S, Song Z, Ye Y, Zhou Y, Shi Y, Wei S, Zhou R, Chen H, Li J. Combine thermal processing with polyvalent phage LPEK22 to prevent the Escherichia coli and Salmonella enterica contamination in food. Food Res Int 2023; 165:112454. [PMID: 36869473 DOI: 10.1016/j.foodres.2022.112454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023]
Abstract
Thermal processing is the most frequently used method to destruct bacteria in food processing. However, insufficient thermal processing may lead to the outbreak of foodborne illness. This study combined thermal processing with thermostable phage to prevent food contamination. The thermostable phages were screened which can retain activity at 70 °C for 1 h. Among them, the polyvalent phage LPEK22 was obtained to lyse Escherichia coli and Salmonella enterica, especially several multi-drug resistant bacteria. In milk (liquid food matrix), LPEK22 significantly reduced the E. coli by 5.00 ± 0.18 log10 CFU/mL and S. enterica by 4.20 ± 0.23 log10 CFU/mL after thermal processing at 63 °C for 30 min. For beef sausage (solid food matrix), LPEK22 significantly reduced the E. coli by 2.34 ± 0.17 log10 CFU/cm2 and S. enterica by 1.54 ± 0.13 log10 CFU/cm2 after thermal processing at 66 °C for 90 s. Genome analysis revealed that LPEK22 was a novel phage with a unique tail spike protein belonging to the family of Ackermannviridae. LPEK22 did not contain lysogenic, drug-resistant, and virulent genes that may compromise the safety of food application. These results determined that LPEK22, a novel polyvalent Ackermannviridae phage, could combine with thermal processing to prevent drug-resistant E. coli and S. enterica both in vitro and in foods.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Geng Zou
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Md Sharifull Islam
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kun Liu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Suqiang Xue
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhiyong Song
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yingwang Ye
- School of Food Science and Bioengineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yang Zhou
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuanguo Shi
- Shenzhen Institute of Quality & Safety Inspection and Research, Shenzhen 518000, China
| | - Shaozhong Wei
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jinquan Li
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
8
|
OSPANOV A, VELYAMOV S, TLEVLESSOVA D, SCHETININA E, KAIRBAYEVA A, MAKEEVA R, TASTANOVA R. Survival of lactic acid bacteria when using the developed yogurt from the milk of small cattle under in-vitro conditions. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.117722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Assan OSPANOV
- LLP Kazakh Research Institute of Processing and Food Industry, Kazakhstan
| | - Shukhrat VELYAMOV
- LLP Kazakh Research Institute of Processing and Food Industry, Kazakhstan
| | | | | | | | - Raushan MAKEEVA
- LLP Kazakh Research Institute of Processing and Food Industry, Kazakhstan
| | - Raushan TASTANOVA
- LLP Kazakh Research Institute of Processing and Food Industry, Kazakhstan
| |
Collapse
|
9
|
Pires A, Gomes D, Noronha J, Díaz O, Cobos A, Pereira CD. Evaluation of the Characteristics of Sheep's and Goat's Ice Cream, Produced with UF Concentrated Second Cheese Whey and Different Starter Cultures. Foods 2022; 11:foods11244091. [PMID: 36553833 PMCID: PMC9778489 DOI: 10.3390/foods11244091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Second cheese whey (SCW) is the by-product resulting from the manufacture of whey cheeses. In the present work, sheep (S) and goat (G) SCW concentrated by ultrafiltration (UF) were used in the production of ice creams. Concentrated liquid SCW samples with inulin added as a prebiotic were fermented with yoghurt, kefir and probiotic commercial cultures before being frozen in a horizontal frozen yoghurt freezer. The physicochemical, microbiological and sensory properties of the products were evaluated over 120 days of frozen storage. The products presented significant differences regarding these properties, specifically the higher total solids and protein contents of sheep's ice creams, which were higher compared to their goat ice cream counterparts. Sheep's ice creams also presented higher hardness and complex viscosity, which increased with storage. These ice creams also presented higher overrun and lower meltdown rates. The color parameters of the ice creams showed significant differences between formulations resulting from storage time. In all cases, Lactobacilli sp. cell counts were higher than log 6 CFU/g at the first week of storage. In the case of sheep's ice creams these values were maintained or increased until the 30th day, but decreased until the 60th day. Lactococci sp. counts surpassed log 7 CFU/g in all products, and these values were maintained until the end of storage, except in the case of G-Yoghurt and G-Kefir. Concerning the products containing probiotics, the sum of Lactococci sp. and Lactobacilli sp. counts was of the order log 8-9 CFU/g until the 60th day of storage, indicating that the probiotic characteristics of ice creams were maintained for at least 2 months. All products were well accepted by the consumer panel. Sheep's SCW ice creams were better rated regarding aroma, taste and texture. However, only the ranking test was able to differentiate preferences among formulations.
Collapse
Affiliation(s)
- Arona Pires
- Escola Superior Agrária, Politécnico de Coimbra, Bencanta, 3045-601 Coimbra, Portugal
- Departamento de Química Analítica, Nutrición y Bromatología, Área Tecnología de Alimentos, Facultad de Ciencias, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - David Gomes
- Escola Superior Agrária, Politécnico de Coimbra, Bencanta, 3045-601 Coimbra, Portugal
| | - João Noronha
- Escola Superior Agrária, Politécnico de Coimbra, Bencanta, 3045-601 Coimbra, Portugal
| | - Olga Díaz
- Departamento de Química Analítica, Nutrición y Bromatología, Área Tecnología de Alimentos, Facultad de Ciencias, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Angel Cobos
- Departamento de Química Analítica, Nutrición y Bromatología, Área Tecnología de Alimentos, Facultad de Ciencias, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Carlos Dias Pereira
- Escola Superior Agrária, Politécnico de Coimbra, Bencanta, 3045-601 Coimbra, Portugal
- CERNAS—Centro de Estudos dos Recursos Naturais Ambiente e Sociedade, Bencanta, 3045-601 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
10
|
Effects of Bifidobacterium longum CCFM5871 as an adjunct starter culture on the production of fermented milk. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Sbehat M, Mauriello G, Altamimi M. Microencapsulation of Probiotics for Food Functionalization: An Update on Literature Reviews. Microorganisms 2022; 10:microorganisms10101948. [PMID: 36296223 PMCID: PMC9610121 DOI: 10.3390/microorganisms10101948] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022] Open
Abstract
Functional foods comprise the largest growing food category due to both consumer demands and health claims by manufacturers. Probiotics are considered one of the best choices for meeting these demands. Traditionally, the food vehicle for introducing probiotics to consumers was dairy products, and to expand the benefits of probiotics for a wider range of consumers, the need to use other food items was essential. To achieve this goal while maximising the benefits of probiotics, protection methods used during food processing were tackled. The microencapsulation of probiotics is a promising methodology for achieving this function. This review highlights the use of the microencapsulation of probiotics in order to functionalise food items that initially were not considered suitable for probiotication, such as baked products, or to increase their functionality such as dairy products. The co-microencapsulation of probiotics with other functional ingredients such polyphenol, prebiotics, or omega-3 is also highlighted.
Collapse
Affiliation(s)
- Maram Sbehat
- Department of Nutrition and Food Technology, An-Najah National University, Nablus P.O. Box 7, Palestine
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Gianluigi Mauriello
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
- Correspondence:
| | - Mohammad Altamimi
- Department of Nutrition and Food Technology, An-Najah National University, Nablus P.O. Box 7, Palestine
| |
Collapse
|
12
|
He BL, Xiong Y, Hu TG, Zong MH, Wu H. Bifidobacterium spp. as functional foods: A review of current status, challenges, and strategies. Crit Rev Food Sci Nutr 2022; 63:8048-8065. [PMID: 35319324 DOI: 10.1080/10408398.2022.2054934] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Members of Bifidobacterium are among the first microbes to colonize the human intestine naturally, their abundance and diversity in the colon are closely related to host health. Recently, the gut microbiota has been gradually proven to be crucial mediators of various metabolic processes between the external environment and the host. Therefore, the health-promoting benefits of Bifidobacterium spp. and their applications in food have gradually been widely concerned. The main purpose of this review is to comprehensively introduce general features, colonization methods, and safety of Bifidobacterium spp. in the human gut, highlighting its health benefits and industrial applications. On this basis, the existing limitations and scope for future research are also discussed. Bifidobacteria have beneficial effects on the host's digestive system, immune system, and nervous system. However, the first prerequisite for functioning is to have enough live bacteria before consumption and successfully colonize the colon after ingestion. At present, strain breeding, optimization (e.g., selecting acid and bile resistant strains, adaptive evolution, high cell density culture), and external protection technology (e.g., microencapsulation and protectants) are the main strategies to address these challenges in food application.
Collapse
Affiliation(s)
- Bao-Lin He
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Yong Xiong
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Teng-Gen Hu
- Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Guangzhou, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| |
Collapse
|
13
|
Calderón-Oliver M, Ponce-Alquicira E. The Role of Microencapsulation in Food Application. Molecules 2022; 27:1499. [PMID: 35268603 PMCID: PMC8912024 DOI: 10.3390/molecules27051499] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022] Open
Abstract
Modern microencapsulation techniques are employed to protect active molecules or substances such as vitamins, pigments, antimicrobials, and flavorings, among others, from the environment. Microencapsulation offers advantages such as facilitating handling and control of the release and solubilization of active substances, thus offering a great area for food science and processing development. For instance, the development of functional food products, fat reduction, sensory improvement, preservation, and other areas may involve the use of microcapsules in various food matrices such as meat products, dairy products, cereals, and fruits, as well as in their derivatives, with good results. The versatility of applications arises from the diversity of techniques and materials used in the process of microencapsulation. The objective of this review is to report the state of the art in the application and evaluation of microcapsules in various food matrices, as a one-microcapsule-core system may offer different results according to the medium in which it is used. The inclusion of microcapsules produces functional products that include probiotics and prebiotics, as well as antioxidants, fatty acids, and minerals. Our main finding was that the microencapsulation of polyphenolic extracts, bacteriocins, and other natural antimicrobials from various sources that inhibit microbial growth could be used for food preservation. Finally, in terms of sensory aspects, microcapsules that mimic fat can function as fat replacers, reducing the textural changes in the product as well as ensuring flavor stability.
Collapse
Affiliation(s)
- Mariel Calderón-Oliver
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Avenida Eduardo Monroy Cárdenas 2000, San Antonio Buenavista, Toluca 50110, Mexico
| | - Edith Ponce-Alquicira
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Avenida San Rafael Atlixco 186, Col. Vicentina, Mexico City 09340, Mexico;
| |
Collapse
|
14
|
Consumption of multi-fiber enriched yogurt is associated with increase of Bifidobacterium animalis and butyrate producing bacteria in human fecal microbiota. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
15
|
PRESTES AA, VARGAS MO, HELM CV, ESMERINO EA, SILVA R, PRUDENCIO ES. How to improve the functionality, nutritional value and health properties of fermented milks added of fruits bioactive compounds: a review. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.17721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Dantas A, Verruck S, Canella MHM, Hernandez E, Prudencio ES. Encapsulated Bifidobacterium BB-12 addition in a concentrated lactose-free yogurt: Its survival during storage and effects on the product's properties. Food Res Int 2021; 150:110742. [PMID: 34865761 DOI: 10.1016/j.foodres.2021.110742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/04/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022]
Abstract
This work aims to manufacture a new concentrated lactose-free probiotic yogurt. For this purpose, the probiotic Bifidocaterium BB-12 was incorporated in a concentrated lactose-free yogurt, both in its free form and previously encapsulated. Previous cell encapsulation was performed using the spray-drying technique with the following wall materials: lactose-free milk, lactose-free milk and inulin, and lactose-free milk and oligofructose. Thus, three different probiotic powders were obtained and added separately to three fractions of concentrated lactose-free yogurt. The probiotic survival of both powders and yogurts was evaluated during refrigerated storage. Likewise, the viability of starter cultures in yogurt (Lactobacillus bulgaricus and Streptococcus thermophilus) was controlled. In addition, the physicochemical properties of the four yogurts were also measured (color, pH and acidity, and texture properties). All three powders showed good probiotic viability (>8 log CFU g-1) throughout 120 days of storage at 4 °C. In turn, yogurt formulations (with the addition of powders or free bifidobacteria) presented probiotic viability above 7 log CFU g-1 after storage; as well as the starter cultures (>8 log UFC g-1). Yogurt with probiotic powder from lactose-free milk showed a more yellowish color; however, these differences would not be detected by the human eye (ΔE < 3.00). The yogurt with bifidobacteria free cells showed a greater post-acidification process (pH 4.18 to 4.02 and titratable acidity 1.52 to 1.89). It was not observed differences for firmness values of yogurt with free cells addition and yogurt with lactose-free milk and oligofructose powder addition. A slight significant decrease in the cohesiveness was observed in the yogurt elaborated with bifidobacteria free cells. The gumminess showed fluctuating values between all concentrated lactose-free yogurts. At the end of this study, we conclude that these probiotic powders can be incorporated into innovative lactose-free yogurts.
Collapse
Affiliation(s)
- Adriana Dantas
- Postgraduate Program in Food Engineering, Federal University of Santa Catarina, Technology Center, Trindade, 88040-970 Florianópolis, SC, Brazil
| | - Silvani Verruck
- Department of Food Science and Technology, Agricultural Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Maria Helena Machado Canella
- Postgraduate Program in Food Engineering, Federal University of Santa Catarina, Technology Center, Trindade, 88040-970 Florianópolis, SC, Brazil
| | - Eduard Hernandez
- Department of Agri-Food Engineering and Biotechnology, Universitat Politécnica de Catalunya BarcelonaTech, 8. 08860, Castelldefels, Barcelona, Spain
| | - Elane Schwinden Prudencio
- Postgraduate Program in Food Engineering, Federal University of Santa Catarina, Technology Center, Trindade, 88040-970 Florianópolis, SC, Brazil; Department of Food Science and Technology, Agricultural Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
17
|
Pimentel TC, de Oliveira LIG, de Souza RC, Magnani M. Probiotic ice cream: A literature overview of the technological and sensory aspects and health properties. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tatiana Colombo Pimentel
- Federal Institute of Paraná Campus Paranavaí Paranavaí PR 87736‐536Brazil
- State University of Maringá Food Engineering Post‐Graduation Maringá PR 87020‐900Brazil
| | | | | | - Marciane Magnani
- Department of Food Engineering University of Paraíba João Pessoa PB 58051‐900 Brazil
| |
Collapse
|
18
|
Current knowledge about physical properties of innovative probiotic spray-dried powders produced with lactose-free milk and prebiotics. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Li W, Li H, Zhang Y, He L, Zhang C, Liu X. Different effects of soybean protein and its derived peptides on the growth and metabolism of Bifidobacterium animalis subsp. animalis JCM 1190. Food Funct 2021; 12:5731-5744. [PMID: 34132282 DOI: 10.1039/d1fo00480h] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Bifidobacterium is a common probiotic that plays a vital role in the intestinal tract. This study aimed to explore the different effects of soybean protein and soybean peptides on the growth and metabolism of Bifidobacterium animalis subsp. animalis JCM 1190. Soybean protein and soybean peptides were digested in vitro, after which different nitrogen source containing media were prepared and used for the monoculture of Bifidobacterium animalis subsp. animalis JCM 1190 and the co-culture of Bifidobacterium animalis subsp. animalis JCM 1190 and Escherichia coli JCM 1649. During the culture process, the viable cell number and lactic acid and acetic acid contents were measured, while non-targeted metabonomics was used to detect the differential metabolites and metabolic pathways. The results showed that soybean protein and soybean peptides promoted the growth and metabolism of Bifidobacterium animalis subsp. animalis JCM 1190, while digested soybean peptides had a better effect. Digested soybean peptides increased the viable cell number and lactic acid and acetic acid contents in the monoculture by regulating glycine, serine, and threonine metabolism, as well as pyruvate metabolism, the TCA cycle, glycolipid metabolism, and other metabolic pathways, balanced the ability of Bifidobacterium animalis subsp. animalis JCM 1190 and Escherichia coli JCM 1649 to utilize nitrogen sources during the early period and enhanced the competitiveness of Bifidobacterium animalis subsp. animalis JCM 1190 during the later period in co-culture.
Collapse
Affiliation(s)
- Wenhui Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - He Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Yinxiao Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Lijuan He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Chi Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
20
|
Naissinger da Silva M, Tagliapietra BL, Flores VDA, Pereira Dos Santos Richards NS. In vitro test to evaluate survival in the gastrointestinal tract of commercial probiotics. Curr Res Food Sci 2021; 4:320-325. [PMID: 34095855 PMCID: PMC8165489 DOI: 10.1016/j.crfs.2021.04.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 12/21/2022] Open
Abstract
The search for functional foods grows constantly, and in this demand, the supply of industries that seek to produce and sell supplements also grows, as is the case of probiotics freely sold in pharmacies and supermarkets. Given a large number of foods with probiotic appeal and supplements sold without the need for a nutritional or medical prescription, this study came up to evaluate the viability of commercial probiotic cells, through in vitro gastrointestinal simulation and analyzing the information present in their labeling. Eleven commercial probiotic samples were analyzed, and viable cell counts were performed before and after in vitro simulation. These products usually use appealing labeling and induce the consumer to purchase these probiotics, which often do not offer the benefits described on the packaging. The results showed that only two samples had the initial concentration indicated on their labeling and four samples offered a concentration of 3 log CFU g−1 in the ileum portion. All samples had a reduction in concentration during the gastrointestinal simulation, which varied from 1 to 4 log CFU g−1, but most do not fulfill the offer of a probiotic supplement, and there should be more inspection and control over the commercialization of this product niche. Of eleven probiotics analyzed, only two were in accordance with their labeling. Only six probiotics showed an initial concentration above 8 log CFU g-1. After gastrointestinal simulation, six probiotics showed viability greater than 6 log CFU g-1. Probiotic fermented milk and microorganisms protected by capsules showed the best results. Technologies are needed that contribute to maintaining probiotic viability in storage and digestion.
Collapse
Affiliation(s)
- Maritiele Naissinger da Silva
- Universidade Federal de Santa Maria, Departamento de Tecnologia e Ciência de Alimentos, Rua Antonio Botega, 270, CEP 97095-030, Santa Maria, RS, Brazil
| | - Bruna Lago Tagliapietra
- Universidade Estadual de Campinas, Departamento de Tecnologia de Alimentos, Campinas, SP, Brazil
| | - Vinícius do Amaral Flores
- Universidade Federal de Santa Maria, Departamento de Tecnologia e Ciência Dos Alimentos, Santa Maria, RS, Brazil
| | | |
Collapse
|
21
|
Dantas A, Verruck S, Liz GR, Hernandez E, Prudencio ES. Lactose‐free skim milk and prebiotics as carrier agents
of Bifidobacterium
BB‐12 microencapsulation: physicochemical properties, survival during storage and
in vitro
gastrointestinal condition behaviour. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Adriana Dantas
- Postgraduate Program in Food Engineering Technology Center Federal University of Santa Catarina Trindade Florianópolis SC88040‐970Brazil
| | - Silvani Verruck
- Department of Food Science and Technology Agricultural Sciences Center Federal University of Santa Catarina Rod. Admar Gonzaga, 1346, Itacorubi Florianópolis SC88.034‐001Brazil
| | - Gabriela Rodrigues Liz
- Department of Food Science and Technology Agricultural Sciences Center Federal University of Santa Catarina Rod. Admar Gonzaga, 1346, Itacorubi Florianópolis SC88.034‐001Brazil
| | - Eduard Hernandez
- Department of Agri‐Food Engineering and Biotechnology Universitat Politécnica de Catalunya BarcelonaTech 8 Castelldefels08860Spain
| | - Elane Schwinden Prudencio
- Postgraduate Program in Food Engineering Technology Center Federal University of Santa Catarina Trindade Florianópolis SC88040‐970Brazil
- Department of Food Science and Technology Agricultural Sciences Center Federal University of Santa Catarina Rod. Admar Gonzaga, 1346, Itacorubi Florianópolis SC88.034‐001Brazil
| |
Collapse
|
22
|
Chen W, Peng X, Yu J, Chen X, Yuan M, Xiang R, He L, Yu D, Kang H, Pan Y, Xu Z. FengLiao affects gut microbiota and the expression levels of Na+/H+ exchangers, aquaporins and acute phase proteins in mice with castor oil-induced diarrhea. PLoS One 2020; 15:e0236511. [PMID: 32722717 PMCID: PMC7386626 DOI: 10.1371/journal.pone.0236511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/07/2020] [Indexed: 12/23/2022] Open
Abstract
The severe side effects of chemosynthetic anti-diarrhea drugs have created an interest in low-toxic alternative plant-derived compounds. FengLiao consists of Polygonum hydropiper Linn. and Daphniphyllum calycinum Bench., and is widely used in China to treat diarrhea due to low levels of toxicity. In this study, the effects of FengLiao were analyzed in a castor oil-induced diarrhea model, using the anti-diarrhea drug, loperamide, as the positive control. The effects were evaluated using stool characteristics and the expression levels of various diarrhea-related factors in the jejunum and liver, as well as changes in the microbiota of the jejunum. The symptoms of diarrhea and stool consistency were improved through FengLiao and loperamide treatment. Furthermore, FengLiao down-regulated alpha 1-acid glycoprotein (AGP) and C-reactive protein (CRP) levels, and up-regulated transferrin (TRF) mRNA levels in the liver, and down-regulated Aquaporin 3 (AQP3) and Na+/H+ exchanger isoform 8 (NHE8) expression in the epithelial cells of the jejunum. It also increased the relative abundance of Bifidobacterium, Aerococcus, Corynebacterium_1 and Pseudomonas, and lowered the Firmicutes/Bacteroidetes (F/B) ratio, which maintained the balance between immunity and intestinal health. Taken together, FengLiao alleviated castor oil-induced diarrhea by altering gut microbiota, and levels of jejunum epithelial transport proteins and acute phase proteins.
Collapse
Affiliation(s)
- Wenlu Chen
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Xinyu Peng
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Live stock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observing and Experimental Station of veterinary drugs and diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China
- Chinese Traditional Medicine Engineering Technology Research Center of Guangdong Province, Guangzhou, China
- * E-mail:
| | - Jingxian Yu
- South China Agricultural University, Guangzhou, China
| | - Xuanxuan Chen
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Minggui Yuan
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Live stock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observing and Experimental Station of veterinary drugs and diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China
- Chinese Traditional Medicine Engineering Technology Research Center of Guangdong Province, Guangzhou, China
| | - Rong Xiang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Live stock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observing and Experimental Station of veterinary drugs and diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China
- Chinese Traditional Medicine Engineering Technology Research Center of Guangdong Province, Guangzhou, China
| | - Limei He
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Danni Yu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Live stock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observing and Experimental Station of veterinary drugs and diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China
- Chinese Traditional Medicine Engineering Technology Research Center of Guangdong Province, Guangzhou, China
| | - Huahua Kang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Live stock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observing and Experimental Station of veterinary drugs and diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China
- Chinese Traditional Medicine Engineering Technology Research Center of Guangdong Province, Guangzhou, China
| | - Yufang Pan
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhihong Xu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Live stock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observing and Experimental Station of veterinary drugs and diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China
- Chinese Traditional Medicine Engineering Technology Research Center of Guangdong Province, Guangzhou, China
| |
Collapse
|
23
|
Abstract
Probiotics are live microorganisms that, when administered in adequate numbers, confer health benefit/s on the host, while prebiotics are nondigestible food ingredients that are selectively stimulate the growth of beneficial microorganisms in the distal parts of the host digestive tract conferring health benefits. Dairy products manufactured mainly using bovine milk is the major vehicle in delivering probiotics to humans. At present, there is an increasing demand for non-bovine probiotic milk products. Both bovine and non-bovine dairy products contain several ingredients with prebiotic properties such as oligosaccharides that could positively interact with probiotics to alter their functional properties. Furthermore, these bovine and non-bovine products could be fortified with prebiotics from various sources such as inulin and oligofructose in order to provide additional health benefits. In addition, non-bovine milk products are good sources for isolating novel potential probiotics. Non-bovine milk such as goat, sheep, camel and donkey have been used in producing several probiotic products including set-yoghurt, drinking-yoghurt, stirred-yoghurt, ice cream and cheese. Prebiotic inclusions in non-bovine milk at present is mainly associated with goat and sheep milk products. In this context, this chapter focuses on the different types of non-bovine milk products containing probiotics and prebiotics, and product quality and microbiological characteristics with special reference to probiotic viability.
Collapse
|
24
|
Verruck S, Silva KJ, de Oliveira Santeli H, Scariot MC, Venturelli GL, Prudencio ES, Arisi ACM. Bifidobacterium animalis ssp. lactis BB-12 enumeration by quantitative PCR assay in microcapsules with full-fat goat milk and inulin-type fructans. Food Res Int 2020; 133:109131. [PMID: 32466908 DOI: 10.1016/j.foodres.2020.109131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/16/2022]
Abstract
The current study was conducted to develop a quantitative polymerase chain reaction (qPCR) assay for Bifidobacterium animalis ssp. lactis BB-12 quantification in microcapsules matrix with full-fat goat milk and inulin-type fructans. DNA was isolated from milk, feed solutions (before spray drying) and microcapsules (after spray drying) using DNAzol. Two primer pairs targeting Bal-23S or Tuf sequences were evaluated by qPCR. The qPCR efficiency was higher (89.5%) using the Tuf primers than Bal-23S primers (84.8%). Tuf primer pair was able to selectively detect B. animalis ssp. lactis BB-12. After, quantification of bifidobacteria in the microcapsules matrix by Tuf qPCR assay was compared to conventional enumeration by plate counting. The analysis of probiotic feed solutions and microcapsules showed higher (P < 0.05) bacterial enumeration determined by Tuf qPCR assay compared to those obtained by plate counting. This qPCR assay was considered a rapid and sensitive alternative for the quantification of B. animalis ssp. lactis BB-12 in probiotic microcapsules compared to plate counting.
Collapse
Affiliation(s)
- Silvani Verruck
- Dairy Technology Laboratory, Food Science and Technology Department, Agrarian Science Center, Federal University of Santa Catarina, Rod. Admar Gonzaga, 1346, Itacorubi, 88034-001 Florianópolis, SC, Brazil
| | - Kelly Justin Silva
- Molecular Biology Laboratory, Food Science and Technology Department, Agrarian Science Center, Federal University of Santa Catarina, Rod. Admar Gonzaga, 1346, Itacorubi, 88034-001 Florianópolis, SC, Brazil
| | - Helena de Oliveira Santeli
- Molecular Biology Laboratory, Food Science and Technology Department, Agrarian Science Center, Federal University of Santa Catarina, Rod. Admar Gonzaga, 1346, Itacorubi, 88034-001 Florianópolis, SC, Brazil
| | - Mirella Christine Scariot
- Molecular Biology Laboratory, Food Science and Technology Department, Agrarian Science Center, Federal University of Santa Catarina, Rod. Admar Gonzaga, 1346, Itacorubi, 88034-001 Florianópolis, SC, Brazil
| | - Gustavo Luiz Venturelli
- Molecular Biology Laboratory, Food Science and Technology Department, Agrarian Science Center, Federal University of Santa Catarina, Rod. Admar Gonzaga, 1346, Itacorubi, 88034-001 Florianópolis, SC, Brazil
| | - Elane Schwinden Prudencio
- Dairy Technology Laboratory, Food Science and Technology Department, Agrarian Science Center, Federal University of Santa Catarina, Rod. Admar Gonzaga, 1346, Itacorubi, 88034-001 Florianópolis, SC, Brazil
| | - Ana Carolina Maisonnave Arisi
- Molecular Biology Laboratory, Food Science and Technology Department, Agrarian Science Center, Federal University of Santa Catarina, Rod. Admar Gonzaga, 1346, Itacorubi, 88034-001 Florianópolis, SC, Brazil.
| |
Collapse
|