1
|
Alasalvar C, Huang G, Bolling BW, Jantip PA, Pegg RB, Wong XK, Chang SK, Pelvan E, de Camargo AC, Mandalari G, Hossain A, Shahidi F. Upcycling commercial nut byproducts for food, nutraceutical, and pharmaceutical applications: A comprehensive review. Food Chem 2025; 467:142222. [PMID: 39626555 DOI: 10.1016/j.foodchem.2024.142222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/07/2024] [Accepted: 11/21/2024] [Indexed: 01/15/2025]
Abstract
This article presents a comprehensive overview of upcycling commercial nut byproducts (such as Brazil nut, cashew, hazelnut, macadamia, peanut (also known as a legume), pecan, pine nut, pistachio, and walnut) for food, nutraceutical, and pharmaceutical applications. Upcycling nut byproducts, namely husk/hull, hard shell, brown skin, defatted flour/meal/cake, pine cone, cashew nut shell liquid, cashew apple, walnut septum, and dreg/okara, has great potential, not only to reduce/minimise waste, but also to fit within the circular economy concept. Each byproduct has its own unique functional properties, which can bring significant value. These byproducts can be used as value-added ingredients to promote better health and well-being, due to their rich sources of diverse bioactive components/phytochemicals, polysaccharides, fibre, lignin, prebiotics, oils, proteins, bioactive peptides, minerals, and vitamins, among other components. This comprehensive review provides a basis for future research and development of product applications for nut byproducts. More studies are needed on novel product development to valorise nut byproducts.
Collapse
Affiliation(s)
| | | | - Bradley W Bolling
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Pornpat Aom Jantip
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Ronald B Pegg
- Department of Food Science & Technology, University of Georgia, Athens, GA, USA
| | - Xi Khai Wong
- School of Science, Monash University (Malaysia Campus), Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Sui Kiat Chang
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia; Centre for Biomedical and Nutrition Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Ebru Pelvan
- Life Sciences, TÜBİTAK Marmara Research Center, Gebze-Kocaeli, Türkiye
| | | | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Abul Hossain
- Department of Biochemistry, Memorial University of Newfoundland, St. John 's, NL, Canada
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John 's, NL, Canada
| |
Collapse
|
2
|
Wu C, Ma B, McClements DJ, Lai Z, Hou J, Wang S, Wang X, Qiu Y, Wu F, Fang G, Liu X, Wang P. Fractionation of phenolic compounds from hickory by-products using solid phase extraction-sonication: Chemical composition, antioxidant and antimicrobial activity. Food Chem 2024; 460:140633. [PMID: 39068807 DOI: 10.1016/j.foodchem.2024.140633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Hickory is an abundant source of phenolic compounds that exhibit a diverse range of bioactivities. In this study, phenolic compounds were extracted and purified from hickory green husk (HG), hickory nutshell (HN), and hickory seed coat (HS) using solid-phase extraction and ultrasonication (SPE-US). The effects of the SPE-US treatment on the structure and properties of the phenolic compounds were then investigated, including their composition, antioxidant activity, and antimicrobial activity. The dominant phenolic substances in the different extracts after SPE-US treatment were: ellagic acid and trans ferulic acid (HS); ellagic acid and sinapic acid (HN); and rutin (HG). The HS-SPE-US1 extract exhibited the highest total polyphenol content (416 ± 11 mg GAE/g DW), total flavonoid content (47.51 ± 0.68 mg RE/g DW), Fe3+ reduction ability (74.2 ± 1.0 mmol Fe2+/g DW), radical (DPPH and ABTS) scavenging ability, and antimicrobial activity against Staphylococcus aureus.
Collapse
Affiliation(s)
- Changling Wu
- Department of Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China; National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center; Hangzhou 311300, China.
| | - Bohui Ma
- Department of Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China; National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center; Hangzhou 311300, China
| | | | - Zhiquan Lai
- Department of Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Jie Hou
- Department of Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China; National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center; Hangzhou 311300, China
| | - Shuaizheng Wang
- Department of Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China; National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center; Hangzhou 311300, China
| | - Xinru Wang
- Department of Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Yuxin Qiu
- Department of Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Fenghua Wu
- Department of Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China; National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center; Hangzhou 311300, China
| | - Guanyu Fang
- Department of Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China; National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center; Hangzhou 311300, China
| | - Xingquan Liu
- Department of Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China; National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center; Hangzhou 311300, China.
| | - Peng Wang
- Department of Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China; National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center; Hangzhou 311300, China.
| |
Collapse
|
3
|
Fernandes DC, Dos Santos GF, Borges MO, Dias T, Naves MMV. Blend of Baru (Dipteryx alata Vog.) By-Products as Nutritive and Healthy Food Ingredients: Chemical Composition, Functional Properties and Application in Plant-Based Burger. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:578-585. [PMID: 38795267 DOI: 10.1007/s11130-024-01185-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/27/2024]
Abstract
The chemical composition, antioxidant capacity and functional properties of mixtures of baru by-products, named baru food ingredients (BFI), were investigated and applied in a plant-based burger formulation. BFI were prepared from wasted baru by-products - partially defatted baru nut cake and baru pulp plus peel. A plant-based burger was developed and its chemical composition, antioxidant capacity, cooking and texture parameters were determined. BFI1 (50% partially defatted baru nut cake + 50% baru pulp plus peel) had the highest content of carbohydrate (31.9%), and dietary fibre (28.3%). BFI2 (75% partially defatted baru nut cake + 25% baru pulp plus peel) and BFI3 (90% partially defatted baru nut cake + 10% baru pulp plus peel) showed high concentration of protein and dietary fibre, and BFI3 had the highest protein content (29.5%). All BFI showed high concentration of total phenolics (402-443 mg GAE/100 g). Replacing textured pea protein of control burger (PPB) with 35% of BFI3 in the formulation of baru protein burger (BPB) resulted in a low-fat product (2.9%), with protein content (19.2%) comparable to the PPB (15.9%) and the commercial burger (mixed plant proteins - 16.3%). The BPB also showed a higher concentration of dietary fibre (4.9%) and phenolic compounds (128 mg GAE/100 g) than the control burger. BPB's cooking yield was the highest among the tested burgers. BPB had a softer texture when compared to other burgers. Baru food ingredients can be used as nutritive ingredients of health-promoting foods, especially in plant-based products, such as burger and meat analogues, or in hybrid meat products. BPB showed a healthy and nutritious profile.
Collapse
Affiliation(s)
- Daniela Canuto Fernandes
- School of Social and Health Sciences, Pontifical Catholic University of Goiás (PUC-GOIÁS), 74605-010, Goiânia, Brazil
- Laboratory of Experimental Nutrition, School of Nutrition, Federal University of Goiás (UFG), 74605-080, Goiânia, Brazil
| | - Geovana Ferreira Dos Santos
- Laboratory of Experimental Nutrition, School of Nutrition, Federal University of Goiás (UFG), 74605-080, Goiânia, Brazil
| | - Mariana Oliveira Borges
- Laboratory of Experimental Nutrition, School of Nutrition, Federal University of Goiás (UFG), 74605-080, Goiânia, Brazil
| | - Tiago Dias
- Laboratory of Food Analysis, School of Nutrition, Federal University of Goiás (UFG), 74605-080, Goiânia, Brazil
| | - Maria Margareth Veloso Naves
- Laboratory of Experimental Nutrition, School of Nutrition, Federal University of Goiás (UFG), 74605-080, Goiânia, Brazil.
| |
Collapse
|
4
|
Lyu YZ, Jiang H, Sun HN, Yang Y, Chao Y, Huang LB, Dong XY. Lipidomic and comparative transcriptomic analysis of fatty acid synthesis pathway in Carya illinoinensis embryo. TREE PHYSIOLOGY 2023; 43:1675-1690. [PMID: 37171624 DOI: 10.1093/treephys/tpad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/03/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
Pecan (Carya illinoinensis (Wagenh.) K. Koch) is an important oilseed nut and is rich in fatty acids (FAs) and flavonols. Pecan FA has significantly edible, industrial and clinical value. To investigate the dynamic patterns and compositions of FA, and the molecular mechanism that controls FA accumulation in pecan, lipidomic and transcriptomic analyses were performed to determine lipid profiles and gene expression in pecan's FA biosynthesis pathway. In the present study, compared with cultivars 'Caddo' and 'Y-01', 'Mahan' formed larger and heavier embryos and accumulated higher oil content. Lipidomic analysis showed that FA and (O-acyl)-1-hydroxy FA contents were higher in 'Mahan' at the mature stage. Based on full-length and comparative RNA-Seq, differential expression gene enrichment analysis revealed that many functional genes participated in the pathways of 'fatty acid biosynthesis', 'fatty acid metabolism' and 'linoleic acid metabolism'. High FA accumulation model from 'Mahan' demonstrated that key enzyme-encoding genes played an important role in regulating FA biosynthesis. Co-expression module analysis indicated that several transcription factors (TFs; MYB, TCP, bHLH, Dof, ERF, NAC) were involved in FA accumulation by regulating the expression of functional genes, and real-time quantitative PCR verification proved that these TFs had a high correlation with the pecan FA accumulation pattern. These findings provided an insight into the molecular mechanism of FA accumulation in C. illinoinensis embryo, which contributes to pecan oil yielding and pecan molecular breeding.
Collapse
Affiliation(s)
- Yun-Zhou Lyu
- Institute of Landscape Trees and Flowers, Jiangsu Academy of Forestry, Nanjing 211153, China
| | - Hao Jiang
- Institute of Landscape Trees and Flowers, Jiangsu Academy of Forestry, Nanjing 211153, China
| | - Hai-Nan Sun
- Institute of Landscape Trees and Flowers, Jiangsu Academy of Forestry, Nanjing 211153, China
| | - Yong Yang
- Institute of Landscape Trees and Flowers, Jiangsu Academy of Forestry, Nanjing 211153, China
| | - Yang Chao
- Changzhou Golden Land Agriculture and Animal Husbandry Technology Service Co., Ltd, Changzhou 213139, China
| | - Li-Bin Huang
- Institute of Landscape Trees and Flowers, Jiangsu Academy of Forestry, Nanjing 211153, China
| | - Xiao-Yun Dong
- Institute of Landscape Trees and Flowers, Jiangsu Academy of Forestry, Nanjing 211153, China
| |
Collapse
|
5
|
Jardim T, Domingues MRM, Alves E. An overview on lipids in nuts and oily fruits: oil content, lipid composition, health effects, lipidomic fingerprinting and new biotechnological applications of their by-products. Crit Rev Food Sci Nutr 2023; 64:9132-9160. [PMID: 37178132 DOI: 10.1080/10408398.2023.2208666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Tree nuts and oily fruits are used as a diet complement and are highly consumed worldwide. The production and consumption of these foods have been increasing, and an enormous global market value is forecasted for 2023. Besides their high nutritional value and lipid content, they provide health benefits to fat metabolism, heart, skin, and brain. The industrial by-products of these oily foods represent promising raw materials for many industries. However, the lipidomic analysis of nuts and oily fruits is still in its early stages. State-of-the-art analytical approaches for the lipid profiling and fingerprinting of nuts and oily fruits have been developed using high-performance liquid chromatography and high-resolution mass spectrometry for the accurate identification and structural characterization at the molecular species level. It is expected to bring a new understanding of these everyday foods' nutritional and functional value. This review comprises the oil content and lipid composition of various nuts and oily fruits, particularly those mostly consumed worldwide and having recognized beneficial health effects, biological activities associated with the lipids from different oily foodstuffs, analytical methodologies to analyze lipids in nuts and oily fruits, and the potential biotechnological applications of their industrial by-products for a lipid-based commercial valorization.
Collapse
Affiliation(s)
- Tiago Jardim
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - M Rosário M Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Eliana Alves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
6
|
Alves JDS, Canabarro NI, Boeira CP, Melo PTS, Aouada MRDM, da Rosa CS. Design of Biodegradable Films Using Pecan Nut Cake Extracts for Food Packing. Foods 2023; 12:foods12071405. [PMID: 37048226 PMCID: PMC10093672 DOI: 10.3390/foods12071405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The excessive consumption of plastic packaging and its consequent disposal and accumulation in the environment have aroused the interest of researchers in developing packaging that can cause less harm to nature. In this sense, this article presents research on the addition of antioxidant extracts from pecan nut cake in biodegradable packaging made with a polymeric mixture of gelatin and corn starch. The films produced were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, thickness, mechanical properties, water vapor permeability (WVP), solubility, water contact angle, optical properties, in vitro bioactive activity, and biodegradability. A higher concentration of total phenolic compounds (101.61 mg GAE/g) was found for the condition where alcohol content and extraction time were 65% and 20 min, respectively. Pecan nut cake (PNC( extracts did not influence the film’s tensile strength, and elongation at break was tightly increased by adding 10–20% extracts. The film’s characterization pointed to more than 67% solubility, and adding PNC extract implied more hydrophilic surfaces (contact angles lower than 65°). Furthermore, the film opacity showed a linear relation with PNC extract concentration, and a higher luminosity (L*) was observed for the film without extract. Furthermore, the antioxidant activity of the films was enhanced with the addition of PNC extracts, and complete biodegradation was observed until the ninth day. Therefore, biodegradable films prepared from a mixture of gelatin starch and enriched with PNC extracts showed excellent mechanical properties and potential as carriers of antioxidant compounds, allowing us to propose their use as active packing.
Collapse
Affiliation(s)
- Jamila dos Santos Alves
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
- Correspondence: (J.d.S.A.); (M.R.d.M.A.)
| | | | - Caroline Pagnossim Boeira
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Pamela Thais Sousa Melo
- Hybrid Composites and Nanocomposites Group, Department of Physics and Chemistry, Universidade Estadual Paulista (UNESP), Ilha Solteira 15385-000, SP, Brazil
| | - Marcia Regina de Moura Aouada
- Hybrid Composites and Nanocomposites Group, Department of Physics and Chemistry, Universidade Estadual Paulista (UNESP), Ilha Solteira 15385-000, SP, Brazil
- Correspondence: (J.d.S.A.); (M.R.d.M.A.)
| | - Claudia Severo da Rosa
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| |
Collapse
|
7
|
Ribeiro PPC, Junior FHX, do Nascimento Silva CG, da Silva TMB, Corrêa BBM, de Veras BO, de Magalhães Cordeiro AMT, de Andrade Vieira É, de Sousa Júnior FC, da Silva Chaves Damasceno KSF, Stamford TCM. Faveleira (Cnidoscolus quercifolius Pohl) seed press cake flour: production, characterization and application for use in cookies. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:627-636. [PMID: 36054020 DOI: 10.1002/jsfa.12174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Food processing produces large volumes of waste that can be transformed into useful and relevant ingredients. The by-product of oil extraction from faveleira seeds is a potentially low-cost raw material that can be used for obtaining functional foods. This study aimed to analyze the physicochemical properties, chemical composition, and antioxidant activity of faveleira (Cnidoscolus quercifolius Pohl) seed press cake flour (FSPCF). Additionally, the chemical composition, antioxidant activity, and physical, microbiological, and sensory aspects of cookies with 0, 25%, or 50% substitution of refined wheat flour (RWF) with FSPCF (0-FSPCF, 25-FSPCF, and 50-FSPCF cookies, respectively) were evaluated. RESULTS FSPCF exhibited good physicochemical properties, high antioxidant activity (0.45 ± 0.00 and 42.83 ± 1.30 g TE g-1 for the DPPH and ABTS methods, respectively), and high polyphenol content (particularly gallic acid at 21015.85 ± 4981.76 g kg-1 ) and is also rich in minerals and fiber (359.40 ± 1.10 g kg-1 ). Replacement of RWF with FSPCF increased the activity of antioxidants and the levels of polyphenols, ash, lipids, proteins, and fibers. The 50-FSPCF cookie possessed the highest linoleic acid content (97.50 ± 8.47 g kg-1 ). Flour replacement influenced the weight of the cookies without affecting the other physical characteristics. The cookies yielded good sensory acceptance and purchase intentions. Contamination was not detected. CONCLUSION Faveleira flour possesses high nutritional and bioactive value and can be used as a functional ingredient in cookies and possibly in other bakery products such as bread, cakes, and pastas. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Érica de Andrade Vieira
- Department of Food Technology, Food Science and Technology Postgraduate Program, Technology Center, Universidade Federal da Paraíba, João Pessoa, Brazil
| | | | | | | |
Collapse
|
8
|
Plant-based pecan nut cake beverage enrichment of phytochemicals and antioxidant properties using multi-stage block freeze concentration. FOOD PRODUCTION, PROCESSING AND NUTRITION 2022. [DOI: 10.1186/s43014-022-00116-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
AbstractPecan nut (Carya illinoinensis) processing to obtain oil generates circa 37% of press cake, which is currently underutilized and primarily employed as animal feed. Due to its nutritional- and bioactive-rich composition, pecan nut cake (PNC) can be used as raw material for plant-based beverages, whose properties may be enhanced using a non-thermal technology based on block freeze concentration (BFC). The effect of five-stage BFC on total solids content (TSC), pH, color parameters, retention of phytochemicals, and the antioxidant activity (AA) of a pecan nut cake beverage (PNB) was assessed in this work. BFC afforded 98% (w/w) solids retention after three stages and 85% efficiency after four stages. The process also provided a 254% concentration factor in stage 5. In the last step, approximately a 64% increase in TSC and a slight decrease (7.3%) in pH compared to the control PNB was observed. In addition, total phenolic compounds, condensed tannins, total flavonols, and AA were significantly (P < 0.05) improved after the BFC, resulting in a 2.6-10.2- and 1.9-5.8-fold increase in phytochemicals and antioxidants, respectively. On the other hand, BFC caused the darkening of concentrates due to TSC and bioactive compounds retention. The processing strategy evaluated herein indicated a great potential of PNC as a raw material for obtaining high-quality ingredients for the food industry, which may reduce agro-industrial waste production and add value to a coproduct rich in nutrients and biocompounds with potential biological activity.
Graphical Abstract
Collapse
|
9
|
Loffredi E, Alamprese C. Optimisation of a blend of emulsifier substitutes for clean-label artisanal ice cream. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Oxidative Stress Amelioration of Novel Peptides Extracted from Enzymatic Hydrolysates of Chinese Pecan Cake. Int J Mol Sci 2022; 23:ijms232012086. [PMID: 36292968 PMCID: PMC9603611 DOI: 10.3390/ijms232012086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Pecan (Carya cathayensis) is an important economic crop, and its hydrolyzed peptides have been evidenced to reduce the effect of oxidative stress due to their antioxidant capacity. Hence, the protocols of ultrafiltration and gel filtration chromatography were established to obtain bioactive peptides from by-products of C. cathayensis (pecan cake). As measured by DPPH/ABTS radical scavenging, the peptides with less molecular weight (MW) possess higher antioxidant capacity. PCPH-III (MW < 3 kDa) presented higher radical scavenging capacity than PCPH-II (3 kDa < MW < 10 kDa) and PCPH-I (MW > 10 kDa) measured by DPPH (IC50: 111.0 μg/ mL) and measured by ABTs (IC50: 402.9 μg/mL). The secondary structure and amino acid composition varied by their MW, in which PCPH-II contained more α-helices (26.71%) and β-sheets (36.96%), PCPH-III contained higher ratios of β-turns (36.87%), while the composition of different secondary of PCPH-I was even 25 ± 5.76%. The variation trend of α-helix and random experienced slightly varied from PCPH-I to PCPH-II, while significantly decreased from PCPH-II to PCPH-III. The increasing antioxidant capacity is followed by the content of proline, and PCPH-III had the highest composition (8.03%). With regard to the six peptides identified by LC-MS/MS, two of them (VYGYADK and VLFSNY) showed stronger antioxidant capacity than others. In silico molecular docking demonstrated their combining abilities with a transcription factor Kelch-like ECH-associated protein 1 (Keap1) and speculated that they inhibit oxidative stress through activating the Keap1-Nrf2-ARE pathway. Meanwhile, increased activity of SOD and CAT—antioxidant markers—were found in H2O2-induced cells. The residue of tyrosine was demonstrated to contribute the most antioxidant capacity of VYGYADK and its position affected less. This study provided a novel peptide screening and by-product utilization process that can be applied in natural product developments.
Collapse
|
11
|
Rodrigues NP, Pechina BDR, Sarkis JR. A comprehensive approach to pecan nut valorization: Extraction and characterization of soluble and insoluble‐bound phenolics. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Naira Poerner Rodrigues
- Department of Chemical Engineering Federal University of Rio Grande do Sul (UFRGS) Porto Alegre Brazil
| | - Bruno Diniz Rocha Pechina
- Department of Chemical Engineering Federal University of Rio Grande do Sul (UFRGS) Porto Alegre Brazil
| | - Júlia Ribeiro Sarkis
- Department of Chemical Engineering Federal University of Rio Grande do Sul (UFRGS) Porto Alegre Brazil
| |
Collapse
|
12
|
Braga‐Souto RN, Teixeira MG, Borges LA, Oliveira MLP, Soares JF, Paiva CL, Lima JP. Improvement of sensorial and technological characteristics of chocolate cakes with buriti fruit by‐product. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Lara Aguiar Borges
- Department of Food Engineering and Technology School of Food Engineering, University of Campinas (UNICAMP) São Paulo Brazil
| | | | - José Fábio Soares
- Institute of Agricultural Sciences Federal University of Minas Gerais (UFMG) Montes Claros Brazil
| | - Caroline Liboreiro Paiva
- Institute of Agricultural Sciences Federal University of Minas Gerais (UFMG) Montes Claros Brazil
| | - Juliana Pinto Lima
- Institute of Agricultural Sciences Federal University of Minas Gerais (UFMG) Montes Claros Brazil
| |
Collapse
|
13
|
Reguengo LM, Salgaço MK, Sivieri K, Maróstica Júnior MR. Agro-industrial by-products: Valuable sources of bioactive compounds. Food Res Int 2022; 152:110871. [DOI: 10.1016/j.foodres.2021.110871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/22/2021] [Accepted: 12/02/2021] [Indexed: 11/04/2022]
|
14
|
Recent Applications of Mixture Designs in Beverages, Foods, and Pharmaceutical Health: A Systematic Review and Meta-Analysis. Foods 2021; 10:foods10081941. [PMID: 34441717 PMCID: PMC8391317 DOI: 10.3390/foods10081941] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 01/10/2023] Open
Abstract
Design of Experiments (DoE) is a statistical tool used to plan and optimize experiments and is seen as a quality technology to achieve products excellence. Among the experimental designs (EDs), the mixture designs (MDs) stand out, being widely applied to improve conditions for processing, developing, or formulating novel products. This review aims to provide useful updated information on the capacity and diversity of MDs applications for the industry and scientific community in the areas of food, beverage, and pharmaceutical health. Recent works were selected following the Preferred Reporting Items for Systematic Review and Meta-Analyses statement (PRISMA) flow diagram. Data analysis was performed by self-organizing map (SOM) to check and understand which fields of application/countries/continents are using MDs. Overall, the SOM indicated that Brazil presented the largest number of works using MDs. Among the continents, America and Asia showed a predominance in applications with the same amount of work. Comparing the MDs application areas, the analysis indicated that works are prevalent in food and beverage science in the American continent, while in Asia, health science prevails. MDs were more used to develop functional/nutraceutical products and the formulation of drugs for several diseases. However, we briefly describe some promising research fields in that MDs can still be employed.
Collapse
|
15
|
Morales-de la Peña M, Rábago-Panduro L, Martín-Belloso O, Welti-Chanes J. Challenges and Benefits of Using Pecan Kernels, Derivatives, and Byproducts as Alternative Ingredients in Food Product Development. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1961269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - L.M. Rábago-Panduro
- Escuela De Ingeniería Y Ciencias, Centro De Biotecnología FEMSA, Tecnológico De Monterrey, Monterrey, México
- Departamento De Tecnología De Alimentos – Centro AGROTECNIO, Universidad De Lleida, Lleida, España
| | - O. Martín-Belloso
- Escuela De Ingeniería Y Ciencias, Centro De Biotecnología FEMSA, Tecnológico De Monterrey, Monterrey, México
- Departamento De Tecnología De Alimentos – Centro AGROTECNIO, Universidad De Lleida, Lleida, España
| | - J. Welti-Chanes
- Escuela De Ingeniería Y Ciencias, Centro De Biotecnología FEMSA, Tecnológico De Monterrey, Monterrey, México
| |
Collapse
|
16
|
Application of Pulsed Electric Fields PEF on Pecan Nuts Carya illinoinensis Wangenh. K. Koch: Oil Extraction Yield and Compositional Characteristics of the Oil and Its By-product. FOOD ENGINEERING REVIEWS 2021. [DOI: 10.1007/s12393-020-09267-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Dataset on the phytochemicals, antioxidants, and minerals contents of pecan nut cake extracts obtained by ultrasound-assisted extraction coupled to a simplex-centroid design. Data Brief 2020; 28:105095. [PMID: 31956681 PMCID: PMC6962700 DOI: 10.1016/j.dib.2019.105095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 11/21/2022] Open
Abstract
This article contains a dataset related to the research published in “The potential of the pecan nut cake as an ingredient for the food industry” [1]. A three-component simplex-centroid mixture design coupled with response surface methodology (RSM) was applied to generate statistical models and to analyze the dataset. The method was also applied to evaluate the effect of different solvents (ethanol, water, and acetic acid) on the extraction of bioactive compounds of pecan nut cake (PNC) and its antioxidant activity. Furthermore, simultaneous optimization of the solvent mixture was carried out to predict the optimum point with the best combination of solvents to obtain an extract with enhanced phytochemical composition, as well as high in vitro antioxidant activity. The maximization of total phenolic compounds, condensed tannins, and antioxidant activity of the PNC was predicted by the desirability function. A total of 80 interactions were run to provide the best condition for optimization. The combined use of the different solvents enables a higher recovery of the compounds than their isolated use. This dataset may help other researchers on the application of a mixture design to recover phytochemicals from a broad range of co-products such as defatted meals and other nut cakes, which are sometimes discarded as waste by many industries.
Collapse
|
18
|
Ribeiro PPC, Sousa Júnior FCD, Assis CFD, Veras BOD, Padilha CEDA, Stamford TCM, Damasceno KSFDSC. Phenolic profiles of faveleira (Cnidoscolus quercifolius Pohl) seed and press cake extracts: potential for a new trend in functional food. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2020. [DOI: 10.1590/1981-6723.31519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract The objective of the present study was to assess the phenolic compounds and antioxidant capacity of faveleira seed and press cake extracts. Phenolic profiles were assessed by Ultra-High Performance Liquid Chromatography (UHPLC). Furthermore, the Total Phenolic Content (TPC) and DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging were evaluated. The faveleira seed and press cake extracts are sources of natural phenolic compounds in human diet and have potent antioxidant activity. Gallic acid was the predominant phenolic compound in seed and press cake extracts. The study showed that faveleira seed and press cake extracts can be considered functional foods as well as a potential interest to the food industry.
Collapse
|