1
|
Banicod RJS, Ntege W, Njiru MN, Abubakar WH, Kanthenga HT, Javaid A, Khan F. Production and transformation of biogenic amines in different food products by the metabolic activity of the lactic acid bacteria. Int J Food Microbiol 2025; 428:110996. [PMID: 39615409 DOI: 10.1016/j.ijfoodmicro.2024.110996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024]
Abstract
Protein-rich diets often contain high quantities of biogenic amines (BAs), notably histamine and tyramine, which pose substantial health hazards owing to their toxicity. BAs are primarily produced by the microbial decarboxylation of free amino acids. Lactic acid bacteria (LAB) can either produce BAs using substrate-specific decarboxylase enzymes or degrade them into non-toxic compounds using amine-degrading enzymes such as amine oxidase and multicopper oxidase. Furthermore, LAB may inhibit BA-producing microbes by generating bioactive metabolites, including organic acids and bacteriocins. This paper thoroughly explores the processes underlying BA production and degradation in LAB, with a focus on the diversity of enzymes involved. Metabolic mapping of LAB strains at the genus and species levels reveals their involvement in BA metabolism, from production to degradation. The phylogenetic-based evolutionary relatedness of BA-producing and BA-degrading enzymes among LAB strains sheds light on their functional adaptability to various metabolic needs and ecological settings. These findings have significant practical implications for establishing better microbial management strategies in food production, particularly through strategically using starter or bioprotective cultures to reduce BA buildup. By highlighting the evolutionary and metabolic diversity of LAB, this review helps to optimize industrial fermentation processes, improve food safety protocols, and advance future research and innovation in BA management, ultimately protecting consumer health and supporting regulatory compliance.
Collapse
Affiliation(s)
- Riza Jane S Banicod
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Fisheries Postharvest Research and Development Division, National Fisheries Research and Development Institute, Quezon City 1103, Philippines
| | - Wilson Ntege
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Fisheries Control Regulation and Quality Assurance, Ministry of Agriculture, Animal Industry and Fisheries, Entebbe 10101, Uganda
| | - Moses Njeru Njiru
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Department of Fisheries and Aquaculture, Turkana County Government, Lodwar 30500, Kenya
| | - Woru Hamzat Abubakar
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Aquaculture and Biotechnology Department, National Institute for Freshwater Fisheries Research, New Bussa, Niger State 913003, Nigeria
| | - Hopeful Tusalifye Kanthenga
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Department of Fisheries, Malawi College of Fisheries, Mangochi 301401, Malawi
| | - Aqib Javaid
- Department of Biotechnology and Bioinformatics, University of Hyderabad, India
| | - Fazlurrahman Khan
- Ocean and Fisheries Development International Cooperation Institute, Pukyong National University, Busan 48513, Republic of Korea; International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
2
|
Martini S, Sola L, Cattivelli A, Cristofolini M, Pizzamiglio V, Tagliazucchi D, Solieri L. Cultivable microbial diversity, peptide profiles, and bio-functional properties in Parmigiano Reggiano cheese. Front Microbiol 2024; 15:1342180. [PMID: 38567075 PMCID: PMC10985727 DOI: 10.3389/fmicb.2024.1342180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Lactic acid bacteria (LAB) communities shape the sensorial and functional properties of artisanal hard-cooked and long-ripened cheeses made with raw bovine milk like Parmigiano Reggiano (PR) cheese. While patterns of microbial evolution have been well studied in PR cheese, there is a lack of information about how this microbial diversity affects the metabolic and functional properties of PR cheese. Methods To fill this information gap, we characterized the cultivable fraction of natural whey starter (NWS) and PR cheeses at different ripening times, both at the species and strain level, and investigated the possible correlation between microbial composition and the evolution of peptide profiles over cheese ripening. Results and discussion The results showed that NWS was a complex community of several biotypes belonging to a few species, namely, Streptococcus thermophilus, Lactobacillus helveticus, and Lactobacillus delbrueckii subsp. lactis. A new species-specific PCR assay was successful in discriminating the cheese-associated species Lacticaseibacillus casei, Lacticaseibacillus paracasei, Lacticaseibacillus rhamnosus, and Lacticaseibacillus zeae. Based on the resolved patterns of species and biotype distribution, Lcb. paracasei and Lcb. zeae were most frequently isolated after 24 and 30 months of ripening, while the number of biotypes was inversely related to the ripening time. Peptidomics analysis revealed more than 520 peptides in cheese samples. To the best of our knowledge, this is the most comprehensive survey of peptides in PR cheese. Most of them were from β-caseins, which represent the best substrate for LAB cell-envelope proteases. The abundance of peptides from β-casein 38-88 region continuously increased during ripening. Remarkably, this region contains precursors for the anti-hypertensive lactotripeptides VPP and IPP, as well as for β-casomorphins. We found that the ripening time strongly affects bioactive peptide profiles and that the occurrence of Lcb. zeae species is positively linked to the incidence of eight anti-hypertensive peptides. This result highlighted how the presence of specific LAB species is likely a pivotal factor in determining PR functional properties.
Collapse
Affiliation(s)
- Serena Martini
- Nutritional Biochemistry, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Laura Sola
- Microbial Biotechnologies and Fermentation Technologies, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alice Cattivelli
- Nutritional Biochemistry, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Marianna Cristofolini
- Lactic Acid Bacteria and Yeast Biotechnology, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | | | - Davide Tagliazucchi
- Nutritional Biochemistry, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Lisa Solieri
- Lactic Acid Bacteria and Yeast Biotechnology, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
3
|
He Y, Xie Z, Xu Y, Guo C, Zhao X, Yang H. Effect of slightly acid electrolysed water ice on metabolite and volatilome profile of shrimp (Penaeus vannamei) during cold storage. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Ferrante MC, Mercogliano R. Focus on Histamine Production During Cheese Manufacture and Processing: A Review. Food Chem 2023; 419:136046. [PMID: 37058863 DOI: 10.1016/j.foodchem.2023.136046] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Histamine (HIS) intoxication is a poisoning caused by histamine in food. Cheese is one of the most common dairy products associated with histamine levels which vary depending on the processing methods. The final content of histamine in cheese is influenced by intrinsic and extrinsic factors, their interactions, and contamination stemming from food processing. The application of control measures may be useful to inhibit/reduce production during cheese manufacture and processing but have a limited effect. To reduce histamine intoxication outbreaks from cheese consumption the introduction of quality control programs and appropriate risk mitigation options should be applied along the dairy chain from an overall perspective of food safety based on individual susceptibility and consumer sensitivity. As key food safety, this topic should be considered in future regulations in dairy products because the lack of a clear law on HIS limits in cheese may result in a significant potential deviation from the EU food safety strategy.
Collapse
|
5
|
The significance of cheese sampling in the determination of histamine concentration: Distribution pattern of histamine in ripened cheeses. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Santamarina-García G, Amores G, López de Armentia E, Hernández I, Virto M. Relationship between the Dynamics of Gross Composition, Free Fatty Acids and Biogenic Amines, and Microbial Shifts during the Ripening of Raw Ewe Milk-Derived Idiazabal Cheese. Animals (Basel) 2022; 12:3224. [PMID: 36428451 PMCID: PMC9686631 DOI: 10.3390/ani12223224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
This study reports for the first time the relationship between bacterial succession, characterized by high-throughput sequencing (sequencing of V3-V4 16S rRNA regions), and the evolution of gross composition, free fatty acids (FFAs) and biogenic amines (BAs) during cheese ripening. Specifically, Idiazabal PDO cheese, a raw ewe milk-derived semi-hard o hard cheese, was analysed. Altogether, 8 gross parameters were monitored (pH, dry matter, protein, fat, Ca, Mg, P and NaCl) and 21 FFAs and 8 BAs were detected. The ripening time influenced the concentration of most physico-chemical parameters, whereas the producer mainly affected the gross composition and FFAs. Through an O2PLS approach, the non-starter lactic acid bacteria Lactobacillus, Enterococcus and Streptococcus were reported as positively related to the evolution of gross composition and FFAs release, while only Lactobacillus was positively related to BAs production. Several environmental or non-desirable bacteria showed negative correlations, which could indicate the negative impact of gross composition on their growth, the antimicrobial effect of FFAs and/or the metabolic use of FFAs by these genera, and their ability to degrade BAs. Nonetheless, Obesumbacterium and Chromohalobacter were positively associated with the synthesis of FFAs and BAs, respectively. This research work provides novel information that may contribute to the understanding of possible functional relationships between bacterial communities and the evolution of several cheese quality and safety parameters.
Collapse
Affiliation(s)
- Gorka Santamarina-García
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Unibertsitate Ibilbidea 7, 01006 Vitoria-Gasteiz, Basque Country, Spain
| | - Gustavo Amores
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Unibertsitate Ibilbidea 7, 01006 Vitoria-Gasteiz, Basque Country, Spain
| | | | | | | |
Collapse
|
7
|
Oktariani AF, Ramona Y, Sudaryatma PE, Dewi IAMM, Shetty K. Role of Marine Bacterial Contaminants in Histamine Formation in Seafood Products: A Review. Microorganisms 2022; 10:microorganisms10061197. [PMID: 35744715 PMCID: PMC9227395 DOI: 10.3390/microorganisms10061197] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 02/07/2023] Open
Abstract
Histamine is a toxic biogenic amine commonly found in seafood products or their derivatives. This metabolite is produced by histamine-producing bacteria (HPB) such as Proteus vulgaris, P. mirabilis, Enterobacter aerogenes, E. cloacae, Serratia fonticola, S. liquefaciens, Citrobacter freundii, C. braakii, Clostridium spp., Raoultella planticola, R. ornithinolytica, Vibrio alginolyticus, V. parahaemolyticus, V. olivaceus, Acinetobacter lowffi, Plesiomonas shigelloides, Pseudomonas putida, P. fluorescens, Aeromonas spp., Photobacterium damselae, P. phosphoreum, P. leiognathi, P. iliopiscarium, P. kishitanii, and P. aquimaris. In this review, the role of these bacteria in histamine production in fish and seafood products with consequences for human food poisoning following consumption are discussed. In addition, methods to control their activity in countering histamine production are proposed.
Collapse
Affiliation(s)
- Adnorita Fandah Oktariani
- Doctoral Study Program of Biology, Faculty of Mathematics and Natural Sciences, Udayana University, Denpasar 80361, Bali, Indonesia;
- PT. Intimas Surya, Denpasar 80222, Bali, Indonesia
| | - Yan Ramona
- Doctoral Study Program of Biology, Faculty of Mathematics and Natural Sciences, Udayana University, Denpasar 80361, Bali, Indonesia;
- Integrated Laboratory for Biosciences and Biotechnology, Udayana University, Denpasar 80361, Bali, Indonesia
- Correspondence: (Y.R.); (K.S.); Tel.: +62-85101523213 (Y.R.)
| | | | - Ida Ayu Mirah Meliana Dewi
- School of Biology, Faculty of Mathematics and Natural Sciences, Udayana University, Denpasar 80361, Bali, Indonesia;
| | - Kalidas Shetty
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA
- Correspondence: (Y.R.); (K.S.); Tel.: +62-85101523213 (Y.R.)
| |
Collapse
|
8
|
Botello-Morte L, Moniente M, Gil-Ramírez Y, Virto R, García-Gonzalo D, Pagán R. Identification by means of molecular tools of the microbiota responsible for the formation of histamine accumulated in commercial cheeses in Spain. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
9
|
Redruello B, Szwengiel A, Ladero V, del Rio B, Alvarez MA. Are there profiles of cheeses with a high GABA and safe histamine content? Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Qi Y, Huang L, Zeng Y, Li W, Zhou D, Xie J, Xie J, Tu Q, Deng D, Yin J. Pediococcus pentosaceus: Screening and Application as Probiotics in Food Processing. Front Microbiol 2021; 12:762467. [PMID: 34975787 PMCID: PMC8716948 DOI: 10.3389/fmicb.2021.762467] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Lactic acid bacteria (LAB) are vital probiotics in the food processing industry, which are widely spread in food additives and products, such as meat, milk, and vegetables. Pediococcus pentosaceus (P. pentosaceus), as a kind of LAB, has numerous probiotic effects, mainly including antioxidant, cholesterol-lowering, and immune effects. Recently, the applications in the probiotic- fermentation products have attracted progressively more attentions. However, it is necessary to screen P. pentosaceus with abundant functions from diverse sources due to the limitation about the source and species of P. pentosaceus. This review summarized the screening methods of P. pentosaceus and the exploration methods of probiotic functions in combination with the case study. The screening methods included primary screening and rescreening including gastric acidity resistance, bile resistance, adhesion, antibacterial effects, etc. The application and development prospects of P. pentosaceus were described in detail, and the shortcomings in the practical application of P. pentosaceus were evaluated to make better application of P. pentosaceus in the future.
Collapse
Affiliation(s)
- Yining Qi
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Le Huang
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Yan Zeng
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Wen Li
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Diao Zhou
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | | | - Junyan Xie
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Qiang Tu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Qiang Tu,
| | - Dun Deng
- Tangrenshen Group Co., Ltd., Zhuzhou, China
- Dun Deng,
| | - Jia Yin
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
- Jia Yin,
| |
Collapse
|
11
|
Mika K, Szafarz M, Sapa J, Kotańska M. Influence of betahistine repeated administration on a weight gain and selected metabolic parameters in the model of excessive eating in rats. Biomed Pharmacother 2021; 141:111892. [PMID: 34229247 DOI: 10.1016/j.biopha.2021.111892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 01/02/2023] Open
Abstract
It is important to search for a promising therapeutic target or small molecules that can control excessive eating since limiting the intake of foods, especially tasty ones, could be effective in the treatment or prevention of obesity. Some studies indicate betahistine as an unique drug having the ability to ameliorate, for example, antipsychotic-induced weight gain. This study aimed to determine whether repeated administration of betahistine (histamine H1R agonist and H3R antagonist) could be beneficial in reducing the intake of tasty foods or the body's response to overeating via mechanisms such as by influencing the levels of hormones involved in the regulation of food intake or the levels of selected metabolic parameters. Studies were performed in the excessive eating model in rats, which perfectly illustrates the harmful high-caloric intake from freely available tasty products rich in sugar and fat. Our results indicated that repeated administration of betahistine to rats caused lower gain of body mass compared to the control rats fed palatable feed. Interestingly, betahistine treatment increased the consumption of cheese, which is a source of histamine. Although betahistine did not prevent the development of metabolic disorders, such as reduced glucose tolerance, in test animals, it significantly increased the level of high-density lipoprotein cholesterol, which could certainly be considered beneficial. Further studies should be conducted to investigate the effect of repeated administration of betahistine on satiety, gastrointestinal disorders, and the preference for histamine-containing foods.
Collapse
Affiliation(s)
- Kamil Mika
- Department of Pharmacological Screening, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Cracow, Poland
| | - Małgorzata Szafarz
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Jacek Sapa
- Department of Pharmacological Screening, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Cracow, Poland
| | - Magdalena Kotańska
- Department of Pharmacological Screening, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Cracow, Poland.
| |
Collapse
|
12
|
Wang Y, Wu J, Lv M, Shao Z, Hungwe M, Wang J, Bai X, Xie J, Wang Y, Geng W. Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry. Front Bioeng Biotechnol 2021; 9:612285. [PMID: 34055755 PMCID: PMC8149962 DOI: 10.3389/fbioe.2021.612285] [Citation(s) in RCA: 235] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/16/2021] [Indexed: 12/31/2022] Open
Abstract
Lactic acid bacteria are a kind of microorganisms that can ferment carbohydrates to produce lactic acid, and are currently widely used in the fermented food industry. In recent years, with the excellent role of lactic acid bacteria in the food industry and probiotic functions, their microbial metabolic characteristics have also attracted more attention. Lactic acid bacteria can decompose macromolecular substances in food, including degradation of indigestible polysaccharides and transformation of undesirable flavor substances. Meanwhile, they can also produce a variety of products including short-chain fatty acids, amines, bacteriocins, vitamins and exopolysaccharides during metabolism. Based on the above-mentioned metabolic characteristics, lactic acid bacteria have shown a variety of expanded applications in the food industry. On the one hand, they are used to improve the flavor of fermented foods, increase the nutrition of foods, reduce harmful substances, increase shelf life, and so on. On the other hand, they can be used as probiotics to promote health in the body. This article reviews and prospects the important metabolites in the expanded application of lactic acid bacteria from the perspective of bioengineering and biotechnology.
Collapse
Affiliation(s)
- Yaqi Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jiangtao Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Mengxin Lv
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Zhen Shao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Meluleki Hungwe
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jinju Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaojia Bai
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jingli Xie
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yanping Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Weitao Geng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
13
|
de A Møller CO, Castro-Mejía JL, Krych L, Rattray FP. Histamine-forming ability of Lentilactobacillus parabuchneri in reduced salt Cheddar cheese. Food Microbiol 2021; 98:103789. [PMID: 33875217 DOI: 10.1016/j.fm.2021.103789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 01/23/2023]
Abstract
Lentilactobacillus parabuchneri, a member of the non-starter microbiota in cheese, was recently associated with fast and effective histamine-formation ability, a safety issue. The present study was performed to investigate Lentilactobacillus parabuchneri KUH8, a histamine-producer (HP) in reduced-salt Cheddar cheese. Four cheeses were manufactured: 1) normal-salt (NS); 2) reduced-salt (RS); 3) normal-salt with HP (NS+HP); 4) reduced-salt with HP (RS+HP). Two replicates were produced with milk from the same batch, and the cheeses ripened at 10 and 15 °C. Cheeses were sampled immediately after manufacture and after 1, 3 and 6 months of ripening. Ultra-high-performance-liquid chromatography indicated that with the HP, histamine reached higher levels in reduced-salt cheeses (3.5-3.7% S/M) at 15 °C (86, 1112, 2149 and 3149 mg kg-1), compared to normal-salt cheeses (5.4-6.3% S/M) at 10 °C (78, 584, 593 and 1389 mg kg-1), at each respective cheese-sampling point. Higher salt-content reduced the growth rate of non-starter microbiota, but after six months the levels in all cheeses were similar, according to the ripening temperature: at 10 °C (8.05-8.30 log10 cfu g-1), and at 15 °C (6.00-6.94 log10 cfu g-1). A correlation between increased histamine levels, non-starter-cell development and pH was found. This study highlights the importance of normal-salt content and low-ripening temperature as measures to control histamine-formation and to improve safety in cheese.
Collapse
Affiliation(s)
- Cleide O de A Møller
- University of Copenhagen, Department of Food Science, Section of Microbiology and Fermentation, Rolighedsvej 26, DK-1958, Frederiksberg, Denmark.
| | - Josué L Castro-Mejía
- University of Copenhagen, Department of Food Science, Section of Microbiology and Fermentation, Rolighedsvej 26, DK-1958, Frederiksberg, Denmark
| | - Lukasz Krych
- University of Copenhagen, Department of Food Science, Section of Microbiology and Fermentation, Rolighedsvej 26, DK-1958, Frederiksberg, Denmark
| | - Fergal P Rattray
- University of Copenhagen, Department of Food Science, Section of Microbiology and Fermentation, Rolighedsvej 26, DK-1958, Frederiksberg, Denmark
| |
Collapse
|
14
|
Wechsler D, Irmler S, Berthoud H, Portmann R, Badertscher R, Bisig W, Schafroth K, Fröhlich-Wyder MT. Influence of the inoculum level of Lactobacillus parabuchneri in vat milk and of the cheese-making conditions on histamine formation during ripening. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Moniente M, García‐Gonzalo D, Ontañón I, Pagán R, Botello‐Morte L. Histamine accumulation in dairy products: Microbial causes, techniques for the detection of histamine‐producing microbiota, and potential solutions. Compr Rev Food Sci Food Saf 2021; 20:1481-1523. [DOI: 10.1111/1541-4337.12704] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Marta Moniente
- Departamento de Producción Animal y Ciencia de los Alimentos Facultad de Veterinaria, Instituto Agroalimentario de Aragón‐IA2 (Universidad de Zaragoza‐CITA) Zaragoza Spain
| | - Diego García‐Gonzalo
- Departamento de Producción Animal y Ciencia de los Alimentos Facultad de Veterinaria, Instituto Agroalimentario de Aragón‐IA2 (Universidad de Zaragoza‐CITA) Zaragoza Spain
| | - Ignacio Ontañón
- Laboratorio de Análisis del Aroma y Enología, Química Analítica Facultad de Ciencias, Instituto Agroalimentario de Aragón‐IA2 (Universidad de Zaragoza‐CITA) Zaragoza Spain
| | - Rafael Pagán
- Departamento de Producción Animal y Ciencia de los Alimentos Facultad de Veterinaria, Instituto Agroalimentario de Aragón‐IA2 (Universidad de Zaragoza‐CITA) Zaragoza Spain
| | - Laura Botello‐Morte
- Departamento de Producción Animal y Ciencia de los Alimentos Facultad de Veterinaria, Instituto Agroalimentario de Aragón‐IA2 (Universidad de Zaragoza‐CITA) Zaragoza Spain
| |
Collapse
|
16
|
Møller CODA, Christensen BB, Rattray FP. Modelling the biphasic growth of non-starter lactic acid bacteria on starter-lysate as a substrate. Int J Food Microbiol 2020; 337:108937. [PMID: 33171308 DOI: 10.1016/j.ijfoodmicro.2020.108937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/11/2020] [Accepted: 10/11/2020] [Indexed: 11/19/2022]
Abstract
Since cheese is poor in energy for bacterial growth, it is believed that non-starter lactic acid bacteria growth and flavour development are supported by the nutrients from lysis of the starter culture. This study was performed to investigate the dynamics of interaction between starter and non-starter strains from cheese. A starter culture lysate was prepared by enzymatic digestion and tested as a growth substrate for Lactobacillus sp. strains. The two starter culture strains of Lactococcus lactis were also tested on the starter-lysate. All seventeen strains were individually inoculated at the level of 5.0 log10 cfu mL-1 in M17 broth, with or without 10% starter-lysate, and incubated at 30 °C for 140 h. The optical density600 nm was modelled with the primary log-transformed Logistic model with delay and lag phase duration, maximum specific growth rate as well as maximum population density obtained. Biphasic growth was mainly observed when the strains were able to utilize the starter-lysate as an energy source. To deal with the lack-of-fit related to the biphasic growth, the observed data points of the curve were divided after graphic evaluation and according to deviation of the residuals from the range ±0.05. Modelling was then performed in two phases by applying the same primary Logistic model in each of the two parts of the growth curve. Values of root-mean-square error and graphic evaluation indicated the good fitting of the data with the suggested approach. The growth of the two Lactococcus lactis strains was not affected by the starter-lysate. However, thirteen of the non-starter strains had their growth rates increased. The increase was greatest for Lactobacillus rhamnosus KU-LbR1, which reached maximum optical densities of 0.23 and 0.58 in the absence and the presence of starter-lysate, respectively. No effect of the starter-lysate was shown for the growth of Lactobacillus curvatus strains. The extend of the growth of non-starter strains on the starter-lysate was shown to be species and strain dependent.
Collapse
Affiliation(s)
- C O de A Møller
- University of Copenhagen, Department of Food Science, Section of Microbiology and Fermentation, Rolighedsvej 26, DK-1958 Frederiksberg, Denmark.
| | - B B Christensen
- University of Copenhagen, Department of Food Science, Section of Microbiology and Fermentation, Rolighedsvej 26, DK-1958 Frederiksberg, Denmark; Technical University of Denmark, DTU Bioengineering, Institute of Biotechnology and Biomedicine, Søltofts Plads, Bygning 221, DK-2800 Kgs. Lyngby, Denmark
| | - F P Rattray
- University of Copenhagen, Department of Food Science, Section of Microbiology and Fermentation, Rolighedsvej 26, DK-1958 Frederiksberg, Denmark
| |
Collapse
|