1
|
Kumar D, Roy S, Babu A, Pandey AK. Harnessing Fungal Bioagents Rich in Volatile Metabolites for Sustainable Crop Protection: A Critical Review. J Basic Microbiol 2025; 65:e70003. [PMID: 40007229 DOI: 10.1002/jobm.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/29/2024] [Accepted: 01/11/2025] [Indexed: 02/27/2025]
Abstract
Pests and diseases have a significant impact on crop health and yields, posing a serious threat to global agriculture. Effective management strategies, such as integrated pest management (IPM), including crop rotation, use of synthetic pesticides, biological control, and resistant/tolerant crop varieties, are essential to mitigate these risks and ensure sustainable agricultural practices. Fungal bioagents play an important role in managing phytopathogens and insect pests by acting as biological agents. They promote healthy plant growth by enhancing the uptake of nutrients and combating systemic resistance in plants. Furthermore, fungal bioagents are environmentally friendly, reducing application of fungicides and insecticides and minimizing their negative impact on the crops and environment. Their use in IPM promotes sustainable agriculture and ensures high-quality crops while maintaining soil health and microbial biodiversity. These fungal bioagents are rich sources of volatile organic compounds (VOCs), which play an important role in biological communication during interaction with insect pests and phytopathogens. In pest management, VOC production by beneficial fungi is accountable for their efficacy against pests and pathogens. Thus, this review discusses the important fungal bioagents producing VOCs, extraction methods of VOC, and the use of VOC-producing fungi in pest and disease management, knowledge gaps, and future research areas.
Collapse
Affiliation(s)
- Dheeraj Kumar
- Department of Mycology & Microbiology, Tea Research Association, North Bengal Regional R & D Center, Nagrakata, India
| | - Somnath Roy
- Entomology Department, Tea Research Association, Tocklai Tea Research Institute, Jorhat, India
| | - Azariah Babu
- Entomology Department, Tea Research Association, Tocklai Tea Research Institute, Jorhat, India
| | - Abhay K Pandey
- Department of Mycology & Microbiology, Tea Research Association, North Bengal Regional R & D Center, Nagrakata, India
| |
Collapse
|
2
|
Carbonero-Pacheco J, Ayllón-Gavilán M, Santos-Dueñas IM, Moreno-García J, Moreno J, García-Martínez T, Mauricio JC. Influence of flor yeast starters on volatile and nitrogen compounds during a controlled biological aging. Food Microbiol 2024; 124:104609. [PMID: 39244361 DOI: 10.1016/j.fm.2024.104609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 09/09/2024]
Abstract
Fino Sherry wine undergoes biological aging carried out by a velum of flor yeast within a traditional dynamic system known as "criaderas and solera". The complex microbiota of biofilm-forming Saccharomyces cerevisiae strains play a crucial role in shaping the distinctive organoleptic profile of these types of wines. For this reason, the aim of this study is to analyze the changes produced by different flor yeast strains in the volatilome and the aminogram of different wines from the criaderas and solera system during biological aging in the laboratory, simulating a flor yeast velum condition at different stages of the system. Results suggest that each strain metabolizes wine differently, finding that depending on the wine, some strains are better suited for the process than others. In addition, it is found that the content of biogenic amines in Fino Sherry wines, previously attributed to malolactic bacteria, varies according to the yeast strain metabolizing the wine, suggesting that flor yeast could be used to modify biogenic amines content during biological aging. Results indicate that the use of selected flor yeast starters in biological aging may be of interest to modulate some parameters during Fino Sherry wine aging.
Collapse
Affiliation(s)
- Juan Carbonero-Pacheco
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Cordoba, 14014, Cordoba, Spain
| | - Manuel Ayllón-Gavilán
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Cordoba, 14014, Cordoba, Spain
| | - Inés M Santos-Dueñas
- Department of Inorganic Chemistry and Chemical Engineering, Agrifood Campus of International Excellence CeiA3, Nano Chemistry Institute (IUNAN), University of Córdoba, 14014, Córdoba, Spain
| | - Jaime Moreno-García
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Cordoba, 14014, Cordoba, Spain.
| | - Juan Moreno
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Cordoba, 14014, Cordoba, Spain
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Cordoba, 14014, Cordoba, Spain
| | - Juan Carlos Mauricio
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Cordoba, 14014, Cordoba, Spain
| |
Collapse
|
3
|
Kane DL, Burke B, Diaz M, Wolf C, Fonzi WA. Lethal metabolism of Candida albicans respiratory mutants. PLoS One 2024; 19:e0300630. [PMID: 38578754 PMCID: PMC10997084 DOI: 10.1371/journal.pone.0300630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/01/2024] [Indexed: 04/07/2024] Open
Abstract
The destructive impact of fungi in agriculture and animal and human health, coincident with increases in antifungal resistance, underscores the need for new and alternative drug targets to counteract these trends. Cellular metabolism relies on many intermediates with intrinsic toxicity and promiscuous enzymatic activity generates others. Fuller knowledge of these toxic entities and their generation may offer opportunities of antifungal development. From this perspective our observation of media-conditional lethal metabolism in respiratory mutants of the opportunistic fungal pathogen Candida albicans was of interest. C. albicans mutants defective in NADH:ubiquinone oxidoreductase (Complex I of the electron transport chain) exhibit normal growth in synthetic complete medium. In YPD medium, however, the mutants grow normally until early stationary phase whereupon a dramatic loss of viability occurs. Upwards of 90% of cells die over the subsequent four to six hours with a loss of membrane integrity. The extent of cell death was proportional to the amount of BactoPeptone, and to a lesser extent, the amount of yeast extract. YPD medium conditioned by growth of the mutant was toxic to wild-type cells indicating mutant metabolism established a toxic milieu in the media. Conditioned media contained a volatile component that contributed to toxicity, but only in the presence of a component of BactoPeptone. Fractionation experiments revealed purine nucleosides or bases as the synergistic component. GC-mass spectrometry analysis revealed acetal (1,1-diethoxyethane) as the active volatile. This previously unreported and lethal synergistic interaction of acetal and purines suggests a hitherto unrecognized toxic metabolism potentially exploitable in the search for antifungal targets.
Collapse
Affiliation(s)
- D. Lucas Kane
- Department of Chemistry and Medicinal Chemistry Shared Resource, Georgetown University, Washington, DC, United States of America
| | - Brendan Burke
- Department of Microbiology, Georgetown University, Washington, DC, United States of America
| | - Monica Diaz
- Department of Microbiology, Georgetown University, Washington, DC, United States of America
| | - Christian Wolf
- Department of Chemistry and Medicinal Chemistry Shared Resource, Georgetown University, Washington, DC, United States of America
| | - William A. Fonzi
- Department of Microbiology, Georgetown University, Washington, DC, United States of America
| |
Collapse
|
4
|
Cantoral JM, Florido-Barba A, Lopez-Molina MF, Cordero-Bueso G. Adaptación y desarrollo del velo de flor en vinos “sobretablas” de la D.O. Jerez-Xèrés-Sherry fortificados con alcoholes no vínicos. BIO WEB OF CONFERENCES 2023. [DOI: 10.1051/bioconf/20235602029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
The EC 2019/187 shows the rules for the usage of ethyl alcohols to fortify wines. These must be obtained from products derived from agriculture and the use of alcohols of mineral or chemical origin is not authorized. The ethyl alcohols authorized for the fortification in the D.O. Sherry have wine origin. But, there are other alcohols that could be equally productive and at a lower economic cost, such as beet or sugar cane alcohol. The effect that different types of ethyl alcohols may have on the yeasts of flor remains unknown. Our goal was to analyze the effects of other alcohols (beet, sugar cane, etc.) on the development of the veil of flor. In this way, the yeasts that constitute the veil of flor of Fino wines were isolated and identified by microbiological techniques and characterized by molecular tools and by biochemical and microbiological tests such as cellular hydrophobicity, flocculation, acetic acid production, etc. Then, base wines were fortified with different distilled alcohols, such as malt brandy, tequila, among others. Biological aging under the veil of flor was monitored to later determine the volatile fractions. Alcohol from sugar cane could be a promising alternative to fortify Fino wines.
Collapse
|
5
|
Changes in the aroma characteristics during the different processes of dry Cabernet Sauvignon wine production. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Wang M, Wang J, Chen J, Philipp C, Zhao X, Wang J, Liu Y, Suo R. Effect of Commercial Yeast Starter Cultures on Cabernet Sauvignon Wine Aroma Compounds and Microbiota. Foods 2022; 11:foods11121725. [PMID: 35741923 PMCID: PMC9222704 DOI: 10.3390/foods11121725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 01/27/2023] Open
Abstract
Commercial Saccharomyces cerevisiae plays an important role in the traditional winemaking industry. In this study, the correlation of microbial community and aroma compound in the process of alcohol fermentation of Cabernet Sauvignon by four different commercial starters was investigated. The results showed that there was no significant difference in the fermentation parameters of the four starters, but there were differences in microbial diversity among the different starters. The wine samples fermented by CEC01 had higher microbial abundance. GC-MS detected a total of 58 aromatic compounds from the fermentation process by the experimental yeasts. There were 25 compounds in the F6d variant, which was higher than in other samples. The PCA score plot showed that 796 and F15 yeast-fermented wines had similar aromatic characteristic compositions. According to partial least squares (PLS, VIP > 1.0) analysis and Spearman’s correlation analysis, 11, 8, 8 and 10 microbial genera were identified as core microorganisms in the fermentation of 796, CEC01, CECA and F15 starter, respectively. Among them, Leuconostoc, Lactobacillus, Sphingomonas and Pseudomonas played an important role in the formation of aroma compounds such as Ethyl caprylate, Ethyl caprate and Ethyl-9-decenoate. These results can help us to have a better understanding of the effects of microorganisms on wine aroma and provide a theoretical basis for improving the flavor quality of Cabernet Sauvignon wine.
Collapse
Affiliation(s)
- Meiqi Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; (M.W.); (J.W.); (J.W.); (R.S.)
| | - Jiarong Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; (M.W.); (J.W.); (J.W.); (R.S.)
| | - Jiawei Chen
- China Great Wall Wine Co., Ltd., Zhangjiakou 075400, China; (J.C.); (X.Z.)
| | - Christian Philipp
- Höhere Bundeslehranstalt und Bundesamt für Wein- und Obstbau, Wienerstraße 74, 3400 Klosterneuburg, Austria;
| | - Xiaoning Zhao
- China Great Wall Wine Co., Ltd., Zhangjiakou 075400, China; (J.C.); (X.Z.)
| | - Jie Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; (M.W.); (J.W.); (J.W.); (R.S.)
| | - Yaqiong Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; (M.W.); (J.W.); (J.W.); (R.S.)
- Correspondence: ; Tel.: +86-13503129927
| | - Ran Suo
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; (M.W.); (J.W.); (J.W.); (R.S.)
| |
Collapse
|
7
|
Morata A, Arroyo T, Bañuelos MA, Blanco P, Briones A, Cantoral JM, Castrillo D, Cordero-Bueso G, Del Fresno JM, Escott C, Escribano-Viana R, Fernández-González M, Ferrer S, García M, González C, Gutiérrez AR, Loira I, Malfeito-Ferreira M, Martínez A, Pardo I, Ramírez M, Ruiz-Muñoz M, Santamaría P, Suárez-Lepe JA, Vilela A, Capozzi V. Wine yeast selection in the Iberian Peninsula: Saccharomyces and non- Saccharomyces as drivers of innovation in Spanish and Portuguese wine industries. Crit Rev Food Sci Nutr 2022; 63:10899-10927. [PMID: 35687346 DOI: 10.1080/10408398.2022.2083574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Yeast selection for the wine industry in Spain started in 1950 for the understanding of the microbial ecology, and for the selection of optimal strains to improve the performance of alcoholic fermentation and the overall wine quality. This process has been strongly developed over the last 30 years, firstly on Saccharomyces cerevisiae, and, lately, with intense activity on non-Saccharomyces. Several thousand yeast strains have been isolated, identified and tested to select those with better performance and/or specific technological properties. The present review proposes a global survey of this massive ex-situ preservation of eukaryotic microorganisms, a reservoir of biotechnological solutions for the wine sector, overviewing relevant screenings that led to the selection of strains from 12 genera and 22 species of oenological significance. In the first part, the attention goes to the selection programmes related to relevant wine-producing areas (i.e. Douro, Extremadura, Galicia, La Mancha and Uclés, Ribera del Duero, Rioja, Sherry area, and Valencia). In the second part, the focus shifted on specific non-Saccharomyces genera/species selected from different Spanish and Portuguese regions, exploited to enhance particular attributes of the wines. A fil rouge of the dissertation is the design of tailored biotechnological solutions for wines typical of given geographic areas.
Collapse
Affiliation(s)
- A Morata
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - T Arroyo
- Departamento de Investigación Agroalimentaria, IMIDRA, Finca El Encín, Madrid, Spain
| | - M A Bañuelos
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - P Blanco
- Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Leiro, Ourense, Spain
| | - A Briones
- Tecnología de alimentos, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - J M Cantoral
- Laboratorio de Microbiología. Dept. de Biomedicina, Biotecnología y Salud Pública. Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - D Castrillo
- Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Leiro, Ourense, Spain
| | - G Cordero-Bueso
- Laboratorio de Microbiología. Dept. de Biomedicina, Biotecnología y Salud Pública. Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - J M Del Fresno
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - C Escott
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - R Escribano-Viana
- Finca La Grajera, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Logroño, Spain
| | - M Fernández-González
- Tecnología de alimentos, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - S Ferrer
- ENOLAB, Institut de Biotecnologia i Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
| | - M García
- Departamento de Investigación Agroalimentaria, IMIDRA, Finca El Encín, Madrid, Spain
| | - C González
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - A R Gutiérrez
- Finca La Grajera, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Logroño, Spain
| | - I Loira
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - M Malfeito-Ferreira
- Departamento Recursos Naturais Ambiente e Território (DRAT), Linking Landscape Environment Agriculture and Food Research Centre (LEAF), Instituto Superior de Agronomía, Tapada da Ajuda, Lisboa, Portugal
| | - A Martínez
- Departamento de Ciencias Biomédicas, Facultad de Ciencias (Edificio Antiguo Rectorado), Universidad de Extremadura, Badajoz, Spain
| | - I Pardo
- ENOLAB, Institut de Biotecnologia i Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
| | - M Ramírez
- Departamento de Ciencias Biomédicas, Facultad de Ciencias (Edificio Antiguo Rectorado), Universidad de Extremadura, Badajoz, Spain
| | - M Ruiz-Muñoz
- Laboratorio de Microbiología. Dept. de Biomedicina, Biotecnología y Salud Pública. Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - P Santamaría
- Finca La Grajera, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Logroño, Spain
| | - J A Suárez-Lepe
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - A Vilela
- CQ-VR, Chemistry Research Centre, School of Life and Environmental Sciences (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - V Capozzi
- National Research Council (CNR) of Italy, c/o CS-DAT, Institute of Sciences of Food Production, Foggia, Italy
| |
Collapse
|
8
|
Tronchoni J, Gonzalez R, Guindal AM, Calleja E, Morales P. Exploring the suitability of Saccharomyces cerevisiae strains for winemaking under aerobic conditions. Food Microbiol 2021; 101:103893. [PMID: 34579853 DOI: 10.1016/j.fm.2021.103893] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022]
Abstract
Aerobic fermentation was previously proposed to reduce the ethanol content of wine. The main constraint found for Saccharomyces cerevisiae to be used under these conditions was the high levels of acetic acid produced by all S. cerevisiae strains previously tested. This work addressed the identification of S. cerevisiae wine yeast strains suitable for aerobic fermentation and the optimization of fermentation conditions to obtain a reduced ethanol yield with acceptable volatile acidity. This approach unveiled a great diversity in acetic acid yield for different S. cerevisiae strains under aerobic conditions, with some strains showing very low volatile acidity. Three strains were selected for further characterization in bioreactors, with natural grape must, under aerobic and anaerobic conditions. Ethanol yields were lower under aerobic than under anaerobic conditions for all strains, and acetic acid levels were low for two of them. Strain-dependent changes in volatile compounds were also observed between aerobic and anaerobic conditions. Finally, the process was optimized at laboratory scale for one strain. This is the first report of S. cerevisiae wine strains showing low acetic acid production under aerobic conditions and paves the way for simplified aerobic fermentation protocols aimed to reducing the alcohol content of wines.
Collapse
Affiliation(s)
- Jordi Tronchoni
- Instituto de Ciencias de La Vid y Del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Finca La Grajera, Carretera de Burgos Km 6, 26007, Logroño, La Rioja, Spain; Universidad Internacional de Valencia - VIU, C/ Pintor Sorolla 21, 46002, Valencia, Spain.
| | - Ramon Gonzalez
- Instituto de Ciencias de La Vid y Del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Finca La Grajera, Carretera de Burgos Km 6, 26007, Logroño, La Rioja, Spain.
| | - Andrea M Guindal
- Instituto de Ciencias de La Vid y Del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Finca La Grajera, Carretera de Burgos Km 6, 26007, Logroño, La Rioja, Spain.
| | - Elena Calleja
- Instituto de Ciencias de La Vid y Del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Finca La Grajera, Carretera de Burgos Km 6, 26007, Logroño, La Rioja, Spain.
| | - Pilar Morales
- Instituto de Ciencias de La Vid y Del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Finca La Grajera, Carretera de Burgos Km 6, 26007, Logroño, La Rioja, Spain.
| |
Collapse
|
9
|
Biological Processes Highlighted in Saccharomyces cerevisiae during the Sparkling Wines Elaboration. Microorganisms 2020; 8:microorganisms8081216. [PMID: 32796563 PMCID: PMC7464517 DOI: 10.3390/microorganisms8081216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/05/2020] [Accepted: 08/09/2020] [Indexed: 12/20/2022] Open
Abstract
Sparkling wines elaboration has been studied by several research groups, but this is the first report on analysis of biological processes according to the Gene Ontology terms (GO terms) and related to proteins expressed by yeast cells during the second fermentation of sparkling wines. This work provides a comprehensive study of the most relevant biological processes in Saccharomyces cerevisiae P29, a sparkling wine strain, during the second fermentation under two conditions (without and with endogenous CO2 overpressure) in the middle and the end of second fermentation. Consequently, a proteomic analysis with the OFFGEL fractionator and protein identification with LTQ Orbitrap XL coupled to HPLC were performed. The classification of biological processes was carried out using the tools provided by the Saccharomyces Genome Database. Results indicate that a greater number of biological processes were identified under condition without CO2 overpressure and in the middle of the fermentation versus the end of the second fermentation. The biological processes highlighted under condition without CO2 overpressure in the middle of the fermentation were involved in the carbohydrate and lipid metabolic processes and catabolic and biosynthetic processes. However, under CO2 overpressure, specific protein expression in response to stress, transport, translation, and chromosome organization and specific processes were not found. At the end of fermentation, there were higher specific processes under condition without CO2 overpressure; most were related to cell division, growth, biosynthetic process, and gene transcription resulting in increased cell viability in this condition. Under CO2 overpressure condition, the most representative processes were related to translation as tRNA metabolic process, chromosome organization, mRNA processing, ribosome biogenesis, and ribonucleoprotein complex assembly, probably in response to the stress caused by the hard fermentation conditions. Therefore, a broader knowledge of the adaptation of the yeast, and its behavior under typical conditions to produce sparkling wine, might improve and favor the wine industry and the selection of yeast for obtaining a high-quality wine.
Collapse
|
10
|
Ruiz-Muñoz M, Cordero-Bueso G, Benítez-Trujillo F, Martínez S, Pérez F, Cantoral JM. Rethinking about flor yeast diversity and its dynamic in the "criaderas and soleras" biological aging system. Food Microbiol 2020; 92:103553. [PMID: 32950147 DOI: 10.1016/j.fm.2020.103553] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/26/2020] [Accepted: 05/25/2020] [Indexed: 10/24/2022]
Abstract
Fino wine is one of the most important Sherry wines and it is obtained through a complex and dynamic biological aging system. In this study, wine and veil of flor samples from fifty-two barrels with different aging levels and distributed in three different wineries from the Jerez-Xèrés-Sherry winemaking area have been analyzed during two years. Some of the wine compounds most deeply involved in flor yeast metabolism were analyzed to take into account the blending effect of this system. On the other hand, veil of flor was analyzed by molecular methods, finding five different species: S. cerevisiae, W. anomalus, P. membranaefaciens, P. kudriavzevii and P. manshurica, being the first time that the three last species have been reported in this biological aging system. Since S. cerevisiae was the vast majority of the isolates, its intraspecies variability was also analyzed by the simultaneous amplification of three microsatellite loci, obtaining nine different S. cerevisiae genotypes, also differentiated according to their physiological properties. Biodiversity analysis showed there were significant differences between the three wineries in the three aging scales, although the overall diversity was relatively low. Moreover, variations in the relative frequency of the different S. cerevisiae genotypes were found to be seasonal-dependent.
Collapse
Affiliation(s)
- Marina Ruiz-Muñoz
- Laboratory of Microbiology, Department of Biomedicine, Biotechnology and Public Health, University of Cádiz, Puerto Real, Spain
| | - Gustavo Cordero-Bueso
- Laboratory of Microbiology, Department of Biomedicine, Biotechnology and Public Health, University of Cádiz, Puerto Real, Spain.
| | | | | | - Fernando Pérez
- Luis Caballero S.A., El Puerto de Santa María, Cádiz, Spain
| | - Jesús Manuel Cantoral
- Laboratory of Microbiology, Department of Biomedicine, Biotechnology and Public Health, University of Cádiz, Puerto Real, Spain
| |
Collapse
|