1
|
Yan K, Kong J, Yu L, Yang J, Zeng X, Bai W, Qian M, Dong H. Flavor evolution and identification of the warmed-over flavor (WOF) in pre-cooked goose meat by means of HS-SPME-GC-MS and GC-IMS. Food Chem 2025; 481:143979. [PMID: 40157103 DOI: 10.1016/j.foodchem.2025.143979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/19/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
This study explored the flavor evolution of pre-cooked goose meat during storage, focusing on lipid oxidation's impact on warmed-over flavor (WOF). Using electronic nose, GC-IMS, and SPME-GC-MS to characterize volatile organic compounds (VOCs), 60 VOCs were identified by GC-IMS. SPME-GC-MS and OAV analysis identified 15 key VOCs, with OPLS-DA and VIP analysis highlighting diisobutyl phthalate, 2-octenoic acid, octadecyl alcohol and 1-octeno-3-alcohol as potential indicators of storage time in pre-cooked goose meat. Pearson correlation analysis revealed a strong link between key VOCs and lipid oxidation, especially secondary oxidation and polyunsaturated fatty acids (C24:1, C22:6n3). These findings emphasize the role of lipid oxidation in flavor intensification, providing valuable insights for flavor profiling and oxidation control.
Collapse
Affiliation(s)
- Kangling Yan
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jiaxin Kong
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Limei Yu
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Juan Yang
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Xiaofang Zeng
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Min Qian
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Hao Dong
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China.
| |
Collapse
|
2
|
Wang Y, Ma Y, Duan J, Wang B, Ma T, Jiang Y, Zhang B. Discrimination and characterization of the volatile organic compounds in red and black raspberry wines fermented with different commercial Saccharomyces cerevisiae: An integrated analysis using E-nose, GC-MS, GC-IMS, and multivariate statistical models. Food Chem 2025; 478:143678. [PMID: 40056627 DOI: 10.1016/j.foodchem.2025.143678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 02/25/2025] [Accepted: 02/28/2025] [Indexed: 03/10/2025]
Abstract
This study employed E-nose, GC-MS, and GC-IMS to analyze the volatile organic compounds (VOCs) of red and black raspberry wines fermented by commercial Saccharomyces cerevisiae (X16, RB2, XarOm). Relative odor activity value (ROAV) analysis, orthogonal partial least squares discriminant analysis (OPLS-DA), and random forest (RF) were employed to assess the VOCs and predict key aroma compounds comprehensively. The results revealed that red raspberry wine has a higher ester content (64.18% of total VOC content), while black raspberry wine showcased a significantly higher terpene concentration (13.60%). Moreover, the raspberry wine fermented with X16 yeasts demonstrated the highest contents of esters (64.88%) and alcohols (26.21%). In contrast, the RB2 yeasts displayed a higher level of terpenes (9.56%). The ROAV analysis, OPLS-DA, and RF models predicted 11 key aroma compounds in samples. These findings would provide valuable data for the application of commercial S. cerevisiae in the flavor modulation of raspberry wine.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Gansu Province Wine Industry Technology Research and Development Center, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yinghu Ma
- Gansu Province Wine Industry Technology Research and Development Center, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Jianling Duan
- Lintao Good Fruit Ecological Agricultural Science and Technology Development Co. Ltd., Dingxi 730500, China
| | - Bo Wang
- Lanzhou Customs Integrated Technology Center, Lanzhou 730030, China
| | - Tengzhen Ma
- Gansu Province Wine Industry Technology Research and Development Center, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yumei Jiang
- Gansu Province Wine Industry Technology Research and Development Center, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Bo Zhang
- Gansu Province Wine Industry Technology Research and Development Center, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
3
|
Tan J, Ji M, Gong J, Chitrakar B. The formation of volatiles in fruit wine process and its impact on wine quality. Appl Microbiol Biotechnol 2024; 108:420. [PMID: 39017989 PMCID: PMC11254978 DOI: 10.1007/s00253-024-13084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 07/18/2024]
Abstract
Fruit wine is one of the oldest fermented beverages made from non-grape fruits. Owing to the differences in fruit varieties, growing regions, climates, and harvesting seasons, the nutritional compositions of fruits (sugars, organic acids, etc.) are different. Therefore, the fermentation process and microorganisms involved are varied for a particular fruit selected for wine production, resulting in differences in volatile compound formation, which ultimately determine the quality of fruit wine. This article reviews the effects of various factors involved in fruit wine making, especially the particular modifications differing from the grape winemaking process and the selected strains suitable for the specific fruit wine fermentation, on the formation of volatile compounds, flavor and aroma profiles, and quality characteristics of the wine thus produced. KEY POINTS: • The volatile profile and fruit wine quality are affected by enological parameters. • The composition and content of nutrients in fruit must impact volatile profiles. • Yeast and LAB are the key determining factors of the volatile profiles of fruit wines.
Collapse
Affiliation(s)
- Jianxin Tan
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, People's Republic of China.
| | - Mingyue Ji
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Jiangang Gong
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Bimal Chitrakar
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, People's Republic of China.
| |
Collapse
|
4
|
Bezerra M, Ribeiro M, Cosme F, Nunes FM. Overview of the distinctive characteristics of strawberry, raspberry, and blueberry in berries, berry wines, and berry spirits. Compr Rev Food Sci Food Saf 2024; 23:e13354. [PMID: 38682687 DOI: 10.1111/1541-4337.13354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024]
Abstract
Red berries have gained popularity as functional and nutritious food due to their health benefits, leading to increased consumer demand and higher production, totaling over 11,000 ktons for strawberries, raspberries, and blueberries combined in 2021. Nutritionally, strawberries, raspberries, and blueberries present high levels of vitamin C (9.7-58.8 mg/100 g dry weight [dw]), folates (6-24 µg/100 g dw), and minerals (96-228 mg/100 g dw). Due to their perishable nature, producers have utilized alcoholic fermentation to extend their shelf life, not only increasing the lifespan of red berries but also attracting consumers through the production of novel beverages. Strawberry, blueberry, and raspberry wines possess low alcohol (5.5-11.1% v/v), high acidity (3.2-17.6 g/L), and interesting bioactive molecules such as phenolic compounds, carotenoids, polysaccharides, and melatonin. Distillation holds tremendous potential for reducing food waste by creating red berry spirits of exceptional quality. Although research on red berry spirits is still in the early stages, future studies should focus on their production and characterization. By incorporating these factors, the production chain would become more sustainable, profitable, and efficient by reducing food waste, capitalizing on consumer acceptance, and leveraging the natural health-promoting characteristics of these products. Therefore, this review aims to provide a comprehensive overview of the characteristics of strawberry, blueberry, and red raspberry in berries, wines, and spirits, with a focus on their chemical composition and production methods.
Collapse
Affiliation(s)
- Mário Bezerra
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Miguel Ribeiro
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Genetics and Biotechnology Department, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Fernanda Cosme
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Biology and Environment Department, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Fernando M Nunes
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Chemistry Department, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| |
Collapse
|
5
|
Zeng C, Mu Y, Yuan J, Zhang H, Song J, Kang S. Effects of Torulaspora delbrueckii and Saccharomyces cerevisiae Co-Fermentation on the Physicochemical and Flavor Compounds of Huaniu Apple Cider. Molecules 2024; 29:1750. [PMID: 38675570 PMCID: PMC11052012 DOI: 10.3390/molecules29081750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The effects of different fermentation methods utilizing Torulaspora delbrueckii 1004 and Saccharomyces cerevisiae 32169 on the physicochemical properties, organic acid content, polyphenol and flavonoid concentrations, antioxidant activity, and volatile aroma compounds of Huaniu apple cider were investigated in this study. Employing methods of single inoculation, co-inoculation, and sequential inoculation, it was found that sequential fermentation exhibited strong fermentative power in the initial stages, effectively reducing the content of soluble solids and achieving a balanced composition of malic, succinic, and citric acids while maintaining a lower titratable acidity. Sequential inoculation was observed to significantly enhance the total polyphenols and flavonoids, as well as the antioxidant capacity (p < 0.05). Specifically, in the synthesis of volatile aroma compounds, sequential inoculation significantly enhanced the richness and diversity of the Huaniu apple cider's aromas, particularly in terms of the concentration of ester compounds (p < 0.05). Principal component analysis further confirmed the superiority of sequential inoculation in terms of aroma component diversity and richness. The findings of this study suggest that sequential inoculation of fermentation with non-Saccharomyces and S. cerevisiae is an effective strategy for optimizing the flavor characteristics of Huaniu apple cider, offering valuable theoretical support and practical guidance for enhancing cider quality and fostering the development of new products.
Collapse
Affiliation(s)
| | | | | | | | | | - Sanjiang Kang
- Agricultural Product Storge and Processing Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; (C.Z.); (Y.M.); (J.Y.); (H.Z.); (J.S.)
| |
Collapse
|
6
|
Wang C, Sun S, Zhou H, Cheng Z. The Influence of Lactiplantibacillus plantarum and Oenococcus oeni Starters on the Volatile and Sensory Properties of Black Raspberry Wine. Foods 2023; 12:4212. [PMID: 38231611 DOI: 10.3390/foods12234212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 01/19/2024] Open
Abstract
Malolactic fermentation (MLF) by different lactic acid bacteria has a significantly influence on the aromatic and sensory properties of wines. In this study, four strains including two Oenococcus oeni (commercial O-Mega and native DS04) and two Lactiplantibacillus plantarum (commercial NoVA and native NV27) were tested for their performances over MLF and effects on the basic composition, volatile components and sensory property of black raspberry wine. Results of microbial growth kinetics showed Lactiplantibacillus strains had higher fermentation efficiency than Oenococcus. The volatile compounds were determined by GC-IMS; NoVA and NV27 had higher production of volatile esters, and DS04 synthesized more amounts of acetate esters and several alcohols. In terms of sensory evaluation, NV27 and DS04 showed great aroma properties due to the enhanced fruity and sweet aroma. Furthermore, PLS was used for the establishment of the relationship between volatiles and sensory odors and sensory data interpretation.
Collapse
Affiliation(s)
- Changsen Wang
- School of Food Engineering, Ludong University, Yantai 264025, China
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shuyang Sun
- School of Food Engineering, Ludong University, Yantai 264025, China
| | - Haoran Zhou
- School of Food Engineering, Ludong University, Yantai 264025, China
| | - Zhenzhen Cheng
- School of Food Engineering, Ludong University, Yantai 264025, China
| |
Collapse
|
7
|
Yu J, Zhang K, Wang Y, Zhai X, Wan X. Flavor perception and health benefits of tea. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 106:129-218. [PMID: 37722772 DOI: 10.1016/bs.afnr.2023.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
As one of the most consumed non-alcoholic beverages in the world, tea is acclaimed for its pleasant flavor and various health benefits. Different types of tea present a distinctive flavor and bioactivity due to the changes in the composition and proportion of respective compounds. This article aimed to provide a more comprehensive understanding of tea flavor (including aroma and taste) and the character of tea in preventing and alleviating diseases. The recent advanced modern analytical techniques for revealing flavor components in tea, including enrichment, identification, quantitation, statistics, and sensory evaluation methodologies, were summarized in the following content. Besides, the role of tea in anti-cancer, preventing cardiovascular disease and metabolic syndrome, anti-aging and neuroprotection, and regulating gut microbiota was also listed in this article. Moreover, questions and outlooks were mentioned to objectify tea products' flavor quality and health benefits on a molecular level and significantly promote our understanding of the comprehensive value of tea as a satisfactory health beverage in the future.
Collapse
Affiliation(s)
- Jieyao Yu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, PR China
| | - Kangyi Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, PR China
| | - Yijun Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, PR China
| | - Xiaoting Zhai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, PR China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, PR China.
| |
Collapse
|
8
|
Wang Y, Hu Z, Wang B, Yang D, Liao J, Zhang M. Effect of high-voltage electrospray on the inactivation, induced damage and growth of microorganisms and flavour components of honey raspberry wine. Int J Food Microbiol 2023; 388:110060. [PMID: 36630827 DOI: 10.1016/j.ijfoodmicro.2022.110060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/29/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022]
Abstract
Electrospray (ES) is a new non-thermal processing technology for pasteurising liquid foods. This study aimed to investigate the effects of ES on the cell structure and function of Saccharomyces cerevisiae, Escherichia coli and Staphylococcus aureus and then compare the effects of ES and heat treatment (HT) on microbial inactivation and flavour composition in honey raspberry wine. First, we found that the inactivation effect of ES treatment on the three microorganisms was significantly influenced by the voltage intensity. The degree of damage to the cellular structures and functions of the three microorganisms increased with increasing voltage. Second, the environment in which the microorganisms were present significantly influenced the ES pasteurisation effect. Pasteurisation by ES was better when the three microorganisms were in honey raspberry wine than in saline. Finally, the total number of colonies in honey raspberry wine was reduced from 4.50 to 2.03 log colony forming units/mL after ES treatment, and the wine had good stability during storage (84 days at 4 °C). In the honey raspberry wine, the contents of the main flavour substances (ketones and esters) did not change significantly after ES treatment, but HT decreased the content of esters and ketones by 13.5 % and 75.4 %, respectively.
Collapse
Affiliation(s)
- Yuchuan Wang
- School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Zili Hu
- School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Bo Wang
- School of Food and Biological Engineering, Jiangsu University, 212013 Zhenjiang, Jiangsu, China
| | - Dongmei Yang
- School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Junying Liao
- Yili Tanggulaikumo Biotechnology Co., Ltd., 835100 Yili, Xinjiang, China
| | - Min Zhang
- School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China
| |
Collapse
|
9
|
Effect of Bacillus subtilis (Bacillus subtilis subsp.) inoculation on the fermentation characteristics of Penaeus sinensis by-products: Protease activity and volatile property. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
10
|
Zhang S, Xing X, Chu Q, Sun S, Wang P. Impact of co-culture of Lactobacillus plantarum and Oenococcus oeni at different ratios on malolactic fermentation, volatile and sensory characteristics of mulberry wine. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Li S, Du D, Wang J, Wei Z. Application progress of intelligent flavor sensing system in the production process of fermented foods based on the flavor properties. Crit Rev Food Sci Nutr 2022; 64:3764-3793. [PMID: 36259959 DOI: 10.1080/10408398.2022.2134982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fermented foods are sensitive to the production conditions because of microbial and enzymatic activities, which requires intelligent flavor sensing system (IFSS) to monitor and optimize the production process based on the flavor properties. As the simulation system of human olfaction and gustation, IFSS has been widely used in the field of food with the characteristics of nondestructive, pollution-free, and real-time detection. This paper reviews the application of IFSS in the control of fermentation, ripening, and shelf life, and the potential in the identification of quality differences and flavor-producing microbes in fermented foods. The survey found that electronic nose (tongue) is suitable to monitor fermentation process and identify food authenticity in real time based on the changes of flavor profile. Gas chromatography-ion mobility spectrometry and nuclear magnetic resonance technology can be used to analyze the flavor metabolism of fermented foods at various production stages and explore the correlation between flavor substances and microorganisms.
Collapse
Affiliation(s)
- Siying Li
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| | - Dongdong Du
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| | - Jun Wang
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| | - Zhenbo Wei
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Liu A, Zhang H, Liu T, Gong P, Wang Y, Wang H, Tian X, Liu Q, Cui Q, Xie X, Zhang L, Yi H. Aroma classification and flavor characterization of Streptococcus thermophilus fermented milk by HS-GC-IMS and HS-SPME-GC-TOF/MS. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Cao X, Ru S, Fang X, Li Y, Wang T, Lyu X. Effects of alcoholic fermentation on the non-volatile and volatile compounds in grapefruit (Citrus paradisi Mac. cv. Cocktail) juice: A combination of UPLC-MS/MS and gas chromatography ion mobility spectrometry analysis. Front Nutr 2022; 9:1015924. [PMID: 36245492 PMCID: PMC9554462 DOI: 10.3389/fnut.2022.1015924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Grapefruit has attracted much attention as a functional fruit, of which “Cocktail” is a special variety with low acidity. The present study aimed to investigate the effects of alcoholic fermentation on the non-volatile and volatile compounds of “Cocktail” grapefruit juice. To analyze, a non-targeted metabolomics method based on UPLC-MS/MS and volatiles analysis using GC-IMS were performed. A total of 1015 phytochemicals were identified, including 296 flavonoids and 145 phenolic acids, with noticeably increasing varieties and abundance following the fermentation. Also 57 volatile compounds were detected, and alcoholic fermentation was effective in modulating aromatic profiles of grapefruit juice, with terpenes and ketones decreasing, and alcohols increasing together with esters. Citraconic acid and ethyl butanoate were the most variable non-volatile and volatile substances, respectively. The results provide a wealth of information for the study of “Cocktail” grapefruit and will serve as a valuable reference for the large-scale production of grapefruit fermented juice in the future.
Collapse
|
14
|
Production of fermented beverage using pineapple residue as an alcoholic fermentation substrate: a physicochemical and sensory approach. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04124-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Zhai X, Zhang L, Granvogl M, Ho CT, Wan X. Flavor of tea (Camellia sinensis): A review on odorants and analytical techniques. Compr Rev Food Sci Food Saf 2022; 21:3867-3909. [PMID: 35810334 DOI: 10.1111/1541-4337.12999] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/08/2022] [Accepted: 05/23/2022] [Indexed: 01/28/2023]
Abstract
Tea is among the most consumed nonalcoholic beverages worldwide. Understanding tea flavor, in terms of both sensory aspects and chemical properties, is essential for manufacturers and consumers to maintain high quality of tea products and to correctly distinguish acceptable or unacceptable products. This article gives a comprehensive review on the aroma and off-flavor characteristics associated with 184 odorants. Although many efforts have been made toward the characterization of flavor compounds in different types of tea, modern flavor analytical techniques that affect the results of flavor analysis have not been compared and summarized systematically up to now. Thus, the overview mainly provides the instrumental flavor analytical techniques for both aroma and taste of tea (i.e., extraction and enrichment, qualitative, quantitative, and chemometric approaches) as well as descriptive sensory analytical methodologies for tea, which is helpful for tea flavor researchers. Flavor developments of tea evolved toward time-saving, portability, real-time monitoring, and visualization are also prospected to get a deeper insight into the influences of different processing techniques on the formation and changes of flavor compounds, especially desired flavor compounds and off-flavor substances present at (ultra)trace amounts in tea and tea products.
Collapse
Affiliation(s)
- Xiaoting Zhai
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China
| | - Michael Granvogl
- Department of Food Chemistry and Analytical Chemistry (170a), Institute of Food Chemistry, Faculty of Natural Science, University of Hohenheim, Stuttgart, Germany
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China
| |
Collapse
|
16
|
Huang Y, Zhang P, Liu W, Zhang Q, Li G, Shan Y, Zhu X. Understanding the volatile organic compounds of 1‐methylcyclopropylene fumigation and packaging on yellow‐fleshed peach via headspace‐gas chromatography‐ion mobility spectrometry and chemometric analyses. J Food Sci 2022; 87:4009-4026. [DOI: 10.1111/1750-3841.16277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/28/2022] [Accepted: 07/14/2022] [Indexed: 10/15/2022]
Affiliation(s)
- Yunian Huang
- Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Changsha China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Changsha China
- Longping Branch Graduate School Hunan University Changsha China
| | - Pei Zhang
- Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Changsha China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Changsha China
- Longping Branch Graduate School Hunan University Changsha China
| | - Wei Liu
- Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Changsha China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Changsha China
- Longping Branch Graduate School Hunan University Changsha China
| | - Qun Zhang
- Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Changsha China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Changsha China
- Longping Branch Graduate School Hunan University Changsha China
| | - Gaoyang Li
- Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Changsha China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Changsha China
- Longping Branch Graduate School Hunan University Changsha China
| | - Yang Shan
- Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Changsha China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Changsha China
- Longping Branch Graduate School Hunan University Changsha China
| | - Xiangrong Zhu
- Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Changsha China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Changsha China
- Longping Branch Graduate School Hunan University Changsha China
| |
Collapse
|
17
|
Analysis of flavor-related compounds in fermented persimmon beverages stored at different temperatures. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Yu W, Zhu Y, Zhu R, Bai J, Qiu J, Wu Y, Zhong K, Gao H. Insight into the characteristics of cider fermented by single and co-culture with Saccharomyces cerevisiae and Schizosaccharomyces pombe based on metabolomic and transcriptomic approaches. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Jing X, Zhang N, Zhao L, Zhou J, Wu W, Zhang L, Zhou F. Effect of soaked and fermented raspberry wines on the liver in mice. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Use of Torulaspora delbrueckii and Hanseniaspora vineae co-fermentation with Saccharomyces cerevisiae to improve aroma profiles and safety quality of Petit Manseng wines. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113360] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Effects of inoculation protocols on aroma profiles and quality of plum wine in mixed culture fermentation of Metschnikowia pulcherrima with Saccharomyces cerevisiae. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Zhao W, Wang L, Chuai P, Wang R, Su Y, Yang R. The effects of cold pectinase maceration and pulp juice fermentation on physicochemical properties of raspberry wine. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wenying Zhao
- School of Chemical Engineering and Technology North University of China Taiyuan 030051 Shanxi China
| | - Limin Wang
- School of Chemical Engineering and Technology North University of China Taiyuan 030051 Shanxi China
| | - Pengbo Chuai
- School of Chemical Engineering and Technology North University of China Taiyuan 030051 Shanxi China
| | - Rong Wang
- School of Chemical Engineering and Technology North University of China Taiyuan 030051 Shanxi China
| | - Yusha Su
- School of Chemical Engineering and Technology North University of China Taiyuan 030051 Shanxi China
| | - Runlu Yang
- School of Chemical Engineering and Technology North University of China Taiyuan 030051 Shanxi China
| |
Collapse
|
23
|
Lin H, Jiang H, Adade SYSS, Kang W, Xue Z, Zareef M, Chen Q. Overview of advanced technologies for volatile organic compounds measurement in food quality and safety. Crit Rev Food Sci Nutr 2022; 63:8226-8248. [PMID: 35357234 DOI: 10.1080/10408398.2022.2056573] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food quality and nutrition have received much attention in recent decades, thanks to changes in consumer behavior and gradual increases in food consumption. The demand for high-quality food necessitates stringent quality assurance and process control measures. As a result, appropriate analytical tools are required to assess the quality of food and food products. VOCs analysis techniques may meet these needs because they are nondestructive, convenient to use, require little or no sample preparation, and are environmentally friendly. In this article, the main VOCs released from various foods during transportation, storage, and processing were reviewed. The principles of the most common VOCs analysis techniques, such as electronic nose, colorimetric sensor array, migration spectrum, infrared and laser spectroscopy, were discussed, as well as the most recent research in the field of food quality and safety evaluation. In particular, we described data processing algorithms and data analysis captured by these techniques in detail. Finally, the challenges and opportunities of these VOCs analysis techniques in food quality analysis were discussed, as well as future development trends and prospects of this field.
Collapse
Affiliation(s)
- Hao Lin
- School of Food and Biological Engineering, Jiangsu University, Jiangsu, P. R. China
| | - Hao Jiang
- School of Food and Biological Engineering, Jiangsu University, Jiangsu, P. R. China
| | | | - Wencui Kang
- School of Food and Biological Engineering, Jiangsu University, Jiangsu, P. R. China
| | - Zhaoli Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Jiangsu, P. R. China
| | - Muhammad Zareef
- School of Food and Biological Engineering, Jiangsu University, Jiangsu, P. R. China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Jiangsu, P. R. China
| |
Collapse
|
24
|
Huang G, Li N, Liu K, Yang J, Zhao S, Zheng N, Zhou J, Zhang Y, Wang J. Effect of Flaxseed Supplementation in Diet of Dairy Cow on the Volatile Organic Compounds of Raw Milk by HS-GC-IMS. Front Nutr 2022; 9:831178. [PMID: 35237645 PMCID: PMC8884162 DOI: 10.3389/fnut.2022.831178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/13/2022] [Indexed: 12/01/2022] Open
Abstract
Flaxseed supplementation in diet of dairy cow can effectively enhance the production of ω-3 polyunsaturated fatty acids (n-3 PUFA) in raw milk, which further give rise to the changes of volatile organic compounds (VOCs). In this study, we used headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) to investigate the VOCs in milk from cows fed three different diets (CK: supplemented with 0 g/d flaxseed; WF: 1,500 g/d whole flaxseed and GF: 1,500 g/d ground flaxseed). A total of 40 VOCs including three acids, six esters, 11 aldehydes, seven alcohols, 13 ketones were identified in all the raw milk samples. Compared with GF supplementation, suppling with WF could influence more compounds in raw milk (GF: five compounds; WF: 22 compounds). Supplementation with WF could increase the concentration of nonanal, heptanal, hexanal, which could cause the occurrence of off-flavors, and reduce the concentration of hexanoic acid (monomer; M), 2-hexanol, ethanol (M), 2-heptanone (dimer; D), 2-pentanone (M), 2-pentanone (D), acetoin (M) in raw milk. GF supplementation in diet could reduce the 2-pentanone (M), 2-pentanone (D). In addition, principal component analysis (PCA) based on the signal intensity of identified VOCs indicated that it is possible to distinguish between the CK and WF milk. However, GF milk could not be distinguished from CK milk. The results demonstrate that compared with GF milk, WF supplementation in diet of dairy cows could increase fishy (heptanal) cardboard-like (pentanal) flavor in milk and decrease sweet (hexanoic acid, 2-heptanone), fruity (ethyl butanoate, ethyl hexanoate, 2-heptanone) flavor which may lead the milk less acceptable. In conclusion, compared with WF, GF supplementation in diet of dairy cow showed higher increase in n-3 PUFA in raw milk, and less influence in VOCs of raw milk and this study might provide theoretical supports for the production of milk rich in n-3 PUFA.
Collapse
Affiliation(s)
- Guoxin Huang
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Sciences and Technology, Northeast Agricultural University, Harbin, China
| | - Ning Li
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kaizhen Liu
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiyong Yang
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shengguo Zhao
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Zheng
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinhui Zhou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yangdong Zhang
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaqi Wang
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
25
|
Liu C, Li M, Ren T, Wang J, Niu C, Zheng F, Li Q. Effect of Saccharomyces cerevisiae and non-Saccharomyces strains on alcoholic fermentation behavior and aroma profile of yellow-fleshed peach wine. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Update on Biogenic Amines in Fermented and Non-Fermented Beverages. Foods 2022; 11:foods11030353. [PMID: 35159503 PMCID: PMC8834261 DOI: 10.3390/foods11030353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 01/12/2023] Open
Abstract
The formation of biogenic amines in food and beverages is mainly due to the presence of proteins and/or free amino acids that represent the substrates for microbial or natural enzymes with decarboxylation or amination activity. Fermentation occurring in many alcoholic beverages, such as wine, beer, cider, liqueurs, as well as coffee and tea, is one of the main processes affecting their production. Some biogenic amines can also be naturally present in some fruit juices or fruit-based drinks. The dietary intake of such compounds should consider all their potential sources by both foods and drinks, taking in account the health impact on some consumers that represent categories at risk for a deficient metabolic activity or assuming inhibiting drugs. The most important tool to avoid their adverse effects is based on prevention through the selection of lactic acid bacteria with low decarboxylating activity or good manufacturing practices hurdling the favoring conditions on biogenic amines' production.
Collapse
|
27
|
Yang X, Zhang T, Yang D, Xie J. Application of gas chromatography-ion mobility spectrometry in the analysis of food volatile components. ACTA CHROMATOGR 2022. [DOI: 10.1556/1326.2022.01005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Gas chromatography-ion mobility spectrometry (GC-IMS) is an emerging analytical technique that has the advantages of fast response, high sensitivity, simple operation, and low cost. The combination of the fast speed and resolution of GC with the high sensitivity of IMS makes GC-IMS play an important role in the detection of food volatile substances. This paper focuses on the basic principles and future development trend, and the comparative analysis of the functions, similarities and differences of GC-IMS, GC-MS and electronic nose in the detection of common volatile compounds. A comprehensive introduction to the main application of GC-IMS in food volatile components: fingerprint identification of sample differences and detection of characteristic compounds. On the basis of perfecting the spectral library, GC-IMS will have broad development prospects in food authentication, origin identification, process optimization and product classification, especially in the analysis and identification of trace volatile food flavor substances.
Collapse
Affiliation(s)
- Xuelian Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
- Beijing Technology and Business University, Beijing, 100048, China
| | - Tianxin Zhang
- Beijing Technology and Business University, Beijing, 100048, China
| | - Dongdong Yang
- Beijing Technology and Business University, Beijing, 100048, China
| | - Jianchun Xie
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
- Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
28
|
Identification of changes in volatile compounds in sea cucumber Apostichopus japonicus during seasonings soaking using HS-GC-IMS. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Zhu W, Benkwitz F, Sarmadi B, Kilmartin PA. Validation Study on the Simultaneous Quantitation of Multiple Wine Aroma Compounds with Static Headspace-Gas Chromatography-Ion Mobility Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15020-15035. [PMID: 34874158 DOI: 10.1021/acs.jafc.1c06411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A new quantitative method based on static headspace-gas chromatography-ion mobility spectrometry (SHS-GC-IMS) is proposed, which enables the simultaneous quantitation of multiple aroma compounds in wine. The method was first evaluated for its stability and the necessity of using internal standards as a quality control measure. The two major hurdles in applying GC-IMS in quantitation studies, namely, nonlinearity and multiple ion species, were also investigated using the Boltzmann function and generalized additive model (GAM) as potential solutions. Metrics characterizing the model performance, including root mean squared error, bias, limit of detection, limit of quantitation, repeatability, reproducibility, and recovery, were investigated. Both nonlinear fitting methods, Boltzmann function and GAM, were able to return desirable analytical outcomes with an acceptable range of error. Potential pitfalls that would cause inaccurate quantitation, that is, effects of ethanol content and competitive ionization, were also discussed. The performance of the SHS-GC-IMS method was subsequently compared against that of a currently established method, namely, GC-MS, using commercial wine samples. These findings provide an initial validation of a GC-IMS-based quantitation method, as well as a starting point for further enhancing the analytical scope of GC-IMS.
Collapse
Affiliation(s)
- Wenyao Zhu
- Wine Science Programme, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Kim Crawford Winery, Constellation Brands NZ, 237 Hammerichs Road, Blenheim 7273, New Zealand
| | - Frank Benkwitz
- Kim Crawford Winery, Constellation Brands NZ, 237 Hammerichs Road, Blenheim 7273, New Zealand
| | - Bahareh Sarmadi
- Wine Science Programme, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Paul A Kilmartin
- Wine Science Programme, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
30
|
Ogawa M, Vararu F, Moreno-Garcia J, Mauricio JC, Moreno J, Garcia-Martinez T. Analyzing the minor volatilome of Torulaspora delbrueckii in an alcoholic fermentation. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03910-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractTorulaspora delbrueckii is an emerging yeast species in the beverage and food industry that is suitable for alcoholic fermentation and to improve the organoleptic quality of wine, beer, mead, and other beverages. Modern consumer preference toward new flavors and products drives the application of T. delbrueckii to ferment less traditional fruits and vegetables. Thus, it has become increasingly relevant to define those metabolites produced in minute quantities by T. delbrueckii, because they may have an impact when producing these new alcoholic beverages. In this study, we have identified metabolites of T. delbrueckii and have compared them with those of Saccharomyces cerevisiae in a controlled setting with a synthetic, high glucose medium using gas chromatography coupled to flame ionization detector (GC–FID) and stir bar sorptive extraction (SBSE) with GC coupled to mass spectrometry (MS). Results showed that T. delbrueckii produced metabolites with higher changes in odor activity complexes than S. cerevisiae: ethyl propanoate, 1,1-diethoxyethane, ethyl isobutyrate, ethyl butyrate, isoamyl acetate, ethyl heptanoate, nonanal, and decanal. We also report seven metabolites detected for the first time in T. delbrueckii. This datum serves to expand the knowledge of T. delbrueckii performance and shows that application of this yeast species is more suitable to a wide array of beverage producers.
Collapse
|
31
|
Characteristic Volatile Fingerprints of Four Chrysanthemum Teas Determined by HS-GC-IMS. Molecules 2021; 26:molecules26237113. [PMID: 34885694 PMCID: PMC8658894 DOI: 10.3390/molecules26237113] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
Volatile composition is an important feature that determines flavor, which actively affects the overall evaluation of chrysanthemum tea. In this study, HS-GC-IMS (headspace-gas chromatography-ion mobility spectrometry) was performed to characterize the volatile profiles of different chrysanthemum tea subtypes. Forty-seven volatiles of diverse chemical nature were identified and quantified. Partial least squares discriminant analysis (PLS-DA) revealed that four chrysanthemum teas were distinct from each other based on their volatile compounds. Furthermore, this work provides reference methods for detecting novel volatile organic compounds in chrysanthemum tea plants and products.
Collapse
|
32
|
Gou M, Bi J, Chen Q, Wu X, Fauconnier ML, Qiao Y. Advances and Perspectives in Fruits and Vegetables Flavor Based on Molecular Sensory Science. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2005088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Min Gou
- Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (Caas)/ Key Laboratory of Agro-Products Processing, Beijing, China
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liege, Gembloux Belgium
| | - Jinfeng Bi
- Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (Caas)/ Key Laboratory of Agro-Products Processing, Beijing, China
| | - Qinqin Chen
- Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (Caas)/ Key Laboratory of Agro-Products Processing, Beijing, China
| | - Xinye Wu
- Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (Caas)/ Key Laboratory of Agro-Products Processing, Beijing, China
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liege, Gembloux Belgium
| | - Yening Qiao
- Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (Caas)/ Key Laboratory of Agro-Products Processing, Beijing, China
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liege, Gembloux Belgium
| |
Collapse
|
33
|
Wang B, Tan F, Chu R, Li G, Li L, Yang T, Zhang M. The effect of non-Saccharomyces yeasts on biogenic amines in wine. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
Yang Q, Tu J, Chen M, Gong X. Discrimination of Fruit Beer Based on Fingerprints by Static Headspace-Gas Chromatography-Ion Mobility Spectrometry. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2021.1946654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Qing Yang
- R & D department, Guangzhou Nansha Zhujiang Brewery Co., Ltd, Guangzhou, China
| | - Jingxia Tu
- R & D department, Guangzhou Nansha Zhujiang Brewery Co., Ltd, Guangzhou, China
| | - Ming Chen
- R & D department, Guangzhou Nansha Zhujiang Brewery Co., Ltd, Guangzhou, China
| | - Xiao Gong
- R & D department, Guangzhou Nansha Zhujiang Brewery Co., Ltd, Guangzhou, China
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| |
Collapse
|
35
|
Using untargeted metabolomics to profile the changes in roselle (Hibiscus sabdariffa L.) anthocyanins during wine fermentation. Food Chem 2021; 364:130425. [PMID: 34242878 DOI: 10.1016/j.foodchem.2021.130425] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/19/2021] [Accepted: 06/17/2021] [Indexed: 11/20/2022]
Abstract
In this study, an UHPLC-QE-MS approach in combination with multivariate statistical analyses was used to investigate the metabolic profiles, especially the anthocyanin profiles, during the fermentation of roselle wine. Overall, a large number of different metabolites (e.g., phenols, lipids, carbohydrates, amino acids and peptides, and others) were identified in the fermentation processes. Eight anthocyanin metabolites were identified in roselle wine for the first time, of which six were identified in the main fermentation process and two in the post-fermentation process. In addition, we identified several metabolic pathways during the fermentation process, and the metabolic pathways of anthocyanins in roselle wine are mainly related to flavonoid biosynthesis and to anthocyanin biosynthesis. These findings are expected to be useful for further studies on wine chemistry and yeast metabolism.
Collapse
|
36
|
Aroma characteristics of traditional Huangjiu produced around Winter Solstice revealed by sensory evaluation, gas chromatography-mass spectrometry and gas chromatography-ion mobility spectrometry. Food Res Int 2021; 145:110421. [PMID: 34112423 DOI: 10.1016/j.foodres.2021.110421] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/18/2021] [Accepted: 05/11/2021] [Indexed: 11/20/2022]
Abstract
Traditional Huangjiu (a kind of traditional Chinese rice wine) produced around Winter Solstice has higher quality and a more harmonious aroma than those produced during other periods. To determine the specific differences in aroma characteristics, sensory evaluation, gas chromatography-mass spectrometry (GC-MS) and gas chromatography-ion mobility spectrometry (GC-IMS) were used to analyze the volatile profiles of the traditional Huangjiu samples produced under different ambient temperature conditions. The sensory evaluation results showed that the aroma attributes of wheat, sweet, ester, alcoholic and sauce were stronger for the samples fermented near Winter Solstice than those for the other samples. GC-MS combined with heatmap analysis showed that with the decrease in average ambient temperature, the contents of esters such as diethyl succinate and ethyl butanoate gradually increased, and the contents of alcohols such as phenylethyl alcohol, 2-methylpropanol and 3-methylbutanol gradually decreased. Some key aroma compounds, such as ethyl butyrate (OAV: 97-151), nonanal (OAV: 189-200), ethyl octanoate (OAV: 859-1134) and ethyl phenylacetate (OAV: 307-353), were more abundant in the samples fermented near Winter Solstice than the other samples. The visualization of GC-IMS suggested that isoamyl acetate, 2-methylpropyl acetate, ethyl 3-methylbutyrate, and ethyl 2-methylbutanoate were enriched near Winter Solstice. Together, the results suggested that the traditional Huangjiu produced around Winter Solstice contained more flavor volatiles and had better aroma quality than those produced during other periods.
Collapse
|
37
|
Zhang B, Ivanova-Petropulos V, Duan C, Yan G. Distinctive chemical and aromatic composition of red wines produced by Saccharomyces cerevisiae co-fermentation with indigenous and commercial non-Saccharomyces strains. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100925] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Feng D, Wang J, Ji XJ, Min WX, Yan WJ. HS-GC-IMS detection of volatile organic compounds in yak milk powder processed by different drying methods. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110855] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Baked red pepper (Capsicum annuum L.) powder flavor analysis and evaluation under different exogenous Maillard reaction treatment. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
Recent trends in quality control, discrimination and authentication of alcoholic beverages using nondestructive instrumental techniques. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.11.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
41
|
Comparative study of microbial communities and volatile profiles during the inoculated and spontaneous fermentation of persimmon wine. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.09.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
42
|
Characteristic Volatile Fingerprints and Odor Activity Values in Different Citrus-Tea by HS-GC-IMS and HS-SPME-GC-MS. Molecules 2020; 25:molecules25246027. [PMID: 33352716 PMCID: PMC7766395 DOI: 10.3390/molecules25246027] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 11/16/2022] Open
Abstract
Citrus tea is an emerging tea drink produced from tea and the pericarp of citrus, which consumers have increasingly favored due to its potential health effects and unique flavor. This study aimed to simultaneously combine the characteristic volatile fingerprints with the odor activity values (OAVs) of different citrus teas for the first time by headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) and headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). Results showed that the establishment of a citrus tea flavor fingerprint based on HS-GC-IMS data can provide an effective means for the rapid identification and traceability of different citrus varieties. Moreover, 68 volatile compounds (OAV > 1) were identified by HS-SPME-GC-MS, which reflected the contribution of aroma compounds to the characteristic flavor of samples. Amongst them, the contribution of linalool with sweet flower fragrance was the highest. Odorants such as decanal, β-lonone, β-ionone, β-myrcene and D-limonene also contributed significantly to all samples. According to principal component analysis, the samples from different citrus teas were significantly separated. Visualization analysis based on Pearson correlation coefficients suggested that the correlation between key compounds was clarified. A comprehensive evaluation of the aroma of citrus tea will guide citrus tea flavor quality control and mass production.
Collapse
|
43
|
Influence of Triazole Pesticides on Wine Flavor and Quality Based on Multidimensional Analysis Technology. Molecules 2020; 25:molecules25235596. [PMID: 33260751 PMCID: PMC7730357 DOI: 10.3390/molecules25235596] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 11/16/2022] Open
Abstract
Triazole pesticides are widely used to control grapevine diseases. In this study, we investigated the impact of three triazole pesticides-triadimefon, tebuconazole, and paclobutrazol-on the concentrations of wine aroma compounds. All three triazole pesticides significantly affected the ester and acid aroma components. Among them, paclobutrazol exhibited the greatest negative influence on the wine aroma quality through its effect on the ester and acid aroma substances, followed by tebuconazole and triadimefon. Qualitative and quantitative analysis by solid-phase micro-extraction gas chromatography coupled with mass spectrometry revealed that the triazole pesticides also changed the flower and fruit flavor component contents of the wines. This was attributed to changes in the yeast fermentation activity caused by the pesticide residues. The study reveals that triazole pesticides negatively impact on the volatile composition of wines with a potential undesirable effect on wine quality, underlining the desirability of stricter control by the food industry over pesticide residues in winemaking.
Collapse
|
44
|
Zhang JS, Zhang ZL, Yan MZ, Lin XM, Chen YT. Gas chromatographic-ion mobility spectrometry combined with a multivariate analysis model exploring the characteristic changes of odor components during the processing of black sesame. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4987-4995. [PMID: 33006337 DOI: 10.1039/d0ay01257b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Black sesame (Sesamum indicum L.) is a Chinese dietary herb that has been widely used in the medical and healthcare fields in China. According to the theory of Traditional Chinese medicine processing, reasonable processing (steaming and drying many times) can increase the tonic effect and reduce the adverse factors generated during long-term use. At present, the processing degree of black sesame is mainly judged based on subjective experience. However, due to the lack of objective and quantitative control indicators, quality fluctuations easily occur. Therefore, for better application, its processing technology needs scientific monitoring methods. Herein a gas chromatography-ion mobility spectrometry (GC-IMS) technique was applied as a monitoring method to differentiate the processed products of black sesame in different processing stages. The response data of volatile components obtained from the samples were processed by the built-in data processing software in the instrument to identify the different components for further principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). From fingerprint comparison, 70 differential signal peaks were screened, 32 of which were qualitatively identified, mainly monomers and dimers of 20 compounds. On this basis, the PCA model shows that there was a significant difference between the raw product (S1) and the processed products (H1-9); moreover, there was a certain correlation between the differential changes of samples in different processing stages (H1-9) and the processing times. The OPLS-DA model specifically shows the differential components in the processing with potential characteristics peaks of 41, 105, n-nonanal, 2 and ethanol can discriminate whether the BS has undergone the first processed. And the dynamic changes of the three characteristic peaks of 1-hexanol, acetic acid and 107 can determine the specific degree of processing of BS. The research proves that GC-IMS combined with a multivariate analysis model can provide scientific data for identifying the characteristic odor components of black sesame.
Collapse
|
45
|
Zhang Q, Ding Y, Gu S, Zhu S, Zhou X, Ding Y. Identification of changes in volatile compounds in dry-cured fish during storage using HS-GC-IMS. Food Res Int 2020; 137:109339. [DOI: 10.1016/j.foodres.2020.109339] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/02/2020] [Accepted: 05/17/2020] [Indexed: 01/07/2023]
|
46
|
Liu W, Fan M, Sun S, Li H. Effect of mixed fermentation by Torulaspora delbrueckii, Saccharomyces cerevisiae, and Lactobacillus plantarum on the sensory quality of black raspberry wines. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03512-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Lu Y, Liu Y, Lv J, Ma Y, Guan X. Changes in the physicochemical components, polyphenol profile, and flavor of persimmon wine during spontaneous and inoculated fermentation. Food Sci Nutr 2020; 8:2728-2738. [PMID: 32566190 PMCID: PMC7300058 DOI: 10.1002/fsn3.1560] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/21/2020] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
Changes in the oenological parameters, total phenols, total flavonoids, and individual phenols of persimmon during spontaneous and inoculated fermentation were investigated. The volatile compounds and sensory character of the persimmon wine were compared and evaluated simultaneously. Results show that at the end of fermentation, spontaneous persimmon wine (SPW) has higher contents of total flavonoids, total phenols yet lower concentrations of alcohol and volatile compounds than inoculated persimmon wine (IPW). Catechin, salicylic acid, quercetin, and vanillic acid were the main phenolic compounds in both types of persimmon wine. There are six volatile components in the IPW with an OAV greater than 1, which are isoamyl acetate, ethyl hexanoate, methyl octanoate, ethyl octanoate, phenethyl acetate, and 2, 4-di-tert-butylphenol, and these compounds contribute to the IPW with brandy and fruity sensory properties, while only three volatile components in SPW have OAV greater than 1, which are isoamyl acetate, ethyl hexanoate, and ethyl octanoate. Spontaneous fermentation increased the proportion of esters and alcohols in the overall volatile compounds. During sensory evaluation, IPW was characterized by "brandy," "bitterness," and low "sweetness," and SPW has a high score of "sweetness," "balance," desirable "color," and "body."
Collapse
Affiliation(s)
- Yao Lu
- College of Food Science and TechnologyHebei Agricultural UniversityBaodingHebeiChina
- Guangxi talent highland of preservation and deep processing research in fruit and vegetablesHezhou UniversityHezhouGuangxiChina
| | - Yaqiong Liu
- College of Food Science and TechnologyHebei Agricultural UniversityBaodingHebeiChina
- Guangxi talent highland of preservation and deep processing research in fruit and vegetablesHezhou UniversityHezhouGuangxiChina
| | - Jiawei Lv
- College of Food Science and TechnologyHebei Agricultural UniversityBaodingHebeiChina
| | - Yanli Ma
- College of Food Science and TechnologyHebei Agricultural UniversityBaodingHebeiChina
- Guangxi talent highland of preservation and deep processing research in fruit and vegetablesHezhou UniversityHezhouGuangxiChina
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation TechnologyNanyang Institute of TechnologyNanyangChina
| | - Xiaolei Guan
- College of Food Science and TechnologyHebei Agricultural UniversityBaodingHebeiChina
| |
Collapse
|
48
|
Liu W, Li H, Jiang D, Zhang Y, Zhang S, Sun S. Effect of Saccharomyces cerevisiae, Torulaspora delbrueckii and malolactic fermentation on fermentation kinetics and sensory property of black raspberry wines. Food Microbiol 2020; 91:103551. [PMID: 32539970 DOI: 10.1016/j.fm.2020.103551] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/25/2020] [Accepted: 05/20/2020] [Indexed: 01/01/2023]
Abstract
Alcoholic fermentation (AF) and malolactic fermentation (MLF) both have significant influence on the production of black raspberry wine. In this study, three microbes associated with AF and MLF including S. cerevisiae, T. delbrueckii and O. oeni were used to investigate their combined effect on basic compositional, volatile and sensory property of black raspberry wine, and four fermentation trials including single S. cerevisiae inoculation plus spontaneous MLF (BSU) and controlled MLF with O. oeni (BSO), sequential culture of T. delbrueckii and S. cerevisiae plus spontaneous MLF (BTSU) and controlled MLF (BTSO) were tested and compared. Fermentation results showed MLF in BSU, BSO and BTSO were successful, with respective period of 40, 25 and 23 days, whereas a stuck MLF occurred in BTSU. Volatile compounds were determined by HS-GC-IMS method, with a total of 45 aromas identified. BTSO was distinguished by a significant higher signal intensity of many fruity esters and a lower production of several alcohols and terpenes, which was in agreement with its perception result of strong 'fruity' and slight note of 'solvent' and 'herbaceous' during quantitative descriptive analysis. On the contrary, BSU was found to reinforce the synthesis of most detected volatiles, resulting in the enhancement of both beneficial and off-flavour compounds, therefore scoring lower in the 'global aroma' descriptor. Principal component analysis showed BSU and BSO were similar in the volatile composition, whereas BTSO was quite different. Overall, BTSO had greater potential to be used in the production of black raspberry wine.
Collapse
Affiliation(s)
- Wenli Liu
- School of Food Engineering, Ludong University, Yantai, Shandong, 264025, PR China; Institute of Bionanotechnology, Ludong University, Yantai, Shandong, 264025, PR China
| | - Huamin Li
- School of Food Engineering, Ludong University, Yantai, Shandong, 264025, PR China; Institute of Bionanotechnology, Ludong University, Yantai, Shandong, 264025, PR China
| | - Dongqi Jiang
- Institute of Food Science and Engineering, Yantai University, Yantai, Shandong, 264005, PR China
| | - Yue Zhang
- School of Food Engineering, Ludong University, Yantai, Shandong, 264025, PR China
| | - Sicheng Zhang
- School of Food Engineering, Ludong University, Yantai, Shandong, 264025, PR China
| | - Shuyang Sun
- School of Food Engineering, Ludong University, Yantai, Shandong, 264025, PR China; Institute of Bionanotechnology, Ludong University, Yantai, Shandong, 264025, PR China.
| |
Collapse
|