1
|
Peña-Vázquez GI, Serrano-Sandoval SN, Rodríguez-Rodríguez J, Antunes-Ricardo M, Guajardo-Flores D. Anti-inflammatory and antioxidant activity of functional lipids extracted through sustainable technologies from Mexican Opuntia ficus-indica seeds. Food Chem 2024; 467:142258. [PMID: 39637671 DOI: 10.1016/j.foodchem.2024.142258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/12/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
Opuntia ficus-indica (OFI) seeds are a rich source of functional lipids, yet research on Mexican cultivars remains limited. This study evaluated the antioxidant and anti-inflammatory properties of lipids extracted through subcritical fluid and supercritical fluid extraction with carbon dioxide (SCE-CO₂ and SFE-CO₂) from Mexican OFI Villanueva and Rojo Vigor seeds with and without enzymatic pretreatment. SCE OFI Villanueva oil showed higher extraction efficiency of linoleic (45.86 mg/g), and oleic (9.86 mg/g) acids purified more than 5.47 and 1.18 times, respectively. Additionally, SCE oils exhibited the highest antioxidant potential (68 %) and anti-inflammatory activity (45 %) at the evaluated doses. In conclusion, SCE-CO₂ enhanced the extraction efficiency of unsaturated fatty acids, improving their potential biological effects, while enzymatic pretreatment did not positively impact on results, suggesting reduced extraction efficiency and bioactivity. These findings suggest that OFI seeds can serve as a valuable source of functional ingredients for the development of value-added food products.
Collapse
Affiliation(s)
- Gloria Itzel Peña-Vázquez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, NL, Mexico.
| | - Sayra N Serrano-Sandoval
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, NL, Mexico.
| | - José Rodríguez-Rodríguez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico.
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, NL, Mexico.
| | - Daniel Guajardo-Flores
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico.
| |
Collapse
|
2
|
Bian Y, Zhang Y, Ruan LY, Feng XS. Phytosterols in Plant-Derived Foods: Recent Updates in Extraction and Analysis Methods. Crit Rev Anal Chem 2024:1-19. [PMID: 39556048 DOI: 10.1080/10408347.2024.2427128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The physiological and officinal functions of phytosterols are of great significance, and recent dietary guidelines have underscored the significance of incorporating them into a balanced diet. Furthermore, it exhibits inhibitory effects on tumor growth, stimulates cellular immunity, possesses anti-inflammatory, antioxidant, and antidiabetic properties. To gain a more comprehensive understanding of the role of phytosterols in public health, it is crucial to establish simple, rapid, eco-conscious, efficient, and highly sensitive techniques for their extraction and determination across various matrices. This review presents a thorough overview of various techniques used for extracting and analyzing phytosterols in diverse plant-derived foods, encompassing a range of advanced technologies like solid-phase extraction, microextraction, supercritical fluid extraction, QuEChERS, alongside traditional approaches. The detection techniques include liquid chromatography-based methods, gas chromatography-based methods, supercritical fluid chromatography, and other methodologies. Additionally, we conduct a thorough examination and comparison of various techniques while proposing future prospects.
Collapse
Affiliation(s)
- Yu Bian
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Ling-Yun Ruan
- School of Pharmacy, China Medical University, Shenyang, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
3
|
Guo Q, Wang D, Ma F, Fang M, Zhang L, Li P, Yu L. MOF-derived nanozyme CuOx@C and its application for cascade colorimetric detection of phytosterols. Mikrochim Acta 2024; 191:312. [PMID: 38717599 DOI: 10.1007/s00604-024-06389-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024]
Abstract
Phytosterols (PSs), a class of naturally occurring bioactive lipid compounds, have been found to possess a significant cholesterol-lowering effect. In developing countries, the consumption of rapeseed oil is the primary pathway of PS intake for the general population. However, developing low-cost, real-time, and high-throughput screening techniques for PSs remains a challenge. Here, a Cu-based nanocomposite CuOx@C was synthesized via a simple method of the calcination of HKUST-1 and systematically characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The CuOx@C demonstrated excellent peroxidase-like (POD-like) activity, functioning as a peroxidase mimic to facilitate the catalysis of 3,3',5,5'-tetramethylbenzidine (TMB) into its oxidized form (oxTMB), thereby initiating a discernible color response. On the basis of this discovery, a CuOx@C-based colorimetric method for detecting total sterols in rapeseed was successfully constructed via cascade reactions. After optimizing the conditions, the high-throughput screening of total sterols in rapeseed could be completed in only 21 min, which significantly facilitated the sensing of PSs. A linear range of 0.6-6 mg/g was achieved for the detection of total sterols in rapeseed samples, thereby satisfying the requirements for detection. In addition, due to the high stability of CuOx@C and the specificity of cholesterol oxidase, the developed method had excellent stability and selectivity toward PSs, indicating that this work has huge prospects for commercial application. This innovative work overcomes the limitation of the instrumental method and provides a portable and reliable tool for total sterols detection. It can also facilitate the development of oilseeds with a high content of PSs.
Collapse
Affiliation(s)
- Qi Guo
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China
| | - Du Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China
| | - Fei Ma
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China
| | - Mengxue Fang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China
| | - Liangxiao Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, People's Republic of China
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, People's Republic of China
- Zhejiang Xianghu Laboratory, Hangzhou, 311231, People's Republic of China
| | - Li Yu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China.
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China.
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China.
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China.
| |
Collapse
|
4
|
Han S, Liu X, He B, Zhai X, Yuan C, Li Y, Lin W, Wang H, Zhang B. Efficient Production of 9,22-Dihydroxy-23,24-bisnorchol-4-ene-3-one from Phytosterols by Modifying Multiple Genes in Mycobacterium fortuitum. Int J Mol Sci 2024; 25:3579. [PMID: 38612391 PMCID: PMC11011972 DOI: 10.3390/ijms25073579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
C19 steroids and C22 steroids are vital intermediates for the synthesis of steroid drugs. Compared with C19 steroids, C22 steroids are more suitable for synthesizing progesterone and adrenocortical hormones, albeit less developed. 9,22-dihydroxy-23,24-bisnorchol-4-ene-3-one(9-OHBA), due to its substituents at positions C-9 and C-22, is a beneficial and innovative steroid derivative for synthesizing corticosteroids. We focused on the C22 pathway in Mycobacterium fortuitum ATCC 35855, aiming to develop a productive strain that produces 9-OHBA. We used a mutant strain, MFΔkstD, that knocked out kstds from Mycobacterium fortuitum ATCC 35855 named MFKD in this study as the original strain. Hsd4A and FadA5 are key enzymes in controlling the C19 metabolic pathway of steroids in Mycobacterium fortuitum ATCC 35855. After knocking out hsd4A, MFKDΔhsd4A accumulated 81.47% 9-OHBA compared with 4.13% 9-OHBA in the strain MFKD. The double mutant MFKDΔhsd4AΔfadA5 further improved the selectivity of 9-OHBA to 95.13%, and 9α-hydroxy-4-androstenedione (9-OHAD) decreased to 0.90% from 4.19%. In the end, we obtained 6.81 g/L 9-OHBA from 10 g/L phytosterols with a molar yield of 80.33%, which showed the best performance compared with formerly reported strains.
Collapse
Affiliation(s)
- Suwan Han
- Laboratory of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (S.H.); (X.L.); (B.H.); (X.Z.); (C.Y.); (W.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangcen Liu
- Laboratory of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (S.H.); (X.L.); (B.H.); (X.Z.); (C.Y.); (W.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Beiru He
- Laboratory of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (S.H.); (X.L.); (B.H.); (X.Z.); (C.Y.); (W.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China;
| | - Xinghui Zhai
- Laboratory of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (S.H.); (X.L.); (B.H.); (X.Z.); (C.Y.); (W.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyang Yuan
- Laboratory of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (S.H.); (X.L.); (B.H.); (X.Z.); (C.Y.); (W.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China;
| | - Yixin Li
- Department of Biology, Colby College, Waterville, ME 04901, USA;
| | - Weichao Lin
- Laboratory of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (S.H.); (X.L.); (B.H.); (X.Z.); (C.Y.); (W.L.)
| | - Haoyu Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China;
| | - Baoguo Zhang
- Laboratory of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (S.H.); (X.L.); (B.H.); (X.Z.); (C.Y.); (W.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Zhao A, Li Y, Wu L, Wang Z, Lv Y, Xiong W, Alam MA, Liu G, Xu J. Immobilization of rough morphotype Mycolicibacterium neoaurum R for androstadienedione production. Biotechnol Lett 2024; 46:55-68. [PMID: 38064040 DOI: 10.1007/s10529-023-03448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/20/2023] [Accepted: 11/04/2023] [Indexed: 01/14/2024]
Abstract
OBJECTIVES Enhance the androstadienedione (Androst-1,4-diene-3,17-dione, ADD) production of rough morphotype Mycolicibacterium neoaurum R by repeated-batch fermentation of immobilized cells. RESULTS M. neoaurum R was a rough colony morphotype variant, obtained from the routine plating of smooth M. neoaurum strain CICC 21097. M. neoaurum R showed rougher cell surface and aggregated in broth. The ADD production of M. neoaurum R was notably lower than that of M. neoaurum CICC 21097 during the free cell fermentation, but the yield gap could be erased after proper cell immobilization. Subsequently, repeated-batch fermentation of immobilized M. neoaurum R was performed to shorten the production cycle and enhance the bio-production efficiency of ADD. Through the optimization of the immobilization carriers and the co-solvents for phytosterols, the ADD productivity of M. neoaurum R immobilized by semi-expanded perlite reached 0.075 g/L/h during the repeated-batch fermentation for 40 days. CONCLUSIONS The ADD production of the rough-type M. neoaurum R was notably enhanced by the immobilization onto semi-expanded perlite. Moreover, the ADD batch yields of M. neoaurum R immobilized by semi-expanded perlite were maintained at high levels during the repeated-batch fermentation.
Collapse
Affiliation(s)
- Anqi Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yamei Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Lixia Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zhi Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yongkun Lv
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Wenlong Xiong
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Mohammad Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Guohua Liu
- Key Laboratory of Feed Biotechnology, The Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, 100081, China
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
6
|
Sookwong P, Yuenyong J, Bennett C. Bioactive Constituents in Cold-Pressed Plant Oils: Their Structure, Bioactivity and Chromatographic Analysis. J Oleo Sci 2024; 73:393-409. [PMID: 38556275 DOI: 10.5650/jos.ess23164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024] Open
Abstract
Cold-pressed oils are oils prepared from pressing plant materials with a screw or hydraulic press, yielding oils with little contamination of harmful chemicals and high content of nutrients and functional constituents. Cold-pressed oils have gained increasing recognition as food supplements for preventing and ameliorating body deterioration due to ageing and the progression of lifestyle diseases or non-communicable diseases. This article aimed to review their structure, bioactivity, and chromatographic analysis of the mostly found functional compounds in cold-pressed oils, including phytosterols, carotenoids, tocols (tocopherols and tocotrienols), phenolic compounds (flavonoids, phenolic acids, tannins, stilbenes, and lignans), and squalene.
Collapse
Affiliation(s)
- Phumon Sookwong
- Rice and Cereal Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Chiang Mai University
| | - Jitkunya Yuenyong
- Rice and Cereal Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Chiang Mai University
- The Graduate School, Chiang Mai University
| | - Chonlada Bennett
- Rice and Cereal Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Chiang Mai University
| |
Collapse
|
7
|
Li W, Xu X, Tang Z, Guo Y, Fei D, Yan N, Hu F. Analysis of 14 terpenoids and sterols and variety discrimination of Codonopsis Radix using ultra-high-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. J Sep Sci 2023; 46:e2200835. [PMID: 36794547 DOI: 10.1002/jssc.202200835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/09/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
Recently, we confirmed that the 95% ethanol-extracted fraction of Codonopsis Radix, which contains several triterpenoids and sterols, possesses pharmacological activities. However, due to the low content and diverse types of triterpenoids and sterols, their similar structures, lack of ultraviolet absorption, and difficulty in obtaining controls, few studies have so far assessed their contents in Codonopsis Radix. We accordingly constructed an ultra-high-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry technique for the simultaneous quantitative determination of 14 terpenoids and sterols. Separation was performed on the Waters Acquity UPLC HSS T3 C18 column (100 × 2.1 mm, 1.8 μm) with 0.1% formic acid (A) and 0.1% formic acid in methanol (B) as mobile phase under gradient elution. The determination coefficients for each of the matrix calibration curves were ≥0.9925. The average recovery ranged from 81.25% to 118.05%, with relative standard deviations of <4%. The contents of 14 components in 23 batches were quantified and further analyzed through chemometrics. Linear discriminant analysis can distinguish sample varieties. The quantitative analysis method can accurately determine the contents of 14 components and thereby provide the chemical basis for the quality control of Codonopsis Radix. It also could be a valuable approach for the classification of different Codonopsis Radix varieties.
Collapse
Affiliation(s)
- Wen Li
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
- State Key Laboratory of Functional Organic Molecular Chemistry, Lanzhou University, Lanzhou, P. R. China
- Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou, P. R. China
| | - Xu Xu
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
- State Key Laboratory of Functional Organic Molecular Chemistry, Lanzhou University, Lanzhou, P. R. China
- Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou, P. R. China
| | - Zhuoshi Tang
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
- State Key Laboratory of Functional Organic Molecular Chemistry, Lanzhou University, Lanzhou, P. R. China
| | - Yina Guo
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
- State Key Laboratory of Functional Organic Molecular Chemistry, Lanzhou University, Lanzhou, P. R. China
| | - Dongqing Fei
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
- State Key Laboratory of Functional Organic Molecular Chemistry, Lanzhou University, Lanzhou, P. R. China
| | - Na Yan
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Fangdi Hu
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
- State Key Laboratory of Functional Organic Molecular Chemistry, Lanzhou University, Lanzhou, P. R. China
- Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou, P. R. China
| |
Collapse
|
8
|
Santanatoglia A, Nzekoue FK, Sagratini G, Ricciutelli M, Vittori S, Caprioli G. Development and application of a novel analytical method for the determination of 8 plant sterols/stanols in 22 legumes samples. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Dumandan NG, Kagaoan ACT, Acda RDP, Tumambing CR, Pham LJ. Extraction, Profiling, and Characterization of Phytosterols and Triterpenoids from Pili ( Canarium ovatum Engl.) Pulp Oil Exhibiting Antioxidant and Antibacterial Properties. Biochem Res Int 2022; 2022:6604984. [PMID: 36606186 PMCID: PMC9810395 DOI: 10.1155/2022/6604984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2022] Open
Abstract
Pili (Canarium ovatum Engl.), an indigenous tree found in the Philippines, is highly regarded for its fruit due to its high economic value. During processing, the pulp is often discarded as waste but contains considerable amounts of oil and bioactive minor lipid components. The present study explored the antioxidant and antibacterial properties of saponified diethyl ether extract of pili pulp oil and related this activity to the nature of compounds present in the extract through GCMS. The extract indicated the elution of 18 major compounds which are mostly cyclic triterpenic (α-and β-amyrin, lupenone, and β-amyrone) and phytosterol (β-sitosterol, brassicasterol, and stigmasterol) class of compounds. Characterization of the bioactivity of the extract showed high antioxidant activities measured by DPPH radical scavenging (EC50: 74.45 ± 1.29 μg/mL) and lipid peroxidation inhibition (EC50: 3.02 ± 0.06 μg/mL) activities that were comparable with that of α-tocopherol. Moreover, an observed bactericidal activity was demonstrated by the extract against E. coli and S. typhi with MIC values of 40 and 35 μg/mL, respectively. The observed bioactivity of the pili pulp oil extract can be attributed to these compounds which may provide desirable health benefits.
Collapse
Affiliation(s)
- Nico G. Dumandan
- National Institute of Molecular Biology and Biotechnology (BIOTECH), University of the Philippines Los Baños College, Los Baños 4031, Laguna, Philippines
| | - Annie Cita T. Kagaoan
- National Institute of Molecular Biology and Biotechnology (BIOTECH), University of the Philippines Los Baños College, Los Baños 4031, Laguna, Philippines
| | - Ranelle D. P. Acda
- National Institute of Molecular Biology and Biotechnology (BIOTECH), University of the Philippines Los Baños College, Los Baños 4031, Laguna, Philippines
| | - Caren R. Tumambing
- National Institute of Molecular Biology and Biotechnology (BIOTECH), University of the Philippines Los Baños College, Los Baños 4031, Laguna, Philippines
| | - Laura J. Pham
- Biozym Systems Enterprises, Bay 4033, Laguna, Philippines
| |
Collapse
|
10
|
Liu D, Pi J, Zhang B, Zeng H, Li C, Xiao Z, Fang F, Liu M, Deng N, Wang J. Phytosterol of lotus seed core powder alleviates hypercholesterolemia by regulating gut microbiota in high-cholesterol diet-induced C57BL/6J mice. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
11
|
Wu L, Zhao J, Wu L, Zhang Y, Li J. Simultaneous determination of squalene, tocopherols and phytosterols in edible vegetable oil by SPE combined with saponification and GC-MS. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Dias LG, Hacke A, dos Santos Souza E, Nath S, Canesin MR, Vilella OV, Geloneze B, Pallone JAL, Cazarin CBB, Blakeslee JJ, Mariutti LRB, Bragagnolo N. Comparison of Chemical and Nutritional Compositions Between Aromatic and Non-aromatic Rice From Brazil and Effect of Planting Time on Bioactive Compounds. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Gutiérrez‐Luna K, Ansorena D, Astiasarán I. Fatty acid profile, sterols, and squalene content comparison between two conventional (olive oil and linseed oil) and three non‐conventional vegetable oils (echium oil, hempseed oil, and moringa oil). J Food Sci 2022; 87:1489-1499. [PMID: 35279846 PMCID: PMC9313813 DOI: 10.1111/1750-3841.16111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/31/2022]
Abstract
Abstract New sources of bioactive compounds are constantly explored for reformulating healthier foods. This work aimed to explore and characterize the fatty acid profile and sterol content of three non‐conventional oils used in functional food products (hempseed oil, moringa oil, and echium oil) and to compare them with two conventional ones (extra virgin olive oil [EVOO] and linseed oil). Oxidative stability was assessed by determining their acidity value and peroxide content. All oils showed adequate values for acidity and oxidation status. Echium and hempseed oils showed a high content of polyunsaturated fatty acids (>70%), especially omega‐3 fatty acids, while moringa oil was rich in oleic acid. Echium oil, hempseed oil, and moringa oil presented higher sterol content than EVOO, but lower than that of linseed oil. Sitosterol was the most abundant sterol in all samples (97.88–275.36 mg/100 g oil), except in echium oil, where campesterol (170.62 mg/100 g oil) was the major sterol. Squalene was only found in significant amounts in EVOO. In conclusion, non‐conventional oils seem to be interesting sources of bioactive compounds and have great potential for the food industry. Practical Application Non‐conventional vegetable oils can be used as alternative sources of lipids in a variety of food products. Additionally, these oils have great potential to be included in the formulation of functional ingredients for the delivery of omega‐3 fatty acids, antioxidants, fiber, among others.
Collapse
Affiliation(s)
- Katherine Gutiérrez‐Luna
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition University of Navarra Pamplona Spain
| | - Diana Ansorena
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition University of Navarra Pamplona Spain
| | - Iciar Astiasarán
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition University of Navarra Pamplona Spain
| |
Collapse
|
14
|
Sterols and Triterpene Diols in Virgin Olive Oil: A Comprehensive Review on Their Properties and Significance, with a Special Emphasis on the Influence of Variety and Ripening Degree. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7110493] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Olive oil is considered one of the most valuable vegetable oils and is highly appreciated by consumers for its specific and distinguishable taste and aroma, as well as its nutritional value. Sterols and triterpene diols are important carriers of bioactive properties of olive oil and are responsible for some of the beneficial effects of its consumption on human health, such as lowering serum LDL-cholesterol levels and significantly reducing the risk of cardiovascular diseases. The concentration of total sterols and the proportions of particular sterols and triterpene diols are among the parameters used to verify and prove the authenticity of olive oil in accordance with the EU and other countries’ regulations. Finally, their composition has been shown to have high discrimination potential for ensuring traceability with respect to variety, geographical origin, harvest date, and other factors. For these reasons, the research on sterols and triterpene diols in olive oil is an ever-growing field of scientific interest with great practical importance. This review focuses on all the important aspects of sterols and triterpene diols in olive oil, from their chemical structure, biosynthesis, occurrence and role in plants, health benefits, and their use in official controls of olive oil purity and authenticity, to a conclusive survey on the recent findings about the effects of different factors of influence on their content and composition, with a detailed comparative analysis of studies that investigated the effects of the two most important factors, variety and ripening degree.
Collapse
|
15
|
Garcia-Llatas G, Alegría A, Barberá R, Cilla A. Current methodologies for phytosterol analysis in foods. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Jahurul M, Patricia M, Shihabul A, Norazlina M, Ramlah George M, Noorakmar A, Lee J, Jumardi R, Jinap S, Zaidul I. A review on functional and nutritional properties of noni fruit seed (Morinda citrifolia L.) and its oil. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Gachumi G, Poudel A, Wasan KM, El-Aneed A. Analytical Strategies to Analyze the Oxidation Products of Phytosterols, and Formulation-Based Approaches to Reduce Their Generation. Pharmaceutics 2021; 13:pharmaceutics13020268. [PMID: 33669349 PMCID: PMC7920278 DOI: 10.3390/pharmaceutics13020268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Phytosterols are a class of lipid molecules present in plants that are structurally similar to cholesterol and have been widely utilized as cholesterol-lowering agents. However, the susceptibility of phytosterols to oxidation has led to concerns regarding their safety and tolerability. Phytosterol oxidation products (POPs) present in a variety of enriched and non-enriched foods can show pro-atherogenic and pro-inflammatory properties. Therefore, it is crucial to screen and analyze various phytosterol-containing products for the presence of POPs and ultimately design or modify phytosterols in such a way that prevents the generation of POPs and yet maintains their pharmacological activity. The main approaches for the analysis of POPs include the use of mass spectrometry (MS) linked to a suitable separation technique, notably gas chromatography (GC). However, liquid chromatography (LC)-MS has the potential to simplify the analysis due to the elimination of any derivatization step, usually required for GC-MS. To reduce the transformation of phytosterols to their oxidized counterparts, formulation strategies can theoretically be adopted, including the use of microemulsions, microcapsules, micelles, nanoparticles, and liposomes. In addition, co-formulation with antioxidants, such as tocopherols, may prove useful in substantially preventing POP generation. The main objectives of this review article are to evaluate the various analytical strategies that have been adopted for analyzing them. In addition, formulation approaches that can prevent the generation of these oxidation products are proposed.
Collapse
Affiliation(s)
- George Gachumi
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (G.G.); (A.P.)
| | - Asmita Poudel
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (G.G.); (A.P.)
| | - Kishor M. Wasan
- iCo Therapeutics Inc., Vancouver, BC V6Z 2T3, Canada;
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Skymount Medical Group Inc., Calgary, AB T3C 0J8, Canada
| | - Anas El-Aneed
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (G.G.); (A.P.)
- Correspondence: ; Tel.: +1-306-966-2013
| |
Collapse
|
18
|
Chromatography-MS based metabolomics applied to the study of virgin olive oil bioactive compounds: Characterization studies, agro-technological investigations and assessment of healthy properties. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Supercritical CO 2 Extraction of Phytocompounds from Olive Pomace Subjected to Different Drying Methods. Molecules 2021; 26:molecules26030598. [PMID: 33498727 PMCID: PMC7865472 DOI: 10.3390/molecules26030598] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 11/17/2022] Open
Abstract
Olive pomace is a semisolid by-product of olive oil production and represents a valuable source of functional phytocompounds. The valorization of agro-food chain by-products represents a key factor in reducing production costs, providing benefits related to their reuse. On this ground, we herein investigate extraction methods with supercritical carbon dioxide (SC-CO2) of functional phytocompounds from olive pomace samples subjected to two different drying methods, i.e., freeze drying and hot-air drying. Olive pomace was produced using the two most common industrial olive oil production processes, one based on the two-phase (2P) decanter and one based on the three-phase (3P) decanter. Our results show that freeze drying more efficiently preserves phytocompounds such as α-tocopherol, carotenoids, chlorophylls, and polyphenols, whereas hot-air drying does not compromise the β-sitosterol content and the extraction of squalene is not dependent on the drying method used. Moreover, higher amounts of α-tocopherol and polyphenols were extracted from 2P olive pomace, while β-sitosterol, chlorophylls, and carotenoids were more concentrated in 3P olive pomace. Finally, tocopherol and pigment/polyphenol fractions exerted antioxidant activity in vitro and in accelerated oxidative conditions. These results highlight the potential of olive pomace to be upcycled by extracting from it, with green methods, functional phytocompounds for reuse in food and pharmaceutical industries.
Collapse
|
20
|
Neurite Outgrowth-Promoting Activity of Compounds in PC12 Cells from Sunflower Seeds. Molecules 2020; 25:molecules25204748. [PMID: 33081156 PMCID: PMC7587564 DOI: 10.3390/molecules25204748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/30/2020] [Accepted: 10/13/2020] [Indexed: 11/21/2022] Open
Abstract
In the current super-aging society, the establishment of methods for prevention and treatment of Alzheimer’s disease (AD) is an urgent task. One of the causes of AD is thought to be a decrease in the revel of nerve growth factor (NGF) in the brain. Compounds showing NGF-mimicking activity and NGF-enhancing activity have been examined as possible agents for improving symptoms. In the present study, sunflower seed extract was found to have neurite outgrowth-promoting activity, which is an NGF-enhancing activity, in PC12 cells. To investigate neurite outgrowth-promoting compounds from sunflower seed extract, bioassay-guided purification was carried out. The purified active fraction was obtained by liquid-liquid partition followed by some column chromatographies. Proton nuclear magnetic resonance and gas chromatography-mass spectrometry analyses of the purified active fraction indicated that the fraction was a mixture of β-sitosterol, stigmasterol and campesterol, with β-sitosterol being the main component. Neurite outgrowth-promoting activities of β-sitosterol, stigmasterol, campesterol and cholesterol were evaluated in PC12 cells. β-Sitosterol and stigmasterol showed the strongest activity of the four sterol compounds (β-sitosterol ≈ stigmasterol > campesterol > cholesterol), and cholesterol did not show any activity. The results indicated that β-sitosterol was the major component responsible for the neurite outgrowth-promoting activity of sunflower seeds. Results of immunostaining also showed that promotion by β-sitosterol of neurite formation induced by NGF was accompanied by neurofilament expression. β-Sitosterol, which showed NGF-enhancing activity, might be a candidate ingredient in food for prevention of AD.
Collapse
|
21
|
Afshar Mogaddam MR, Farajzadeh MA, Azadmard Damirchi S, Nemati M. Dispersive solid phase extraction combined with solidification of floating organic drop-liquid-liquid microextraction using in situ formation of deep eutectic solvent for extraction of phytosterols from edible oil samples. J Chromatogr A 2020; 1630:461523. [PMID: 32920246 DOI: 10.1016/j.chroma.2020.461523] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/03/2020] [Accepted: 08/31/2020] [Indexed: 11/19/2022]
Abstract
In this study, a dispersive solid phase extraction method was combined with solidification of floating organic drop-liquid-liquid microextraction based on in situ synthesis of deep eutectic solvent. It was used for the extraction of some phytosterols from edible oil samples. The extracted analytes were quantified by gas chromatography-mass spectrometry. In this procedure, the sample lipids are saponified with sodium hydroxide and then the analytes are adsorbed onto an octadecylsilane sorbent. After that the analytes are desorbed from the sorbent with ethanol as an elution solvent and the eluant is diluted with deionized water to obtain a homogenous solution. Then, a few amounts of choline chloride and n-butyric acid are dissolved in the solution and transferred into a water batch adjusted at 75 ⁰C for 5 min. During this period Choline chloride and n-butyric acid form a deep eutectic solvent (extraction solvent) dispersed in whole parts of the solution. The obtained cloudy solution is placed into an ice bath. The extraction solvent is collected and solidified on the top of the solution. Finally, it is removed and allows melted at room temperature and an aliquat of the solution is injected into the separation system. Validation of the method showed that limits of detection and quantification were in the ranges of 0.52-1.6 and 1.7-5.6 ng mL-1, respectively. Enrichment factors and extraction recoveries of the analytes ranged from 312 to 375 and 75-90%, respectively. The method had a proper percision with relative standard deviations less than ≤8.2% for intra- (n = 6) and inter-day (n = 6) precisions at a concentration of 15 ng mL-1 of each analyte. Finally the method was successfully used for determination of the analytes in some edible oil samples.
Collapse
Affiliation(s)
- Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Engineering Faculty, Near East University, North Cyprus, Mersin 10, 99138 Nicosia, Turkey
| | - Sodeif Azadmard Damirchi
- Department of Food Science and Technology, School of Agriculture, University of Tabriz, Tabriz, Iran
| | - Mahboob Nemati
- Food and Drug Safety Research, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Food and Drug Control, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|