1
|
Zheng J, Sun Y, Liao Y, Qin P, Che R, Zhao JY, Xiao Z. Dual-purpose Bacillus subtilis fermentation: enhanced nattokinase production via oxygen-enriched fed-batch cultivation and natto starter preparation from harvested biomass. Bioprocess Biosyst Eng 2025:10.1007/s00449-025-03151-3. [PMID: 40310560 DOI: 10.1007/s00449-025-03151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/12/2025] [Indexed: 05/02/2025]
Abstract
Nattokinase (NK) is one of the most important functional components in natto, but its content is low. In this study, the fermentation conditions using Bacillus subtilis JZ08-02 for high-yield NK production were investigated, and the residual bacterial pellets were used to prepare a natto starter. Batch fermentation of NK was conducted using a 5 L fermenter, and soybean milk and glucose were used as the substrates. When the stirring speed was increased from 450 to 650 rpm with air supply at 1.0 vvm, NK was increased from 4859 ± 142 to 12,294 ± 226 IU/mL. When pure oxygen was supplied, 15,013 ± 550 IU/mL of NK was obtained. When fed-batch fermentation was conducted, the titer was further elevated to 18,014 ± 112 IU/mL, which was increased by about 76% compared with the previous result. The experimental findings revealed that aeration control and nutrient feeding regimens exerted pronounced effects on NK productivity during submerged fermentation. The crude enzyme supernatant was obtained by centrifugation and the precipitate was collected. With optimized protectant, the bacterial pellets were freeze-dried with 90.1% cell survival rate. Using economical and edible feedstocks, this study achieved a significant enhancement in NK fermentation yield via oxygen-enriched fed-batch cultivation. At the same time, a natto starter was prepared as a by-product using the residual cell waste.
Collapse
Affiliation(s)
- Jiawen Zheng
- Department of Biology and Energy Chemical Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, 266580, China
| | - Yaping Sun
- Department of Biology and Energy Chemical Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, 266580, China
| | - Yunyu Liao
- Department of Biology and Energy Chemical Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, 266580, China
| | - Peng Qin
- Department of Biology and Energy Chemical Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, 266580, China
| | - Rongzhen Che
- Department of Biology and Energy Chemical Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, 266580, China
| | - Jing-Yi Zhao
- Department of Biology and Energy Chemical Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, 266580, China
| | - Zijun Xiao
- Department of Biology and Energy Chemical Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, 266580, China.
| |
Collapse
|
2
|
Zhao L, Liu S, Li M, Lee JH, Zhu Y, Liang D, Zhi H, Ding Q, Zhao G, Ma Y, Sun L, Liu Y. Bibliometric Analysis of Probiotic Bacillus in Food Science: Evolution of Research Trends and Systematic Evaluation. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10457-x. [PMID: 39849267 DOI: 10.1007/s12602-025-10457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2025] [Indexed: 01/25/2025]
Abstract
With the in-depth and comprehensive research on probiotic Bacillus, it has become a hot topic in food science. However, the current status of research using bibliometric analysis to assess the application of probiotic Bacillus in food science has not been comprehensively reviewed. The Web of Science (WOS) database was used in this review's bibliometric analysis to determine the hotspots for research as well as the extent of completed experiments. Furthermore, a systematic review was conducted on the research hotspots of probiotic Bacillus in food science. The comprehensive analysis showed it was a growing and global research field. The keywords with high frequency mainly included "spore," "strain," and "production," which were research hot topics in the last decade. The application of the spore form or nutrient cells of probiotic Bacillus in industrialized food production through nutrient fortification, fermentation agents, and highly efficient synthesis of metabolites showed great development potential.
Collapse
Affiliation(s)
- Lijun Zhao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Shijie Liu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Miaoyun Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China.
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China.
| | - Jong-Hoon Lee
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, 16227, Republic of Korea
| | - Yaodi Zhu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Dong Liang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Huihui Zhi
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Qian Ding
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Gaiming Zhao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Yangyang Ma
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Lingxia Sun
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Yanxia Liu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| |
Collapse
|
3
|
Zhao Y, Zhang Q, He L, Dong L, Liu Z, Wang X, Li C, Qiao S. Fermentation with Bacillus natto and Bifidobacterium improves the functional, physicochemical properties, and taste qualities of coix seed-natto. Food Res Int 2024; 196:115074. [PMID: 39614500 DOI: 10.1016/j.foodres.2024.115074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 12/01/2024]
Abstract
Coix seed-natto (CS-natto) is a nutritious food rich in various functional components such as nattokinase (NK), and the strains' fermentation is crucial for enhancing its quality. This work utilized Bacillus natto GUTU09 (B9) and Bifidobacterium animalis subsp. lactis BLH1 or BLH6 to ferment soybeans that were soaked in a saccharified liquid made from CS, resulting in the preparation of CS-natto, studied the physicochemical and functional characteristics during fermentation, and analyzed the correlation of various indicators. Finally, an electronic tongue analysis was conducted on CS-natto. The results indicated that fermentation significantly increases NK and antioxidant activity in CS-natto, with NK activity in BLH6-B9 natto reaching 425.00 FU/g. Co-fermentation notably enhanced the content and composition of phenolic substances. Furthermore, the study revealed that the organic acid and soy isoflavone content in co-fermentation were significantly higher than in single-strain fermentation. Fermentation could elevate the levels of amino peptide nitrogen and soluble peptides. Additionally, the addition of Bifidobacterium exhibited a synergistic effect on the fermentation of B9 to produce natto. Correlation analysis indicated that Bifidobacterium promoted B9 to produce NK. The BLH1 encouraged the conversion of organic acids. Daidzein and daidzin were positively correlated (P<0.01), suggesting a potential mutual conversion. Finally, electronic tongue analysis indicated that co-fermentation could effectively enhance the taste. The results indicated that CS-natto could serve as an improved dietary supplement offering enhanced quality and more beneficial effects on people's health.
Collapse
Affiliation(s)
- Yongcai Zhao
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Qifeng Zhang
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Laping He
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Lab of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang 550025, PR China.
| | - Lidan Dong
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Zhengyu Liu
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Xiao Wang
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Lab of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang 550025, PR China
| | - Cuiqin Li
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; Key Lab of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang 550025, PR China; School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, PR China.
| | - Shunbin Qiao
- Guizhou Light Industry Vocational and Technical College, Guiyang, 550025, PR China.
| |
Collapse
|
4
|
Lyu H, Hernalsteens S, Cong H, Quek SY, Chen XD. Solid state fermentation of mung beans by Bacillus subtilis subsp. natto on static, shaking flask and soft elastic tubular reactors. FOOD SCI TECHNOL INT 2024; 30:623-635. [PMID: 36911978 DOI: 10.1177/10820132231162167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Given that mung beans constitute a significant nutrient source in many cultures, it is worthwhile to investigate ways to improve their nutritional and functional properties. The effect of fermentation of mung beans by Bacillus subtilis subsp. natto was investigated in various reactor designs, including static, shaking flasks, and soft elastic tubular reactors (SETR). The results showed that all three processes might affect the substrate, resulting in changes in the protein and carbohydrate fractions. We noticed an increase in soluble protein and serine levels, which we attribute to the proteases produced during fermentation. Through XRD, FTIR, and DSC analyses, it was also discovered that whereas static and shaking flask fermentation might raise relative crystallinity and peak temperature, fermentation performed on the SETR decreased these values. It was also possible to notice that SETR might induce a change in the particle size distribution of the substrate through a complex impact of mechanical forces, mixing, and microbial activity, which could be helpful to some aspects of the process. To summarize, fermentation of mung beans by Bacillus. subtilis subsp. natto could be an attractive approach for producing a food ingredient with various functional and nutritional properties. Furthermore, the SETR has been shown to be a viable technique for dealing with high solid load substrates, whether as the reactor for the entire process or as a first stage/pre-treatment step, and its applicability in bioprocesses should be explored further.
Collapse
Affiliation(s)
- He Lyu
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Saartje Hernalsteens
- School of Chemical and Environmental Engineering, Soochow University, Suzhou, Jiangsu, China
| | - Haihua Cong
- Xiao Dong Pro-health (Suzhou) Instrumentation Co Ltd, Suzhou, Jiangsu Province, China
| | - S-Y Quek
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Xiao Dong Chen
- School of Chemical and Environmental Engineering, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
5
|
Zhang S, Wang A, Lu Z, Lu F, Zhao H. Fermentation of millet bran with Bacillus natto: enhancement of bioactivity levels and the bioactivity of bran extract. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6196-6207. [PMID: 38459922 DOI: 10.1002/jsfa.13455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/29/2024] [Accepted: 03/09/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Millet bran (MB), a byproduct of millet production, is rich in functional components but it is underutilized. In recent years, researchers have shown that fermentation can improve the biological activity of cereals and their byproducts. This study used Bacillus natto to ferment millet bran to improve its added value and broaden the application of MB. The bioactive component content, physicochemical properties, and functional activity of millet bran extract (MBE) from fermented millet bran were determined. RESULTS After fermentation, the soluble dietary fiber (SDF) content increased by 92.0%, the β-glucan content by 164.4%, the polypeptide content by 111.4%, the polyphenol content by 32.5%, the flavone content by 16.4%, and the total amino acid content by 95.4%. Scanning electron microscopy revealed that the microscopic morphology of MBE changed from complete and dense blocks to loosely porous shapes after fermentation. After fermentation, the solubility, water-holding capacity, and viscosity significantly increased and the particle size decreased. Moreover, the glucose adsorption capacity (2.1 mmol g-1), glucose dialysis retardation index (75.3%), and α-glucosidase inhibitory (71.4%, mixed reversible inhibition) activity of the fermented MBE (FMBE) were greater than those of the unfermented MBE (0.99 mmol g-1, 32.1%, and 35.1%, respectively). The FMBE presented better cholesterol and sodium cholate (SC) adsorption properties and the adsorption was considered inhomogeneous surface adsorption. CONCLUSION Fermentation increased the bioactive component content and improved the physicochemical properties of MBE, thereby improving its hypoglycemic and hypolipidemic properties. This study not only resolves the problem of millet bran waste but also encourages the development of higher value-added application methods for millet bran. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shimei Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - An Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Haizhen Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
6
|
Liu S, Zhao L, Li M, Zhu Y, Liang D, Ma Y, Sun L, Zhao G, Tu Q. Probiotic Bacillus as fermentation agents: Status, potential insights, and future perspectives. Food Chem X 2024; 22:101465. [PMID: 38798797 PMCID: PMC11127159 DOI: 10.1016/j.fochx.2024.101465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Probiotic Bacillus strains can solve the problems of single flavor and long fermentation time of fermented products caused by the lack of certain functional genes and insufficient metabolism ability of fermenter strains (Lactobacillus and Bifidobacterium) at the present stage. There is a lack of systematic evaluation and review of probiotic Bacillus as food fermentation agents. In this paper, it is observed that probiotic Bacillus strains are involved to varying degrees in liquid-state, semi-solid state, and solid-state fermentation and are widely present in solid-state fermented foods. Probiotic Bacillus strains not only produce abundant proteases and lipases, but also effective antifungal lipopeptides and extracellular polymers, thus enhancing the flavor, nutritional value and safety of fermented foods. Bacillus with probiotic qualities is an underutilized group of probiotic food fermentation agents, which give a potential for the development of fermentation technology in the food business and the integration of ancient traditional fermentation techniques.
Collapse
Affiliation(s)
- Shijie Liu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Lijun Zhao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Miaoyun Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Yaodi Zhu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Dong Liang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Yangyang Ma
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - LingXia Sun
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Gaiming Zhao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Qiancheng Tu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| |
Collapse
|
7
|
Wen W, Hu M, Gao Y, Zhang P, Meng W, Zhang F, Fan B, Wang F, Li S. Effect of Soy Protein Products on Growth and Metabolism of Bacillus subtilis, Streptococcus lactis, and Streptomyces clavuligerus. Foods 2024; 13:1525. [PMID: 38790825 PMCID: PMC11121397 DOI: 10.3390/foods13101525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Microbial nitrogen sources are promising, and soy protein as a plant-based nitrogen source has absolute advantages in creating microbial culture medium in terms of renewability, eco-friendliness, and greater safety. Soy protein is rich in variety due to different extraction technologies and significantly different in the cell growth and metabolism of microorganisms as nitrogen source. Therefore, different soy proteins (soy meal powder, SMP; soy peptone, SP; soy protein concentrate, SPC; soy protein isolate, SPI; and soy protein hydrolysate, SPH) were used as nitrogen sources to culture Bacillus subtilis, Streptococcus lactis, and Streptomyces clavuligerus to evaluate the suitable soy nitrogen sources of the above strains. The results showed that B. subtilis had the highest bacteria density in SMP medium; S. lactis had the highest bacteria density in SPI medium; and S. clavuligerus had the highest PMV in SPI medium. Nattokinase activity was the highest in SP medium; the bacteriostatic effect of nisin was the best in SPI medium; and the clavulanic acid concentration was the highest in SMP medium. Based on analyzing the correlation between the nutritional composition and growth metabolism of the strains, the results indicated that the protein content and amino acid composition were the key factors influencing the cell growth and metabolism of the strains. These findings present a new, high-value application opportunity for soybean protein.
Collapse
Affiliation(s)
- Wei Wen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (W.W.); (M.H.); (Y.G.); (P.Z.); (W.M.); (F.Z.); (B.F.)
| | - Miao Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (W.W.); (M.H.); (Y.G.); (P.Z.); (W.M.); (F.Z.); (B.F.)
| | - Yaxin Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (W.W.); (M.H.); (Y.G.); (P.Z.); (W.M.); (F.Z.); (B.F.)
| | - Pengfei Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (W.W.); (M.H.); (Y.G.); (P.Z.); (W.M.); (F.Z.); (B.F.)
| | - Weimin Meng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (W.W.); (M.H.); (Y.G.); (P.Z.); (W.M.); (F.Z.); (B.F.)
| | - Fengxia Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (W.W.); (M.H.); (Y.G.); (P.Z.); (W.M.); (F.Z.); (B.F.)
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (W.W.); (M.H.); (Y.G.); (P.Z.); (W.M.); (F.Z.); (B.F.)
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuying Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (W.W.); (M.H.); (Y.G.); (P.Z.); (W.M.); (F.Z.); (B.F.)
| |
Collapse
|
8
|
Ren F, Ji N, Zhu Y. Research Progress of α-Glucosidase Inhibitors Produced by Microorganisms and Their Applications. Foods 2023; 12:3344. [PMID: 37761053 PMCID: PMC10529981 DOI: 10.3390/foods12183344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Based on the easy cultivation of microorganisms and their short cycle time, research on α-glucosidase inhibitors (α-GIs) of microbial origin is receiving extensive attention. Raw materials used in food production, such as cereals, dairy products, fruits, and vegetables, contain various bioactive components, like flavonoids, polyphenols, and alkaloids. Fermentation with specific bacterial strains enhances the nutritional value of these raw materials and enables the creation of hypoglycemic products rich in diverse active ingredients. Additionally, conventional food processing often results in significant byproduct generation, causing resource wastage and environmental issues. However, using bacterial strains to ferment these byproducts into α-GIs presents an innovative solution. This review describes the microbial-derived α-GIs that have been identified. Moreover, the production of α-GIs using industrial food raw materials and processing byproducts as a medium in fermentation is summarized. It is worth analyzing the selection of strains and raw materials, the separation and identification of key compounds, and fermentation broth research methods. Notably, the innovative ideas in this field are described as well. This review will provide theoretical guidance for the development of microbial-derived hypoglycemic foods.
Collapse
Affiliation(s)
- Fei Ren
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing 100048, China; (F.R.); (N.J.)
| | - Nairu Ji
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing 100048, China; (F.R.); (N.J.)
| | - Yunping Zhu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing 100048, China; (F.R.); (N.J.)
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
9
|
Sheng Y, Yang J, Wang C, Sun X, Yan L. Microbial nattokinase: from synthesis to potential application. Food Funct 2023; 14:2568-2585. [PMID: 36857725 DOI: 10.1039/d2fo03389e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Nattokinase (NK) is an alkaline serine protease with strong thrombolytic activity produced by Bacillus spp. or Pseudomonas spp. It is a potential therapeutic agent for thrombotic diseases because of its safety, economy, and lack of side effects. Herein, a comprehensive summary and analysis of the reports surrounding NK were presented, and the physical-chemical properties and producers of NK were first described. The process and mechanism of NK synthesis were summarized, but these are vague and not specific enough. Further results may be achieved if detection techniques such as multi-omics are used to explore the process of NK synthesis. The purification of NK has problems such as a complicated operation and low recovery rate, which were found when summarizing the techniques to improve the quality of finished products. If multiple simple and efficient precipitation methods and purification materials are combined to purify NK, it may be possible to solve the current challenges. Additionally, the application potential of NK in biomedicine was reviewed, but functional foods with NK are challenging for acceptance in daily life due to their unpleasant odor. Accordingly, multi-strain combination fermentation or food flavoring agents can improve the odor of fermented foods and increase people's acceptance of them. Finally, the possible future directions focused on NK studies were proposed and provided suggestions for subsequent researchers.
Collapse
Affiliation(s)
- Yanan Sheng
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Jiani Yang
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Xindi Sun
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Lei Yan
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| |
Collapse
|
10
|
Liu D, Han Z, Hu Z, Yu C, Wang Y, Tong J, Fang X, Yue W, Nie G. Comparative analysis of the transcriptome of Bacillus subtilis natto incubated in different substrates for nattokinase production. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
11
|
Meng FB, Lei YT, Zhang Q, Li YC, Chen WJ, Liu DY. Encapsulation of Zanthoxylum bungeanum essential oil to enhance flavor stability and inhibit lipid oxidation of Chinese-style sausage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4035-4045. [PMID: 34997590 DOI: 10.1002/jsfa.11752] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/10/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Zanthoxylum bungeanum essential oil (ZBEO) is a popular seasoning, commonly used in the food industry. It contains many easily degraded and highly volatile bioactive substances. Control of the stability of the bioactive substances in ZBEO is therefore very important in the food industry. RESULTS In this study, microencapsulation was applied to improve ZBEO stability. The key parameters for microcapsule preparation were optimized by the Box-Behnken design method, and the optimum conditions were as follows: ratio of core to wall, 1:8; ratio of hydroxypropyl-α-cyclodextrin (HPCD) to soy protein isolate (SPI), 4; total solids content, 12%; and homogenization speed, 12 000 rpm. Antioxidant experiments have indicated that tea polyphenols (TPPs) effectively inhibited hydroxy-α-sanshool degradation in ZBEO microcapsules. Application of ZBEO microcapsules in Chinese-style sausage effectively inhibited lipid oxidation in sausages and protected hydroxy-α-sanshool and typical volatiles from volatilization and degradation during sausage storage. CONCLUSION The results suggested that ZBEO microencapsulation is an effective strategy for improving the stability of its bioactive components and flavor ingredients during food processing. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fan-Bing Meng
- College of Food and Biological Engineering, Chengdu University, Chengdu, PR China
- Key Laboratory for Meat Processing of Sichuan Province, Chengdu University, Chengdu, PR China
| | - Yu-Ting Lei
- College of Food and Biological Engineering, Chengdu University, Chengdu, PR China
| | - Qian Zhang
- College of Food and Biological Engineering, Chengdu University, Chengdu, PR China
| | - Yun-Cheng Li
- College of Food and Biological Engineering, Chengdu University, Chengdu, PR China
- Key Laboratory for Meat Processing of Sichuan Province, Chengdu University, Chengdu, PR China
| | - Wei-Jun Chen
- College of Food and Biological Engineering, Chengdu University, Chengdu, PR China
| | - Da-Yu Liu
- College of Food and Biological Engineering, Chengdu University, Chengdu, PR China
| |
Collapse
|
12
|
Cai L, Wang W, Tong J, Fang L, He X, Xue Q, Li Y. Changes of bioactive substances in lactic acid bacteria and yeasts fermented kiwifruit extract during the fermentation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Recent Advances in Nattokinase-Enriched Fermented Soybean Foods: A Review. Foods 2022; 11:foods11131867. [PMID: 35804683 PMCID: PMC9265860 DOI: 10.3390/foods11131867] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 01/27/2023] Open
Abstract
With the dramatic increase in mortality of cardiovascular diseases (CVDs) caused by thrombus, this has sparked an interest in seeking more effective thrombolytic drugs or dietary nutriments. The dietary consumption of natto, a traditional Bacillus-fermented food (BFF), can reduce the risk of CVDs. Nattokinase (NK), a natural, safe, efficient and cost-effective thrombolytic enzyme, is the most bioactive ingredient in natto. NK has progressively been considered to have potentially beneficial cardiovascular effects. Microbial synthesis is a cost-effective method of producing NK. Bacillus spp. are the main production strains. While microbial synthesis of NK has been thoroughly explored, NK yield, activity and stability are the critical restrictions. Multiple optimization strategies are an attempt to tackle the current problems to meet commercial demands. We focus on the recent advances in NK, including fermented soybean foods, production strains, optimization strategies, extraction and purification, activity maintenance, biological functions, and safety assessment of NK. In addition, this review systematically discussed the challenges and prospects of NK in actual application. Due to the continuous exploration and rapid progress of NK, NK is expected to be a natural future alternative to CVDs.
Collapse
|
14
|
Liu H, Luo S, Liu J, Yan Q, Yang S, Jiang Z. Novel green soybean shuidouchi fermented by Bacillus velezensis with multibioactivities. Food Sci Nutr 2021; 9:6538-6547. [PMID: 34925783 PMCID: PMC8645744 DOI: 10.1002/fsn3.2579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022] Open
Abstract
Soybeans are usually fermented by Bacillus subtilis to produce shuidouchi, which is a traditional fermentation soybean product in China. In the study, green soybeans were fermented by Bacillus velezensis to make a novel green soybean shuidouchi with multibioactivities. The processing conditions were optimized as follows: initial moisture content 75%, inoculum concentration 7 log CFU/g, and incubation time 24 h for prefermentation; water addition 50%, salt addition 6%, temperature 45°C, 3 days for postfermentation. The fermented green soybean shuidouchi (FGSS) showed 234.8 FU/g dry weight (DW) for the fibrinolytic activity and IC50 of 0.33 mg/ml for the anticoagulant activity. FGSS had higher contents of chemical components including 3.6 mg rutin (RE)/g DW of total flavonoids, 8.2 mg gallic acid (GAE)/g DW of total phenolics, 63.7 mg/g DW of reducing sugars, and 163.8 mg/g DW of peptides than the unfermented green soybean shuidouchi (UGSS). Moreover, it exhibited high antioxidant activities of 29.8, 85.1 μmol trolox equivalent (TE)/g DW, and 12.8 μmol Fe2+/g DW through 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS), and ferric reducing antioxidant power (FRAP) experiments. Thus, a novel green soybean shuidouchi fermented by B. velezensis owing to multibioactivities can provide a theoretical basis for the further development of functional shuidouchi.
Collapse
Affiliation(s)
- Hong Liu
- Key Laboratory of Food Bioengineering (China National Light Industry)College of EngineeringChina Agricultural UniversityBeijingChina
| | - Shen Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Jun Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Qiaojuan Yan
- Key Laboratory of Food Bioengineering (China National Light Industry)College of EngineeringChina Agricultural UniversityBeijingChina
| | - Shaoqing Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Zhengqiang Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| |
Collapse
|
15
|
Ding H, Li Z, Liu Q, Zhang Y, Wang Y, Hu Y, Ma A. Peanut meal extract fermented with Bacillus natto attenuates physiological and behavioral deficits in a D-galactose-induced aging rat model. Br J Nutr 2021; 128:1-28. [PMID: 34776018 DOI: 10.1017/s0007114521004487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Our previous studies have shown that the nutritional properties of peanut meal after fermentation are markedly improved. In this study, in order to facilitate the further utilization of peanut meal, we investigated the effects of its fermentation extract by Bacillus natto (FE) on cognitive ability, antioxidant activity of brain, and protein expression of hippocampus of aging rats induced by D-galactose. Seventy-two female SD rats aged 4-5 months were randomly divided into six groups: normal control group (N), aging model group (M), FE low-dose group (FL), FE medium-dose group (FM), FE high-dose group (FH) and vitamin E positive control group (Y). Morris water maze (MWM) test was performed to evaluate their effects on learning and memory ability in aging rats. SOD activity and malondialdehyde (MDA) content of brain, HE staining and the expression of γ-aminobutyric acid receptor 1 (GABABR1) and N-methyl-D-aspartic acid 2B receptor (NMDAR2B) in the hippocampus of rats were measured. The results show that FE supplementation can effectively alleviate the decrease of thymus index induced by aging, decrease the escape latency of MWM by 66.06%, brain MDA by 28.04%, hippocampus GABABR1 expression by 7.98%, and increase brain SOD by 63.54% in aging model rats. This study provides evidence for its anti-aging effects and is a research basis for potential nutritional benefits of underutilized food by-products.
Collapse
Affiliation(s)
- Haoyue Ding
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, Shandong, 266071, China
| | - Zichao Li
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Qing Liu
- Women and Children's Hospital, Qingdao University, Qingdao, Shandong, 266071, China
| | - Yuanjie Zhang
- Health Supervision Institute, Xuzhou, Jiangsu, 221000, China
| | - Yanping Wang
- Linyi Vocational University of Science and Technology, Linyi, Shandong, 276000, China
| | - Yingfen Hu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Aiguo Ma
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, Shandong, 266071, China
| |
Collapse
|
16
|
Suna S, Avşar B, Koçer S, Çopur ÖU. Effects of different pretreatments on the physicochemical characteristics and quality criteria of chestnut (
Castanea sativa
Mill.) pickle: A new value‐added product. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Senem Suna
- Department of Food Engineering Faculty of Agriculture Bursa Uludag University Bursa Turkey
| | - Betül Avşar
- Department of Food Engineering Faculty of Agriculture Bursa Uludag University Bursa Turkey
| | - Serhat Koçer
- Central Research Institute of Food and Feed Control Bursa Turkey
| | - Ömer Utku Çopur
- Department of Food Engineering Faculty of Agriculture Bursa Uludag University Bursa Turkey
| |
Collapse
|
17
|
Kewuyemi YO, Kesa H, Adebo OA. Trends in functional food development with three-dimensional (3D) food printing technology: prospects for value-added traditionally processed food products. Crit Rev Food Sci Nutr 2021; 62:7866-7904. [PMID: 33970701 DOI: 10.1080/10408398.2021.1920569] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
One of the recent, innovative, and digital food revolutions gradually gaining acceptance is three-dimensional food printing (3DFP), an additive technique used to develop products, with the possibility of obtaining foods with complex geometries. Recent interest in this technology has opened the possibilities of complementing existing processes with 3DFP for better value addition. Fermentation and malting are age-long traditional food processes known to improve food value, functionality, and beneficial health constituents. Several studies have demonstrated the applicability of 3D printing to manufacture varieties of food constructs, especially cereal-based, from root and tubers, fruit and vegetables as well as milk and milk products, with potential for much more value-added products. This review discusses the extrusion-based 3D printing of foods and the major factors affecting the process development of successful edible 3D structures. Though some novel food products have emanated from 3DFP, considering the beneficial effects of traditional food processes, particularly fermentation and malting in food, concerted efforts should also be directed toward developing 3D products using substrates from these conventional techniques. Such experimental findings will significantly promote the availability of minimally processed, affordable, and convenient meals customized in complex geometric structures with enhanced functional and nutritional values.
Collapse
Affiliation(s)
- Yusuf Olamide Kewuyemi
- School of Tourism and Hospitality, College of Business and Economics, University of Johannesburg, Gauteng, South Africa
| | - Hema Kesa
- School of Tourism and Hospitality, College of Business and Economics, University of Johannesburg, Gauteng, South Africa
| | - Oluwafemi Ayodeji Adebo
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Gauteng, South Africa
| |
Collapse
|