1
|
Huang Y, Jin J, Cao W, Wang Y. Identification and Biotransformation of Volatile Markers During the Early Stage of Zygosaccharomyces rouxii and Zygosaccharomyces mellis Contamination in Acacia Honey. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23422-23437. [PMID: 39392611 DOI: 10.1021/acs.jafc.4c06157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
To address the volatile markers and their biotransformation during the early stage of Zygosaccharomyces spp. contamination in acacia honey, headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and chemometric analyses were used to explore the variation of volatile compounds. A total of 36 and 35 volatile compounds were identified before and after contamination of Zygosaccharomyces rouxii and Zygosaccharomyces mellis, respectively. Methyl butyrate and 2-methyl-3-pentanone could be used as volatile markers of Z. rouxii and Z. mellis-contaminated honey, which were both specific products of the yeast's own fermentation. 2,5-Dimethylbenzaldehyde was identified as a volatile marker of Z. rouxii and Z. mellis-contaminated acacia honey, and it was a specific product resulting from the interaction of yeast and acacia honey. In addition, β-damascenone could be determined as a potential volatile marker after Z. rouxii-contaminated acacia honey. Methyl 2-methylbutyrate was used as a potential volatile marker in the high-concentration groups of Z. rouxii and Z. mellis. The content ranges of methyl butyrate, 2-methyl-3-pentanone, and 2,5-dimethylbenzaldehyde in four samples were 6.62-14.59, 3.15-5.42, and 52.52-215.19 μg/mL, respectively. The variation of volatile markers during the early stage of osmotolerant yeast contamination provided a theoretical basis for the use of HS-SPME-GC-MS for the rapid detection of acacia honey deterioration while reducing economic losses.
Collapse
Affiliation(s)
- Yuanyuan Huang
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Jing Jin
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Wei Cao
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Yin Wang
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| |
Collapse
|
2
|
Wang Y, Wang X, Jiang P, Dai L, Hu Y, Pan B, Li Y, Zhang J, Zhang R, Zhan S, Li Z. Construction of a Zygosaccharomyces rouxii strain overexpressing the QOR gene for increased HDMF production. Food Sci Nutr 2024; 12:4435-4442. [PMID: 38873477 PMCID: PMC11167138 DOI: 10.1002/fsn3.4109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 06/15/2024] Open
Abstract
4-Hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF) is a flavor compound widely found in natural products and is used in food as a flavor-enhancing agent. Quinone oxidoreductase (QOR) was verified as a key enzyme to synthesize HDMF in strawberry, while its impact on HDMF production by Zygosaccharomyces rouxii was still unknown. The QOR gene was cloned and overexpressed in Z. rouxii, and its impact on HDMF production by Z. rouxii was then further analyzed. At the same time, it is expected to obtain engineered strains of Z. rouxii with high HDMF production. The results showed that the engineered strains of Z. rouxii exhibit different levels of QOR gene expression and HDMF production; among them, the QOR6 strain exhibiting the highest gene expression level and HDMF production was named as ZrQOR. The HDMF production of the ZrQOR strain was significantly higher than that of wild-type Z. rouxii at 3 and 5 days of culture, with 1.41-fold and 1.08-fold increases, respectively. At 3 days of fermentation, the highest HDMF yield of ZrQOR strain was obtained (2.75 mg/L), 2 days ahead of the reported highest HDMF production by Z. rouxii. At 3, 5, and 7 days, QOR gene expression was 4.8-fold, 3.3-fold, and 5.6-fold higher in the ZrQOR strain than in the wild-type Z. rouxii, respectively. Therefore, overexpression of the QOR gene facilitates HDMF synthesis. The genetic stability of the 0-20 generation ZrQOR strain was stable, and there was no significant difference in colony shape, QOR expression, or HDMF production compared to the wild type. In this study, the genetic engineering Z. rouxii strain was used to improve HDMF production. This research has laid the groundwork for further industrial production of HDMF via microbial synthesis.
Collapse
Affiliation(s)
- Yanhong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argro‐Waste in Cold Region, Department of Bioengineering, College of Science and BiotechnologyHeilongjiang Bayi Agricultural UniversityDaqingHeilongjiangChina
| | - Xinhui Wang
- Department of Food Science and Engineering, College of Food ScienceHeilongjiang Bayi Agricultural UniversityDaqingHeilongjiangChina
| | - Peng Jiang
- Department of Food Science and Engineering, College of Food ScienceHeilongjiang Bayi Agricultural UniversityDaqingHeilongjiangChina
| | - Lingyan Dai
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argro‐Waste in Cold Region, Department of Bioengineering, College of Science and BiotechnologyHeilongjiang Bayi Agricultural UniversityDaqingHeilongjiangChina
| | - Yijia Hu
- Department of Food Science and Engineering, College of Food ScienceHeilongjiang Bayi Agricultural UniversityDaqingHeilongjiangChina
| | - Bailing Pan
- Department of Food Science and Engineering, College of Food ScienceHeilongjiang Bayi Agricultural UniversityDaqingHeilongjiangChina
| | - Yueyue Li
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argro‐Waste in Cold Region, Department of Bioengineering, College of Science and BiotechnologyHeilongjiang Bayi Agricultural UniversityDaqingHeilongjiangChina
| | - Jingyu Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argro‐Waste in Cold Region, Department of Bioengineering, College of Science and BiotechnologyHeilongjiang Bayi Agricultural UniversityDaqingHeilongjiangChina
| | - Ruoyu Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argro‐Waste in Cold Region, Department of Bioengineering, College of Science and BiotechnologyHeilongjiang Bayi Agricultural UniversityDaqingHeilongjiangChina
| | - Shihan Zhan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argro‐Waste in Cold Region, Department of Bioengineering, College of Science and BiotechnologyHeilongjiang Bayi Agricultural UniversityDaqingHeilongjiangChina
| | - Zhijiang Li
- Department of Food Science and Engineering, College of Food ScienceHeilongjiang Bayi Agricultural UniversityDaqingHeilongjiangChina
- Heilongjiang Engineering Research Center for Coarse Cereals Processing and Quality SafetyHeilongjiang Bayi Agricultural UniversityDaqingHeilongjiangChina
| |
Collapse
|
3
|
Wang Y, Liu W, Chen J, Li Z, Hu Y, Fan Z, Yan L, Liu J, Zhou Y, Jiang W, Rui H, Dai L. Overexpression of the FBA and TPI genes promotes high production of HDMF in Zygosaccharomyces rouxii. Front Microbiol 2024; 15:1366021. [PMID: 38577687 PMCID: PMC10993695 DOI: 10.3389/fmicb.2024.1366021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/29/2024] [Indexed: 04/06/2024] Open
Abstract
4-Hydroxy-2,5-dimethyl-3 (2H)-furanone (HDMF) is widely used in the food industry as a spice and flavoring agent with high market demand. In this study, fructose-1,6-bisphosphate aldolase (FBA) and triose phosphate isomerase (TPI) were overexpressed in Zygosaccharomyces rouxii in the form of single and double genes, respectively, via electroporation. High-yield HDMF-engineered yeast strains were constructed by combining the analysis of gene expression levels obtained by real-time fluorescence quantitative PCR technology and HDMF production measured by HPLC. The results showed that there was a significant positive correlation between the production of HDMF and the expression levels of the FBA and TPI genes in yeast; the expression levels of the FBA and TPI genes were also positively correlated (p < 0.05). Compared with the wild type (WT), the engineered strains F10-D, T17-D, and TF15-A showed marked increases in HDMF production and FBA and TPI gene expression (p < 0.05) and exhibited great genetic stability with no obvious differences in biomass or colony morphology. In addition, the exogenous addition of d-fructose promoted the growth of Z. rouxii. Among the engineered strains, when fermented in YPD media supplemented with d-fructose for 5 days, TF15-A (overexpressing the FBA and TPI genes) generated the highest HDMF production of 13.39 mg/L, which is 1.91 times greater than that of the wild-type strain. The results above indicated that FBA and TPI, which are key enzymes involved in the process of HDMF biosynthesis by Z. rouxii, positively regulate the synthesis of HDMF at the transcriptional level. d-fructose can be used as a precursor for the biosynthesis of HDMF by engineered yeast in industrial production.
Collapse
Affiliation(s)
- Yanhong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wei Liu
- Heilongjiang Agricultural Economy Vocational College, Mudanjiang, China
| | - Jingyao Chen
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhijiang Li
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yijia Hu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zixiang Fan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Liangyuan Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jiahui Liu
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yuao Zhou
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wei Jiang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Haiying Rui
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing, China
| | - Lingyan Dai
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
4
|
Feng Y, Xie Z, Huang M, Tong X, Hou S, Tin H, Zhao M. Decoding temperature-driven microbial community changes and flavor regulation mechanism during winter fermentation of soy sauce. Food Res Int 2024; 177:113756. [PMID: 38225154 DOI: 10.1016/j.foodres.2023.113756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 01/17/2024]
Abstract
The flavor regulation of soy sauce fermented in winter is imminent challenge for the industry, while fermentation temperature is considered as an effective method to fortify soy sauce flavor. Thus, industrial-level fermentation systems with controlled temperature at 30°C (SSCT) and regular temperature (SSRT) in winter were designed to elucidate molecular basis and microbial regulatory mechanism of temperature-controlled flavor enhancement of soy sauce. Sensory evaluation suggested 30°C fermentation enhanced caramel-like, floral, fruity, roasted nut and smoky aroma. A total of 160 volatiles were identified, of which 39 components were evaluated for odor activity value (OAV). Eleven volatiles were determined as the odor markers distinguishing the aroma profiles of SSRT and SSCT, among which 2,5-dimethyl-4-hydroxy-3(2H)-furanone (HDMF, caramel-like), β-damascenone (floral), ethyl 2-methylpropanoate (fruity), ethyl acetate (fruity) and 2/3-methyl-1-butanol (malty, alcoholic) were largely responsible for the flavor enhancement. Moreover, high-throughput sequencing results demonstrated the temperature intervention induced more differential bacterial structure (R = 0.324, P = 0.001) than fungal structure (R = 0.069, P = 0.058). Correlation analysis revealed dominant and low-abundance genus together drove the formation and variation of volatile profile, particularly Weissella, Tetragenococcus, Starmerella and Pediococcus. Representatively, the formation pathways of key aroma substances HDMF and 5-ethyl-4-hydroxy-2-methyl-3(2H)-furanone (HEMF) were elaborated. Both temperature-mediated abiotic reactions and gene functions of microbiota were proposed to favor the yields of HDMF and C5 precursor of HEMF, whereas the small populations of Zygosaccharomyces and insufficient acetaldehyde limited the elevation of the HEMF level through the biosynthesis pathway. This study provided the practical and theoretical basis for the industrial applications of temperature control in soy sauce fermentation.
Collapse
Affiliation(s)
- Yunzi Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Ziming Xie
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xing Tong
- Guangdong Haitian Innovation Tech Co., Ltd., Foshan, Guangdong 528000, China
| | - Sha Hou
- Foshan Haitian (Gaoming) Flavoring & Food Co., Ltd., Foshan, Guangdong 528511, China
| | - Hoeseng Tin
- Foshan Haitian (Gaoming) Flavoring & Food Co., Ltd., Foshan, Guangdong 528511, China.
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China.
| |
Collapse
|
5
|
Wang D, He Z, Xia H, Huang J, Jin Y, Zhou R, Hao L, Wu C. Engineering acetyl-CoA metabolism to enhance stress tolerance of yeast by regulating membrane functionality. Food Microbiol 2023; 115:104322. [PMID: 37567632 DOI: 10.1016/j.fm.2023.104322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 08/13/2023]
Abstract
Zygosaccharomyces rouxii has excellent fermentation performance and good tolerance to osmotic stress. Acetyl-CoA is a crucial intermediate precursor in the central carbon metabolic pathway of yeast. This study investigated the effect of engineering acetyl-CoA metabolism on the membrane functionality and stress tolerance of yeast. Firstly, exogenous supplementation of acetyl-CoA improved the biomass and the ability of unsaturated fatty acid synthesis of Z. rouxii under salt stress. Q-PCR results suggested that the gene ACSS (coding acetyl-CoA synthetase) was significantly up-expressed. Subsequently, the gene ACSS from Z. rouxii was transformed and heterologously expressed in S. cerevisiae. The recombinant cells exhibited better multiple stress (salt, acid, heat, and cold) tolerance, higher fatty acid contents, membrane integrity, and fluidity. Our findings may provide a suitable means to enhance the stress tolerance and fermentation efficiency of yeast under harsh fermentation environments.
Collapse
Affiliation(s)
- Dingkang Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Zixi He
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Huan Xia
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Liying Hao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
6
|
Liu Z, Fu B, Wang J, Li W, Hu Y, Liu Z, Fu C, Li D, Wang C, Xu N. Transcriptomics Reveals the Effect of Strain Interactions on the Growth of A. Oryzae and Z. Rouxii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5525-5534. [PMID: 36989392 DOI: 10.1021/acs.jafc.3c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The microbial community structure in traditional fermented foods is quite complex, making the relationship between strains unclear. In this regard, the co-culture system can simulate microbial interactions during food fermentation and reveal the morphological changes, metabolic processes, and gene expression of microbial communities. The present study sought to investigate the effects of microbial interactions on the growth of Aspergillus oryzae and Zygosaccharomyces rouxii through omics. After co-cultivation, the pH value and dry weight were consistent with the pure culture of Z. rouxii. Additionally, the consumption of reducing sugar decreased, and the enzymatic activity increased compared with the pure culture of fungus. The analysis of volatile organic compounds (VOCs) and transcriptomics showed that co-culture significantly promoted the effect on Z. rouxii. A total of 6 different VOCs and 2202 differentially expressed genes were identified in the pure and co-culture of Z. rouxii. The differentially expressed genes were mainly related to the endonucleolytic cleavage of rRNA, ribosome biogenesis in eukaryotes, and RNA polymerase metabolic pathways. The study results will provide insights into the effect of microbial interactions on the growth of A. oryzae and Z. rouxii.
Collapse
Affiliation(s)
- Zeping Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Bin Fu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jing Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Wei Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yong Hu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Zhijie Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Caixia Fu
- Hubei Tulaohan Flavouring and Food Co., Ltd., Yichang, Hubei 443000, China
| | - Dongsheng Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Chao Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Ning Xu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| |
Collapse
|
7
|
Comparison of aroma active compounds in cold- and hot-pressed walnut oil by comprehensive two-dimensional gas chromatography-olfactory-mass spectrometry and headspace-gas chromatography-ion mobility spectrometry. Food Res Int 2023; 163:112208. [PMID: 36596141 DOI: 10.1016/j.foodres.2022.112208] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Aroma composition of cold-pressed walnut oil (CWO) and hot-pressed walnut oil (HWO) was analyzed by comprehensive two-dimensional gas chromatography-olfactory-mass spectrometry (GC × GC-O-MS) and headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). A total of 83 and 197 compounds were identified in the CWO and HWO, respectively; among these, 76 and 123 compounds were sniffed exclusively by GC × GC-O-MS, respectively. A total of 36 volatile compounds were detected by HS-GC-IMS, of which 10 in CWO and 32 in HWO. Based on of flavor dilution (FD) factors, odor-activity values (OAVs), and recombination and omission experiments, 1-octen-3-ol, cyclohexanol, and benzaldehyde were found to be the key aroma-active compounds in CWO, while 3-methylbutanal, (E,E)-2,4-nonadienal, nonanal, 1-octen-3-ol, 3-pentanol, 1-octanol, and furfural were the key aroma-active compounds in HWO. Moreover, Maillard reaction and lipid oxidation were found to play an important role in flavor formation in HWO. This study provides a guide to improve the quality of walnut oil based on aroma characteristics.
Collapse
|
8
|
Peng J, Du J, Wuqiang M, Chen T, Shui X, Liao H, Lin X, Zhou K. Transcriptomics-based analysis of the causes of sugar receding in Feizixiao litchi ( Litchi chinensis Sonn.) pulp. FRONTIERS IN PLANT SCIENCE 2022; 13:1083753. [PMID: 36618655 PMCID: PMC9814114 DOI: 10.3389/fpls.2022.1083753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
To investigate the causes of the "sugar receding" in 'Feizixiao' litchi (Litchi chinensis Sonn.) pulp, the main sugar contents and sucrose metabolism enzyme activities were measured in pulp obtained in 2020 and 2021. Pulp RNA obtained in 2020 was extracted at 35, 63, and 69 days after anthesis (DAA) for transcriptome sequencing analysis. The differential expression of genes was verified by real-time PCR for both years. The results showed that after 63 DAA, the contents of soluble sugars and sucrose decreased, and the contents of fructose and glucose increased in both years. The dynamic changes in sucrose metabolism enzyme activities were similar in both years. After 63 DAA, except for acid invertase (AI) in 2021, the activities of other enzymes decreased significantly, and the net activity of sucrose metabolism enzymes showed a strong sucrose cleavage activity. There were 18061, 19575, and 985 differentially expressed genes in 35 d vs. 63 d, 35 d vs. 69 d, and 63 d vs. 69 d, respectively. Ninety-one sugar metabolism genes were screened out, including sucrose synthase (SS), sucrose phosphate synthase (SPS), AI, neutral invertase (NI), hexokinase (HK), glucose 6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), phosphofructokinase (PFK), and pyruvate kinase (PK) genes. In 63 d vs. 69 d, seventy-five percent of sucrose metabolism genes were downregulated, seventy-seven percent of genes in glycolysis (EMP) were upregulated and the PFK genes were significantly upregulated. There was a significant linear correlation between the expression of 15 genes detected by real-time PCR and the transcriptome sequencing results (r2020 = 0.9139, r2021 = 0.8912). These results suggest that the upregulated expression of PFK genes at maturity may enhance PFK activity and promote the degradation of soluble sugar in pulp through the EMP pathway, resulting in decreased soluble sugar and sucrose contents and "sugar receding" in pulp. Moreover, the downregulated expression of sucrose metabolism genes in pulp decreased the activities of these enzymes, but the net activity of these enzymes resulted in cleaved sucrose and replenished levels of reducing sugars, resulting in a stable reducing sugar content.
Collapse
Affiliation(s)
- Junjie Peng
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Horticulture, Hainan University, Haikou, China
| | - Jingjia Du
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Horticulture, Hainan University, Haikou, China
| | - Ma Wuqiang
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Horticulture, Hainan University, Haikou, China
| | - Tiantian Chen
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Horticulture, Hainan University, Haikou, China
| | - Xian Shui
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Horticulture, Hainan University, Haikou, China
| | - Haizhi Liao
- College of Horticulture, Hainan University, Haikou, China
| | - Xiaokai Lin
- College of Horticulture, Hainan University, Haikou, China
| | - Kaibing Zhou
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Horticulture, Hainan University, Haikou, China
| |
Collapse
|
9
|
Fu X, Hong K, Wang H, Zhang C, Lu W. Screening and Remodeling of Enone Oxidoreductase for High Production of 2(or 5)-Ethyl-5(or 2)-methyl-4-hydroxy-3(2H)-Furanone in Saccharomyces Cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9888-9897. [PMID: 35925879 DOI: 10.1021/acs.jafc.2c03306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Owing to its unique fragrance, 4-hydroxy-2(or 5)-ethyl-5(or 2)-methyl-3(2H)-furanone (HEMF) is widely used as a food flavoring agent and has high demand. Enone oxidoreductase is a vital enzyme involved in HEMF production. In this study, an enone oxidoreductase from Naumovozyma dairenensis CBS 421 (NDEO) was used for HEMF production for the first time. The mutant NDEOT183W,K290W was obtained through semirational protein engineering, which increased the HEMF yield by 75.2%. Finally, the engineered strain BM4 produced the highest HEMF yield, 194.42 mg L-1 in 132 h. Our study revealed that HEMF production can be improved in Saccharomyces cerevisiae and that this is an efficient method to improve the activity of enone oxidoreductase, which is important for the industrial synthesis of furanone.
Collapse
Affiliation(s)
- Xiaomeng Fu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Kunqiang Hong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Haibin Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Chuanbo Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Wenyu Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
- Key Laboratory of System Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, PR China
| |
Collapse
|
10
|
Qiao Y, Zhang K, Zhang Z, Zhang C, Sun Y, Feng Z. Fermented soybean foods: A review of their functional components, mechanism of action and factors influencing their health benefits. Food Res Int 2022; 158:111575. [PMID: 35840260 DOI: 10.1016/j.foodres.2022.111575] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/27/2022]
Abstract
After thousands of years of evolution and development, traditional fermented soybean foods, with their unique charm, have gained a stable place in the global market. With the explosive development of modern biological technologies, some traditional fermented soybean foods that possess health-promoting benefits are gradually appearing. Physiologically active substances in fermented soybean foods have received extensive attention in recent decades. This review addresses the potential health benefits of several representative fermented soybean foods, as well as the action mechanism and influencing factors of their functional components. Phenolic compounds, low-molecular-weight peptides, melanoidins, furanones and 3-hydroxyanthranilic acid are the antioxidative components predominantly found in fermented soybean foods. Angiotensin I-converting enzyme inhibitory peptides and γ-aminobutyric acid isolated from fermented soy foods provide potential selectivity for hypertension therapy. The potential anti-inflammatory bioactive components in fermented soybean foods include γ-linolenic acid, butyric acid, soy sauce polysaccharides, 2S albumin and isoflavone glycones. Deoxynojirimycin, genistein, and betaine possess high activity against α-glucosidase. Additionally, fermented soybean foods contain neuroprotective constituents, including indole alkaloids, nattokinase, arbutin, and isoflavone vitamin B12. The anticancer activities of fermented soybean foods are associated with surfactin, isolavone, furanones, trypsin inhibitors, and 3-hydroxyanthranilic acid. Nattokinase is highly correlated with antioxidant activity. And a high level of menaquinones-7 is linked to protection against neurodegenerative diseases. Sufficiently recognizing and exploiting the health benefits and functional components of traditional fermented soybean foods could provide a new strategy in the development of the food fermentation industry.
Collapse
Affiliation(s)
- Yali Qiao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin 150030, China
| | - Kenan Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin 150030, China
| | - Zongcai Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin 150030, China
| | - Chao Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin 150030, China
| | - Yan Sun
- Heilongjiang Tobacco Industry Co., Ltd. Harbin Cigarette Factory, Harbin 150027, China
| | - Zhen Feng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin 150030, China; Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China.
| |
Collapse
|
11
|
Alagöz Kabakcı S, Türkyılmaz M, Özkan M. Effects of fermentation time and pH on quality of black carrot juice fermented by kefir culture during storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2563-2574. [PMID: 34687233 DOI: 10.1002/jsfa.11598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/01/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The effects of fermentation time (17-48 h) and pH (3.37-4.50) on qualities of fermented beverages (FBs) produced from black carrot juice (BCJ) were monitored during storage at 4 °C for 20 weeks. RESULTS Fermentation and adjusting the pH level provided significant increases (up to 22%) in anthocyanin content and the absorbance value at λmax (Amax ). Moreover, the stability of anthocyanins, color density, and Amax in FBs was somewhat higher than those in BCJ. Lactic acid showed a co-pigmentation effect on cyanidin-3-galactoside-xyloside-glucoside-sinapic acid and cyanidin-3-galactoside-xyloside-glucoside-ferulic acid. Sucrose was degraded much faster at pH 4.50 (17 h) and 4.35 (48 h) than at lower pH levels. During storage, pH 4.35 caused a balanced distribution between counts of lactic acid bacteria (LAB) and yeasts, and antioxidant activity of all FBs increased. Fermented beverages at 4.35 and 3.90 were found to be more palatable by panelists. CONCLUSION We recommend FB production at pH 4.35 after 48 h fermentation due to the balanced distribution of probiotics, high color enhancement, and consumer preference. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sümeyye Alagöz Kabakcı
- Ministry of Agriculture and Forestry, National Food Reference Laboratory, Ankara, Turkey
| | | | - Mehmet Özkan
- Department of Food Engineering, Faculty of Engineering, Ankara University, Ankara, Turkey
| |
Collapse
|
12
|
Chen M, Wang M, Zhang Y, Zhag H, Du Q, Jin P. Biosynthesis of hyaluronan in engineered Escherichia coli via the secretion of thermophilic exo-mannanase using palm kernel cake as the carbon source. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
13
|
Solieri L. The revenge of Zygosaccharomyces yeasts in food biotechnology and applied microbiology. World J Microbiol Biotechnol 2021; 37:96. [PMID: 33969449 DOI: 10.1007/s11274-021-03066-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/28/2021] [Indexed: 12/01/2022]
Abstract
Non-conventional yeasts refer to a huge and still poorly explored group of species alternative to the well-known model organism Saccharomyces cerevisiae. Among them, Zygosaccharomyces rouxii and the sister species Zygosaccharomyces bailii are infamous for spoiling food and beverages even in presence of several food preservatives. On the other hand, their capability to cope with a wide range of process conditions makes these yeasts very attractive factories (the so-called "ZygoFactories") for bio-converting substrates poorly permissive for the growth of other species. In balsamic vinegar Z. rouxii is the main yeast responsible for converting highly concentrated sugars into ethanol, with a preference for fructose over glucose (a trait called fructophily). Z. rouxii has also attracted much attention for the ability to release important flavor compounds, such as fusel alcohols and the derivatives of 4-hydroxyfuranone, which markedly contribute to fragrant and smoky aroma in soy sauce. While Z. rouxii was successfully proposed in brewing for producing low ethanol beer, Z. bailii is promising for lactic acid and bioethanol production. Recently, several research efforts exploited omics tools to pinpoint the genetic bases of distinctive traits in "ZygoFactories", like fructophily, tolerance to high concentrations of sugars, lactic acid and salt. Here, I provided an overview of Zygosaccharomyces industrially relevant phenotypes and summarized the most recent findings in disclosing their genetic bases. I suggest that the increasing number of genomes available for Z. rouxii and other Zygosaccharomyces relatives, combined with recently developed genetic engineering toolkits, will boost the applications of these yeasts in biotechnology and applied microbiology.
Collapse
Affiliation(s)
- L Solieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy.
| |
Collapse
|
14
|
Hussin FS, Chay SY, Hussin ASM, Wan Ibadullah WZ, Muhialdin BJ, Abd Ghani MS, Saari N. GABA enhancement by simple carbohydrates in yoghurt fermented using novel, self-cloned Lactobacillus plantarum Taj-Apis362 and metabolomics profiling. Sci Rep 2021; 11:9417. [PMID: 33941803 PMCID: PMC8093275 DOI: 10.1038/s41598-021-88436-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/08/2021] [Indexed: 11/09/2022] Open
Abstract
This study aimed to enhance natural gamma aminobutyric acid (GABA) production in yoghurt by the addition of simple sugars and commercial prebiotics without the need for pyridoxal 5′-phosphate (PLP) cofactor. The simple sugars induced more GABA production (42.83–58.56 mg/100 g) compared to the prebiotics (34.19–40.51 mg/100 g), with glucose promoting the most GABA production in yoghurt (58.56 mg/100 g) surpassing the control sample with added PLP (48.01 mg/100 g). The yoghurt prepared with glucose also had the highest probiotic count (9.31 log CFU/g). Simulated gastrointestinal digestion of this GABA-rich yoghurt showed a non-significant reduction in GABA content and probiotic viability, demonstrating the resistance towards a highly acidic environment (pH 1.2). Refrigerated storage up to 28 days improved GABA production (83.65 mg/100 g) compared to fresh GABA-rich yoghurt prepared on day 1. In conclusion, the addition of glucose successfully mitigates the over-use of glutamate and omits the use of PLP for increased production of GABA in yoghurt, offering an economical approach to produce a probiotic-rich dairy food with potential anti-hypertensive effects.
Collapse
Affiliation(s)
- Farah Salina Hussin
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang Selangor, Malaysia.,Section of Food Engineering Technology, Malaysian Institute of Chemical and Bio-Engineering Technology, Universiti Kuala Lumpur, Melaka, Malaysia
| | - Shyan Yea Chay
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang Selangor, Malaysia
| | - Anis Shobirin Meor Hussin
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang Selangor, Malaysia
| | - Wan Zunairah Wan Ibadullah
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang Selangor, Malaysia
| | - Belal J Muhialdin
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang Selangor, Malaysia
| | - Mohd Syahmi Abd Ghani
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang Selangor, Malaysia
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang Selangor, Malaysia.
| |
Collapse
|
15
|
Liu H, Li X, Deng J, Dai L, Liu W, Pan B, Wang C, Zhang D, Li Z. Molecular mechanism of the response of Zygosaccharomyces rouxii to D-fructose stress by the glutathione metabolism pathway. FEMS Yeast Res 2020; 20:5859488. [PMID: 32556118 DOI: 10.1093/femsyr/foaa034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/12/2020] [Indexed: 12/16/2022] Open
Abstract
Zygosaccharomyces rouxii produces high levels of 4-hydroxy-2,5-dimethyl-3(2H)-furanone in YPD medium supplemented with 120 g/L D-fructose and 180 g/L NaCl after 5 d. D-fructose has a stress effect on Z. rouxii, and GSH-Px is a main enzyme involved in the defense of Z. rouxii against oxygen stress according to our previous report. In order to further explore the molecular mechanism of the glutathione metabolism pathway in Z. rouxii in response to D-fructose stress, changes in the expression of genes and proteins involved in the synthesis of glutathione precursor amino acids and enzymes were observed. In addition, changes in the intermediates related to glutathione synthesis in Z. rouxii were reported. The results indicated that some gene-encoding enzymes involved in the glutamate, cysteine and glycine biosynthesis pathways and key genes involved in glutathione synthesis were upregulated. The expression levels of other genes, except SHMT, were consistent with the qRT-PCR results. The contents of γ-glutamylcysteine and glutathione amide in the D-fructose group were higher than those in the control group. In the D-fructose stress groups, the metabolic flux towards glutathione synthesis was increased. These results might provide more in-depth and detailed theoretical support for the oxidative stress defense mechanism of Z. rouxii under D-fructose stress.
Collapse
Affiliation(s)
- Hong Liu
- Department of Food and Engineering, College of Food, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing 163319, China
| | - Xin Li
- Department of Food and Engineering, College of Food, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing 163319, China
| | - Jingzhi Deng
- Department of Food and Engineering, College of Food, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing 163319, China
| | - Lingyan Dai
- Department of Bioscience, College of Science and Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing 163319, China
| | - Wei Liu
- Department of Food and Engineering, College of Food, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing 163319, China
| | - Bailing Pan
- Department of Food and Engineering, College of Food, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing 163319, China
| | - Chengtao Wang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Dongjie Zhang
- Department of Food and Engineering, College of Food, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing 163319, China
| | - Zhijiang Li
- Department of Food and Engineering, College of Food, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing 163319, China
| |
Collapse
|