1
|
Zhang R, Fan Z, Zhu C, Huang Y, Wu P, Zeng J. Antibacterial Activity of Ethanol Extract from Australian Finger Lime. Foods 2024; 13:2465. [PMID: 39123658 PMCID: PMC11311350 DOI: 10.3390/foods13152465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Australian finger lime (Citrus australasica L.) has become increasingly popular due to its potent antioxidant capacity and health-promoting benefits. This study aimed to determine the chemical composition, antibacterial characteristics, and mechanism of finger lime extract. The finger lime extracts were obtained from the fruit of the Australian finger lime by the ethanol extraction method. The antibacterial activity of the extract was examined by detecting the minimum inhibitory concentration (MIC) for two Gram-positive and four Gram-negative bacterial strains in vitro, as well as by assessing variations in the number of bacteria for Candidatus Liberibacter asiaticus (CLas) in vivo. GC-MS analysis was used to identify the antibacterial compounds of the extract. The antibacterial mechanisms were investigated by assessing cell permeability and membrane integrity, and the bacterial morphology was examined using scanning electron microscopy. The extract demonstrated significant antibacterial activity against Staphylococcus aureus, Bacillus subtilis, and Gram-negative bacterial species, such as Escherichia coli, Agrobacterium tumefaciens, Xanthomonas campestris, Xanthomonas citri, and CLas. Among the six strains evaluated in vitro, B. subtilis showed the highest susceptibility to the antimicrobial effects of finger lime extract. The minimum inhibitory concentration (MIC) of the extract against the tested microorganisms varied between 500 and 1000 μg/mL. In addition, the extract was proven effective in suppressing CLas in vivo, as indicated by the lower CLas titers in the treated leaves compared to the control. A total of 360 compounds, including carbohydrates (31.159%), organic acid (30.909%), alcohols (13.380%), polyphenols (5.660%), esters (3.796%), and alkaloids (0.612%), were identified in the extract. We predicted that the primary bioactive compounds responsible for the antibacterial effects of the extract were quinic acid and other polyphenols, as well as alkaloids. The morphology of the tested microbes was altered and damaged, leading to lysis of the cell wall, cell content leakage, and cell death. Based on the results, ethanol extracts from finger lime may be a fitting substitute for synthetic bactericides in food and plant protection.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiwu Zeng
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.Z.); (Z.F.); (C.Z.); (Y.H.); (P.W.)
| |
Collapse
|
2
|
Pedreira A, Fernandes S, Simões M, García MR, Vázquez JA. Synergistic Bactericidal Effects of Quaternary Ammonium Compounds with Essential Oil Constituents. Foods 2024; 13:1831. [PMID: 38928773 PMCID: PMC11202425 DOI: 10.3390/foods13121831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Antimicrobial tolerance is a significant concern in the food industry, as it poses risks to food safety and public health. To overcome this challenge, synergistic combinations of antimicrobials have emerged as a potential solution. In this study, the combinations of two essential oil constituents (EOCs), namely carvacrol (CAR) and eugenol (EUG), with the quaternary ammonium compounds (QACs) benzalkonium chloride (BAC) and didecyldimethylammonium chloride (DDAC) were evaluated for their antimicrobial effects against Escherichia coli and Bacillus cereus, two common foodborne bacteria. The checkerboard assay was employed to determine the fractional inhibitory concentration index (FICI) and the fractional bactericidal concentration index (FBCI), indicating the presence of bactericidal, but not bacteriostatic, synergy in all QAC-EOC combinations. Bactericidal synergism was clearly supported by Bliss independence analysis. The bactericidal activity of the promising synergistic combinations was further validated by time-kill curves, achieving a >4-log10 reduction of initial bacterial load, which is significant compared to typical industry standards. The combinations containing DDAC showed the highest efficiency, resulting in the eradication of bacterial population in less than 2-4 h. These findings emphasize the importance of considering both bacteriostatic and bactericidal effects when evaluating antimicrobial combinations and the potential of EOC-QAC combinations for sanitization and disinfection in the food industry.
Collapse
Affiliation(s)
- Adrián Pedreira
- Group of Recycling and Valorization of Waste Materials (REVAL), Spanish National Research Council (IIM-CSIC), Rúa Eduardo Cabello 6, 36208 Vigo, Spain;
- Biosystems and Bioprocess Engineering Group (Bio2Eng), Spanish National Research Council (IIM-CSIC), Rúa Eduardo Cabello 6, 36208 Vigo, Spain;
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (S.F.); (M.S.)
| | - Susana Fernandes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (S.F.); (M.S.)
| | - Manuel Simões
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (S.F.); (M.S.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Míriam R. García
- Biosystems and Bioprocess Engineering Group (Bio2Eng), Spanish National Research Council (IIM-CSIC), Rúa Eduardo Cabello 6, 36208 Vigo, Spain;
| | - José Antonio Vázquez
- Group of Recycling and Valorization of Waste Materials (REVAL), Spanish National Research Council (IIM-CSIC), Rúa Eduardo Cabello 6, 36208 Vigo, Spain;
| |
Collapse
|
3
|
Nunes B, Cagide F, Fernandes C, Borges A, Borges F, Simões M. Efficacy of Novel Quaternary Ammonium and Phosphonium Salts Differing in Cation Type and Alkyl Chain Length against Antibiotic-Resistant Staphylococcus aureus. Int J Mol Sci 2023; 25:504. [PMID: 38203676 PMCID: PMC10778626 DOI: 10.3390/ijms25010504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Antibacterial resistance poses a critical public health threat, challenging the prevention and treatment of bacterial infections. The search for innovative antibacterial agents has spurred significant interest in quaternary heteronium salts (QHSs), such as quaternary ammonium and phosphonium compounds as potential candidates. In this study, a library of 49 structurally related QHSs was synthesized, varying the cation type and alkyl chain length. Their antibacterial activities against Staphylococcus aureus, including antibiotic-resistant strains, were evaluated by determining minimum inhibitory/bactericidal concentrations (MIC/MBC) ≤ 64 µg/mL. Structure-activity relationship analyses highlighted alkyl-triphenylphosphonium and alkyl-methylimidazolium salts as the most effective against S. aureus CECT 976. The length of the alkyl side chain significantly influenced the antibacterial activity, with optimal chain lengths observed between C10 and C14. Dose-response relationships were assessed for selected QHSs, showing dose-dependent antibacterial activity following a non-linear pattern. Survival curves indicated effective eradication of S. aureus CECT 976 by QHSs at low concentrations, particularly compounds 1e, 3e, and 5e. Moreover, in vitro human cellular data indicated that compounds 2e, 4e, and 5e showed favourable safety profiles at concentrations ≤ 2 µg/mL. These findings highlight the potential of these QHSs as effective agents against susceptible and resistant bacterial strains, providing valuable insights for the rational design of bioactive QHSs.
Collapse
Affiliation(s)
- Bárbara Nunes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; (B.N.); (A.B.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal (C.F.); (F.B.)
| | - Fernando Cagide
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal (C.F.); (F.B.)
| | - Carlos Fernandes
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal (C.F.); (F.B.)
| | - Anabela Borges
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; (B.N.); (A.B.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Fernanda Borges
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal (C.F.); (F.B.)
| | - Manuel Simões
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; (B.N.); (A.B.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
4
|
Fernandes S, Gomes IB, Simões M. Antimicrobial and antibiofilm potentiation by a triple combination of dual biocides and a phytochemical with complementary activity. Food Res Int 2023; 167:112680. [PMID: 37087211 DOI: 10.1016/j.foodres.2023.112680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/26/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
The failure of current sanitation practices requires the development of effective solutions for microbial control. Although combinations using antibiotics have been extensively studied to look for additive/synergistic effects, biocide combinations are still underexplored. This study aims to evaluate the antimicrobial effectiveness of dual biocide and triple biocide/phytochemical combinations, where phytochemicals are used as quorum sensing (QS) inhibitors. The biocides selected were benzalkonium chloride (BAC) and peracetic acid (PAA) - as commonly used biocides, and glycolic acid (GA) and glyoxal (GO) - as alternative and sustainable biocides. Curcumin (CUR) and 10-undecenoic acid (UA) were the phytochemicals selected, based on their QS inhibition properties. A checkerboard assay was used for the screening of chemical interactions based on the cell growth inhibitory effects against Bacilluscereus and Pseudomonasfluorescens. It was observed that dual biocide combinations resulted in indifference, except the PAA + GA combination, which had a potential additive effect. PAA + GA + CUR and PAA + GA + UA combinations also triggered additive effects. The antimicrobial effects of the combinations were further evaluated on the inactivation of planktonic and biofilm cells after 30 min of exposure. These experiments corroborated the checkerboard results, in which PAA + GA was the most effective combination against planktonic cells (additive/synergistic effects). The antimicrobial effects of triple combinations were species- and biocide-specific. While CUR only potentiate the antimicrobial activity of GA against B.cereus, GA + UA and PAA + GA + UA combinations promoted additional antimicrobial effects against both bacteria. Biofilms were found to be highly tolerant, with modest antimicrobial effects being observed for all the combinations tested. However, this study demonstrated that low doses of biocides can be effective in bacterial control when combining biocides with a QS inhibitor, in particular, the combination of the phytochemical UA (as a QS inhibitor) with GA and PAA.
Collapse
Affiliation(s)
- Susana Fernandes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Inês B Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
5
|
Tomalok CDCG, Wlodarkievicz ME, Puton BMS, Colet R, Zeni J, Steffens C, Backes GT, Cansian RL. Organic acids as an alternative method to control
Salmonella enterica
serotype Choleraesuis and
Listeria monocytogenes
in pork jowl fat. J Food Saf 2022. [DOI: 10.1111/jfs.12999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | | | | | - Rosicler Colet
- Food Engineering Department URI ‐ Campus of Erechim Erechim Brazil
| | - Jamile Zeni
- Food Engineering Department URI ‐ Campus of Erechim Erechim Brazil
| | - Clarice Steffens
- Food Engineering Department URI ‐ Campus of Erechim Erechim Brazil
| | | | | |
Collapse
|
6
|
Barros AC, Melo LF, Pereira A. A Multi-Purpose Approach to the Mechanisms of Action of Two Biocides (Benzalkonium Chloride and Dibromonitrilopropionamide): Discussion of Pseudomonas fluorescens’ Viability and Death. Front Microbiol 2022; 13:842414. [PMID: 35250955 PMCID: PMC8894764 DOI: 10.3389/fmicb.2022.842414] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/27/2022] [Indexed: 12/27/2022] Open
Abstract
Biocides are widely used in water treatment for microbiological control. The rise of antimicrobial resistance and the need to assure properly managed water systems require a better understanding of the mechanisms of action of biocides and of their impact on cell’s viability as a function of dosage concentrations. The present work addresses these two aspects regarding the biocides benzalkonium chloride (BAC) and dibromonitrilopropionamide (DBNPA)—two biocides commonly found in the water treatment industry. For that, the following parameters were studied: culturability, membrane integrity, metabolic activity, cellular energy, and the structure and morphology of cells. Also, to assess cell’s death, a reliable positive control, consisting of cells killed by autoclave (dead cells), was introduced. The results confirmed that BAC is a lytic biocide and DBNPA a moderate electrophilic one. Furthermore, the comparison between cells exposed to the biocides’ minimum bactericidal concentrations (MBCs) and autoclaved cells revealed that other viability parameters should be taken into consideration as “death indicators.” The present work also shows that only for the concentrations above the MBC the viability indicators reached values statistically similar to the ones observed for the autoclaved cells (considered to be definitively dead). Finally, the importance of considering the biocide mechanism of action in the definition of the viability parameter to use in the viable but non-culturable (VBNC) determination is discussed.
Collapse
Affiliation(s)
- Ana C. Barros
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Luis F. Melo
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Ana Pereira
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- *Correspondence: Ana Pereira,
| |
Collapse
|
7
|
Butucel E, Balta I, Ahmadi M, Dumitrescu G, Morariu F, Pet I, Stef L, Corcionivoschi N. Biocides as Biomedicines against Foodborne Pathogenic Bacteria. Biomedicines 2022; 10:biomedicines10020379. [PMID: 35203588 PMCID: PMC8962343 DOI: 10.3390/biomedicines10020379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/16/2022] Open
Abstract
Biocides are currently considered the first line of defense against foodborne pathogens in hospitals or food processing facilities due to the versatility and efficiency of their chemical active ingredients. Understanding the biological mechanisms responsible for their increased efficiency, especially when used against foodborne pathogens on contaminated surfaces and materials, represents an essential first step in the implementation of efficient strategies for disinfection as choosing an unsuitable product can lead to antibiocide resistance or antibiotic–biocide cross-resistance. This review describes these biological mechanisms for the most common foodborne pathogens and focuses mainly on the antipathogen effect, highlighting the latest developments based on in vitro and in vivo studies. We focus on biocides with inhibitory effects against foodborne bacteria (e.g., Escherichia spp., Klebsiella spp., Staphylococcus spp., Listeria spp., Campylobacter spp.), aiming to understand their biological mechanisms of action by looking at the most recent scientific evidence in the field.
Collapse
Affiliation(s)
- Eugenia Butucel
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK; (E.B.); (I.B.)
- Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine—King Michael I of Romania, 300645 Timisoara, Romania; (M.A.); (G.D.); (F.M.); (I.P.)
| | - Igori Balta
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK; (E.B.); (I.B.)
- Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine—King Michael I of Romania, 300645 Timisoara, Romania; (M.A.); (G.D.); (F.M.); (I.P.)
- Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Mirela Ahmadi
- Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine—King Michael I of Romania, 300645 Timisoara, Romania; (M.A.); (G.D.); (F.M.); (I.P.)
| | - Gabi Dumitrescu
- Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine—King Michael I of Romania, 300645 Timisoara, Romania; (M.A.); (G.D.); (F.M.); (I.P.)
| | - Florica Morariu
- Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine—King Michael I of Romania, 300645 Timisoara, Romania; (M.A.); (G.D.); (F.M.); (I.P.)
| | - Ioan Pet
- Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine—King Michael I of Romania, 300645 Timisoara, Romania; (M.A.); (G.D.); (F.M.); (I.P.)
| | - Lavinia Stef
- Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine—King Michael I of Romania, 300645 Timisoara, Romania; (M.A.); (G.D.); (F.M.); (I.P.)
- Correspondence: (L.S.); (N.C.)
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK; (E.B.); (I.B.)
- Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine—King Michael I of Romania, 300645 Timisoara, Romania; (M.A.); (G.D.); (F.M.); (I.P.)
- Correspondence: (L.S.); (N.C.)
| |
Collapse
|
8
|
Antibiofilm activity of glycolic acid and glyoxal and their diffusion–reaction interactions with biofilm components. Food Res Int 2022; 152:110921. [DOI: 10.1016/j.foodres.2021.110921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/08/2021] [Accepted: 12/20/2021] [Indexed: 01/06/2023]
|
9
|
Fernandes S, Gomes IB, Sousa SF, Simões M. Antimicrobial Susceptibility of Persister Biofilm Cells of Bacillus cereus and Pseudomonas fluorescens. Microorganisms 2022; 10:160. [PMID: 35056610 PMCID: PMC8779418 DOI: 10.3390/microorganisms10010160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
The present study evaluates the antimicrobial susceptibility of persister cells of Bacillus cereus and Pseudomonas fluorescens after their regrowth in suspension and as biofilms. Two conventional (benzalkonium chloride-BAC and peracetic acid-PAA) and two emerging biocides (glycolic acid-GA and glyoxal-GO) were selected for this study. Persister cells resulted from biofilms subjected to a critical treatment using the selected biocides. All biocide treatments developed B. cereus persister cells, except PAA that effectively reduced the levels of vegetative cells and endospores. P. fluorescens persister cells comprise viable and viable but non-culturable cells. Afterwards, persister cells were regrown in suspension and in biofilms and were subjected to a second biocide treatment. In general, planktonic cultures of regrown persister cells in suspension lost their antimicrobial tolerance, for both bacteria. Regrown biofilms of persister cells had antimicrobial susceptibility close to those regrown biofilms of biocide-untreated cells, except for regrown biofilms of persister P. fluorescens after BAC treatment, which demonstrated increased antimicrobial tolerance. The most active biocide against persister cells was PAA, which did not promote changes in susceptibility after their regrowth. In conclusion, persister cells are ubiquitous within biofilms and survive after critical biocide treatment. The descendant planktonic and biofilms populations showed similar properties as the original ones.
Collapse
Affiliation(s)
- Susana Fernandes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (S.F.); (I.B.G.)
| | - Inês B. Gomes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (S.F.); (I.B.G.)
| | - Sérgio F. Sousa
- UCIBIO/REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
| | - Manuel Simões
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (S.F.); (I.B.G.)
| |
Collapse
|
10
|
Rita Pereira A, Gomes IB, Simões M. Choline-based ionic liquids for planktonic and biofilm growth control of Bacillus cereus and Pseudomonas fluorescens. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Simões LC, Gomes IB, Sousa H, Borges A, Simões M. Biofilm formation under high shear stress increases resilience to chemical and mechanical challenges. BIOFOULING 2022; 38:1-12. [PMID: 34818957 DOI: 10.1080/08927014.2021.2006189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
The effect that the hydrodynamic conditions under which biofilms are formed has on their persistence is still unknown. This study assessed the behaviour of Pseudomonas fluorescens biofilms, formed on stainless steel under different shear stress (τw) conditions (1, 2 and 4 Pa), to chemical (benzalkonium chloride - BAC, glutaraldehyde - GLUT and sodium hypochlorite - SHC) and mechanical (20 Pa) treatments (alone and combined). The biofilms formed under different τw showed different structural characteristics. Those formed under a higher τw were invariably more tolerant to chemical and mechanical stresses. SHC was the biocide which caused the highest biofilm killing and removal, followed by BAC. The sequential exposure to biocides and mechanical stress was found to be insufficient for effective biofilm control. A basal layer containing biofilm cells mostly in a viable state remained on the surface of the cylinders, particularly for the 2 and 4 Pa-generated biofilms.
Collapse
Affiliation(s)
- L C Simões
- CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - I B Gomes
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - H Sousa
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - A Borges
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - M Simões
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
12
|
Paenibacillus polymyxa (LM31) as a new feed additive: Antioxidant and antimicrobial activity and its effects on growth, blood biochemistry, and intestinal bacterial populations of growing Japanese quail. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114920] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|