1
|
Wang Y, Xu H, Wei W, Yu L, Meng X, Wang X. Physicochemical characterization, bioactive compounds, and in vitro digestion characteristics of Moringa oleifera seed oil: a comprehensive investigation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3572-3581. [PMID: 39761328 DOI: 10.1002/jsfa.14111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/25/2024] [Accepted: 12/19/2024] [Indexed: 04/12/2025]
Abstract
BACKGROUND Moringa oleifera is a wild plant belonging to the genus Moringa and the family Moringaceae, which possesses valuable nutritional and medicinal properties and is inexpensive. The present study aimed to provide a comprehensive assessment of the potential of M. oleifera seed oil (MoSO) as a food ingredient by investigating its physicochemical properties, bioactivity, and in vitro digestion characteristics. RESULTS The results revealed that MoSO exhibited a high oleic acid content, which constituted 72.06 ± 0.17% of the total fatty acid content. The oil consisted of ten primary triacylglycerols, with O-O-O (40.64 ± 0.41%), Do-O-O (17.22 ± 0.17%), O-O-P (14.92 ± 0.15%) and Eo-O-P (10.50 ± 0.10%) being the most abundant. It contained certain bioactive compounds, such as tocopherols (224.04 ± 1.78 mg/kg) and phytosterols (2155.65 ± 23.45 mg/kg). The in vitro digestion behavior of MoSO emulsion was also investigated. The maximum release of free fatty acids in MoSO was 90.14 ± 2.77%, surpassing that observed in soybean oil (85.62 ± 3.01%). Moringa oleifera seed oil also exhibited a substantial release of oleic acid and greater bioaccessibility. CONCLUSION These findings contribute to the current knowledge on MoSO as a promising candidate for a high-quality edible vegetable oil. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yandan Wang
- School of Life Sciences, Anhui Normal University, Wuhu, China
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiahe Food Industry Co., Ltd, Suzhou, China
| | - Hua Xu
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Wei
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Le Yu
- School of Life Sciences, Anhui Normal University, Wuhu, China
- Jiahe Food Industry Co., Ltd, Suzhou, China
| | - Xiangyong Meng
- School of Life Sciences, Anhui Normal University, Wuhu, China
| | - Xingguo Wang
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Herrera AW, Bellesi FA, Pilosof AMR. In situ interaction of pea peptides and bile salts under in vitro digestion: Potential impact on lipolysis. Food Res Int 2024; 190:114624. [PMID: 38945578 DOI: 10.1016/j.foodres.2024.114624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024]
Abstract
The present work evaluated how a native pea protein isolate (PPI) affects the key roles carried out by bile salts (BS) in lipid digestion by means of the in vitro static INFOGEST protocol. Two gastric residence times were evaluated (10 and 60 min), and then the peptides obtained (GPPP) were mixed with BS at physiological concentration in simulated intestinal fluid to understand how they interact with BS both at the bulk and at the interface. Both GPPP give rise to a film with a predominant viscous character that does not constitute a barrier to the penetration of BS, but interact with BS in the bulk duodenal fluid. When the peptides flushing from the stomach after the different gastric residence times undergo duodenal digestion, it was found that for the longer gastric residence time the percentage of soluble fraction in the duodenal phase, that perform synergistically with BS micelles, was twice that of the lower residence time, leading to an increase in the solubilization of oleic acid. These results finally lead to a greater extent of lipolysis of olive oil emulsions. This work demonstrates the usefulness of in vitro models as a starting point to study the influence of gastric residence time of pea protein on its interaction with BS, affecting lipolysis. Pea proteins were shown to be effective emulsifiers that synergistically perform with BS improving the release and bioaccessibility of bioactive lipids as olive oil.
Collapse
Affiliation(s)
- Anashareth W Herrera
- ITAPROQ- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria (1428), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Fernando A Bellesi
- ITAPROQ- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria (1428), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Ana M R Pilosof
- ITAPROQ- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria (1428), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
3
|
Xu Y, Li X, Dai Z, Zhang Z, Feng L, Nie M, Liu C, Li D, Zhang M. Study on the relationship between lutein bioaccessibility and in vitro lipid digestion of nanostructured lipid carriers with different interface structures. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
4
|
Enhancement of the Digestion of Virgin Silkworm Pupae Oil (Bombyx mori) by Forming a Two-Layer Emulsion Using Lecithin and Whey Protein Isolate. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09749-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
5
|
Xie H, Ni F, Gao J, Liu C, Shi J, Ren G, Tian S, Lei Q, Fang W. Preparation of zein-lecithin-EGCG complex nanoparticles stabilized peppermint oil emulsions: Physicochemical properties, stability and intelligent sensory analysis. Food Chem 2022; 383:132453. [PMID: 35180602 DOI: 10.1016/j.foodchem.2022.132453] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 01/11/2023]
Abstract
Peppermint oil emulsions were prepared by using zein-lecithin-EGCG (Z-L/E) complex nanoparticles as emulsifiers. The preparation conditions of emulsions were optimized via measuring the particle size, surface tension and stability of emulsions, and peppermint oil of 3% (particle size = 375 nm, polydispersity index (PDI) = 0.45), the zein:lecithin ratio of 4:1 (w/w) (particle size = 396 nm), and the zein:EGCG ratio of 10:1 (w/w) (surface tension = 47.32 N/m) was the optimal condition. The rapid stability analysis showed that the instability mechanism of emulsions was ascribed to creaming and stratification, and the stability mechanism of emulsions was explored, indicating that the complex nanoparticles adsorbed on the surface of oil droplets to give Pickering emulsions. Electronic tongue experiments showed that the Z-E/L4:1 stabilized emulsion was distinguished from the other three samples due to its good stability. The electronic nose experiment could distinguish the emulsions with different droplet sizes.
Collapse
Affiliation(s)
- Hujun Xie
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China.
| | - Fangfang Ni
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Jian Gao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Chengzhi Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Jieyu Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Gerui Ren
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Shiyi Tian
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China.
| | - Qunfang Lei
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Wenjun Fang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China.
| |
Collapse
|
6
|
Acevedo-Fani A, Singh H. Biophysical insights into modulating lipid digestion in food emulsions. Prog Lipid Res 2021; 85:101129. [PMID: 34710489 DOI: 10.1016/j.plipres.2021.101129] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 10/20/2022]
Abstract
During the last decade, major scientific advances on understanding the mechanisms of lipid digestion and metabolism have been made, with a view to addressing health issues (such as obesity) associated with overconsumption of lipid-rich and sucrose-rich foods. As lipids in common foods exist in the form of emulsions, the structuring of emulsions has been one the main strategies for controlling the rate of lipid digestion and absorption, at least from a colloid science viewpoint. Modulating the kinetics of lipid digestion and absorption offers interesting possibilities for developing foods that can provide control of postprandial lipaemia and control the release of lipophilic compounds. Food emulsions can be designed to achieve considerable differences in the kinetics of lipid digestion but most research has been applied to relatively simple model systems and in in vitro digestion models. Further research to translate this knowledge into more complex food systems and to validate the results in human studies is required. One promising approach to delay/control lipid digestion is to alter the stomach emptying rate of lipids, which is largely affected by interactions of emulsion droplets with the food matrices. Food matrices with different responses to the gastric environment and with different interactions between oil droplets and the food matrix can be designed to influence lipid digestion. This review focuses on key scientific advances made during the last decade on understanding the physicochemical and structural modifications of emulsified lipids, mainly from a biophysical science perspective. The review specifically explores different approaches by which the structure and stability of emulsions may be altered to achieve specific lipid digestion kinetics.
Collapse
Affiliation(s)
- Alejandra Acevedo-Fani
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| |
Collapse
|
7
|
Gomes A, Costa ALR, Cardoso DD, Náthia-Neves G, Meireles MAA, Cunha RL. Interactions of β-carotene with WPI/Tween 80 mixture and oil phase: Effect on the behavior of O/W emulsions during in vitro digestion. Food Chem 2020; 341:128155. [PMID: 33045587 DOI: 10.1016/j.foodchem.2020.128155] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 11/29/2022]
Abstract
This study investigated the impact of adding β-carotene on the structure of fresh O/W emulsions with different oil phase (sunflower oil-LCT or NEOBEE®1053-MCT) and emulsifiers (WPI, Tween 80 - T80 or WPI/T80 mixture). In this sense, the behavior of emulsions through the gastrointestinal tract, the stability and bioaccessibility of β-carotene were also assessed. The β-carotene reduced the interfacial tension of the LCT/MCT-water systems. The addition of β-carotene promoted an increase of viscoelasticity of LCT/MCT-T80 (0.5%WPI/0.5%T80 and 1%T80 w/w) interfaces, but an increase of WPI content reduced the viscoelasticity of interfacial layers (LCT/MCT-1% WPI). These changes in the interface properties influenced the mean droplet size and ζ-potential of the fresh emulsions. LCT systems presented similar bioaccessibility/stability of β-carotene. However, β-carotene entrapped within protein-coated MCT droplets was more stable than within T80-MCT systems. Our results show that β-carotene interacted with other ingredients of emulsions changing their properties and behavior under gastrointestinal tract as well as the stability/bioaccessibility of β-carotene.
Collapse
Affiliation(s)
- Andresa Gomes
- Department of Food Engineering (DEA), Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, SP CEP: 13083-862, Brazil
| | - Ana Letícia Rodrigues Costa
- Department of Materials and Bioprocess Engineering, School of Chemical Engineering, University of Campinas, Av. Albert Einstein, 500, Campinas, SP CEP: 13083-852, Brazil
| | - Dayane Dias Cardoso
- Department of Food Engineering (DEA), Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, SP CEP: 13083-862, Brazil
| | - Grazielle Náthia-Neves
- Department of Food Engineering (DEA), Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, SP CEP: 13083-862, Brazil; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Prado de la Magdalena 5, 47011 Valladolid, Spain
| | - M Angela A Meireles
- Department of Food Engineering (DEA), Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, SP CEP: 13083-862, Brazil
| | - Rosiane Lopes Cunha
- Department of Food Engineering (DEA), Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, SP CEP: 13083-862, Brazil.
| |
Collapse
|