1
|
Hatip G, Karaman K. Yeast cell biocarrier for the encapsulation of ascorbic acid: effect of plasmolysis process, suspension media and ascorbic acid levels on the physicochemical, morphological and bioactive properties of microcapsules. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1298-1311. [PMID: 39360747 DOI: 10.1002/jsfa.13919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/31/2024] [Accepted: 09/08/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Ascorbic acid is a water-soluble vitamin and shows weak stability against external factors such as heat, oxygen, light etc. Due to its lower stability, encapsulation is an effective process for the preservation of its activity. Although there are a wide variety of encapsulation methods, the technique of encapsulation with yeast cells has been followed with increasing interest in recent years. In this study, encapsulation possibilities of ascorbic acid by yeast cells were investigated. In this context, Saccharomycess cerevisiae yeast cells in plasmolyzed and non-plasmolyzed forms were used in two different suspension media (water and ethanol) and effect of ascorbic acid concentrations (10, 20 and 50 g per 10 g yeast) were studied. A total of 12 different yeast microcapsule samples were produced and some physicochemical, bioactive and structural characterizations were performed. RESULTS The ascorbic acid level of yeast microcapsule samples was determined as 206.4-713.9 and 202.8-726.1 mg g-1 for plasmolyzed and non-plasmolyzed yeast cell types, respectively. ABTS radical scavenging activity increased from 27.23 to 233.04 μg TE g-1 by increased ascorbic acid levels. Ascorbic acid capsules were used in soft candy processing against free ascorbic acid and it was found that 47.9% ascorbic acid loss was detected for control sample at the 24-day storage while the ascorbic acid loss was approximately 25% for yeast microcapsules. CONCLUSION It was concluded that yeast cells are capable of preserving ascorbic acid stability during storage and yeast cells can be used effectively and safely for the manufacturing of the ascorbic acid microcapsules. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gamze Hatip
- Faculty of Agriculture, Agricultural Biotechnology Department, Erciyes University, Kayseri, Türkiye
| | - Kevser Karaman
- Faculty of Agriculture, Agricultural Biotechnology Department, Erciyes University, Kayseri, Türkiye
- Genome and Stem Cell Center, Erciyes University, Kayseri, Türkiye
| |
Collapse
|
2
|
Chen K, Zhang J, Li Z, Wang D, Chen W, Zhu H, Wen X. Enhancing waste sludge solubilization through radio frequency treatment perforating bacterial cells. ENVIRONMENTAL RESEARCH 2024; 263:120012. [PMID: 39299447 DOI: 10.1016/j.envres.2024.120012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Sludge solubilization is known as a rate-limiting step of anaerobic digestion. Although radio frequency (RF) has been applied for sludge pretreatment due to its similar thermal effect as microwave, the potential non-thermal effects of RF treatment remain controversial. In this study, we demonstrate that RF pretreatment enhances the solubilization and lysis of sludge by 8.02%-19.69% through both thermal and non-thermal mechanisms with less energy input. Scanning electron microscope images provide direct evidence that RF-induced microcurrents penetrated bacterial cells, leading to the release of intracellular substances through formed pores. Additionally, the non-thermal effect of RF treatment which could weaken the cell protection and accelerate the lysis rate involves the disruption of binding forces between extracellular polymeric substances and microbial cells. On average, the utilization of RF at a frequency of 27.12 MHz demonstrates its efficacy as a sludge pretreatment technique, as evidenced by a 13.39% reduction in energy consumption and a 16.9% improvement in treatment performance compared to conductive heating (CH). The findings of this study elucidate the possible mechanism of RF treatment of sludge and could establish a theoretical basis for the practical application of RF treatment in sludge management.
Collapse
Affiliation(s)
- Kai Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Jing Zhang
- China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Zhuo Li
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Dongquan Wang
- China Water Investment Co., Ltd., Beijing, 100053, China
| | - Wangyang Chen
- China Water Investment Co., Ltd., Beijing, 100053, China
| | - Hongtao Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China.
| | - Xianghua Wen
- School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Bazzaz S, Abbasi A, Ghotbabad AG, Pourjafar H, Hosseini H. Novel Encapsulation Approaches in the Functional Food Industry: With a Focus on Probiotic Cells and Bioactive Compounds. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10364-7. [PMID: 39367980 DOI: 10.1007/s12602-024-10364-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/07/2024]
Abstract
Bioactive substances can enhance host health by modulating biological reactions, but their absorption and utilization by the body are crucial for positive effects. Encapsulation of probiotics is rapidly advancing in food science, with new approaches such as 3D printing, spray-drying, microfluidics, and cryomilling. Co-encapsulation with bioactives presents a cost-effective and successful approach to delivering probiotic components to specific colon areas, improving viability and bioactivity. However, the exact method by which bioactive chemicals enhance probiotic survivability remains uncertain. Co-crystallization as an emerging encapsulation method improves the physical characteristics of active components. It transforms the structure of sucrose into uneven agglomerated crystals, creating a porous network to protect active ingredients. Likewise, electrohydrodynamic techniques are used to generate fibers with diverse properties, protecting bioactive compounds from harsh circumstances at ambient temperature. Electrohydrodynamic procedures are highly adaptable, uncomplicated, and easily expandable, resulting in enhanced product quality and functionality across various food domains. Furthermore, food byproducts offer nutritional benefits and technical potential, aligning with circular economy principles to minimize environmental impact and promote economic growth. Hence, industrialized nations can capitalize on the growing demand for functional foods by incorporating these developments into their traditional cuisine and partnering with businesses to enhance manufacturing and production processes.
Collapse
Affiliation(s)
- Sara Bazzaz
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atiyeh Ghafouri Ghotbabad
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Silva KFCE, Feltre G, Zandonadi FS, Rabelo RS, Sussulini A, Hubinger MD. Unlocking hot trub's potential: a simple method for extracting bitter acids and xanthohumol. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5381-5390. [PMID: 38334323 DOI: 10.1002/jsfa.13371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/03/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Hot trub is a macronutrient- and micronutrient-rich by-product generated in the brewing industry, which is still underrated as a raw material for reprocessing purposes. In this context, this study aimed to investigate the extraction of bitter acids' and xanthohumol from hot trub as well as identify the significance of parameters for the process. The research assessed various extraction parameters, such as pH, ethanol concentration, temperature, and solid-to-liquid ratio, using a Plackett-Burman design. RESULTS Ethanol concentration and pH were the most significant parameters affecting extraction yield. β-acids were found to be the principal components of the bitter acids, with a maximum concentration near 16 mg g-1, followed by iso-α-acids and α-acids achieving 6 and 3.6 mg g-1, respectively. The highest yields of bitter acids were observed in the highest ethanol concentration, while pH was relevant to extraction process in treatments with low ethanol ratios. Concerning the xanthohumol extraction, the approach achieved maximum concentration (239 μg g-1) in treatments with ethanol concentration above 30%. Despite their variances, the phytochemicals exhibited comparable extraction patterns, indicating similar interactions with macromolecules. Moreover, the characterization of the solid residues demonstrated that the extraction process did not bring about any alterations to the chemical and total protein profiles. CONCLUSION Ethanol concentration was found to have the most significant impact on the extraction of bitter acids and xanthohumol, while temperature had no significant effect. The solid remains resulting from the extraction showed potential for use as a protein source. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Klycia Fidélis Cerqueira E Silva
- Department of Food Engineering and Technology (DETA), School of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| | - Gabriela Feltre
- Department of Agri-food Industry, Food and Nutrition (LAN), Luiz de Queiroz College of Agriculture (ESALQ), University of Sao Paulo (USP), Piracicaba, Brazil
| | - Flávia S Zandonadi
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
| | - Renata Santos Rabelo
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Alessandra Sussulini
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
- Instituto Nacional de Ciência e Tecnologia em Bioanalítica (INCTBio), Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
| | - Miriam Dupas Hubinger
- Department of Food Engineering and Technology (DETA), School of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
5
|
Dumitrașcu L, Brumă (Călin) M, Turturică M, Enachi E, Cantaragiu Ceoromila AM, Aprodu I. Ultrasound-Assisted Maillard Conjugation of Yeast Protein Hydrolysate with Polysaccharides for Encapsulating the Anthocyanins from Aronia. Antioxidants (Basel) 2024; 13:570. [PMID: 38790675 PMCID: PMC11117535 DOI: 10.3390/antiox13050570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Valorisation of food by-products, like spent brewer's yeast and fruit pomaces, represents an important strategy for contributing to sustainable food production. The aims of this study were to obtain Maillard conjugates based on spent yeast protein hydrolysate (SYH) with dextran (D) or maltodextrin (MD) by means of ultrasound treatment and to use them for developing encapsulation systems for the anthocyanins from aronia pomace. The ultrasound-assisted Maillard conjugation promoted the increase of antioxidant activity by about 50% compared to conventional heating and SYH, and was not dependent on the polysaccharide type. The ability of the conjugates to act as wall material for encapsulating various biologically active compounds was tested via a freeze-drying method. The retention efficiency ranged between 58.25 ± 0.38%-65.25 ± 2.21%, while encapsulation efficiency varied from 67.09 ± 2.26% to 88.72 ± 0.33%, indicating the strong effect of the carrier material used for encapsulation. The addition of the hydrolysed yeast cell wall played a positive effect on the encapsulation efficiency of anthocyanins when used in combination with the SYH:MD conjugates. On the other hand, the stability of anthocyanins during storage, as well as their bioavailability during gastrointestinal digestion, were higher when using the SYH:D conjugate. The study showed that hydrolysis combined with the ultrasound-assisted Maillard reaction has a great potential for the valorisation of spent brewer's yeast as delivery material for the encapsulation of bioactive compounds.
Collapse
Affiliation(s)
- Loredana Dumitrașcu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Domnească Street 111, 800201 Galați, Romania; (L.D.); (M.B.); (M.T.); (E.E.)
| | - Mihaela Brumă (Călin)
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Domnească Street 111, 800201 Galați, Romania; (L.D.); (M.B.); (M.T.); (E.E.)
| | - Mihaela Turturică
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Domnească Street 111, 800201 Galați, Romania; (L.D.); (M.B.); (M.T.); (E.E.)
| | - Elena Enachi
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Domnească Street 111, 800201 Galați, Romania; (L.D.); (M.B.); (M.T.); (E.E.)
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 A.I. Cuza Str., 800010 Galaţi, Romania
| | | | - Iuliana Aprodu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Domnească Street 111, 800201 Galați, Romania; (L.D.); (M.B.); (M.T.); (E.E.)
| |
Collapse
|
6
|
Phongphisutthinant R, Wiriyacharee P, Boonyapranai K, Ounjaijean S, Taya S, Pitchakarn P, Pathomrungsiyounggul P, Utarat P, Wongwatcharayothin W, Somjai C, Chaipoot S. Effect of Conventional Humid-Dry Heating through the Maillard Reaction on Chemical Changes and Enhancement of In Vitro Bioactivities from Soy Protein Isolate Hydrolysate-Yeast Cell Extract Conjugates. Foods 2024; 13:380. [PMID: 38338515 PMCID: PMC10855142 DOI: 10.3390/foods13030380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
This study investigated the formation of soy protein isolate hydrolysate-yeast cell extract (SPIH-YCE) conjugates through a humid-dry heating process and their impact on bioactivity. The incubation of SPIH-YCE samples at 60 °C and ~75% humidity for varying durations (0, 5, 10, 15, and 20 days) resulted in a significant decrease in reducing sugars and free amino acids, while the degree of glycation increased by approximately 65.72% after 10 days. SDS-PAGE analysis and size exclusion chromatography revealed the presence of peptides and glycoprotein molecules, with an increase in the distribution of larger peptide size chains. The conjugated SPIH-YCE (10 days) exhibited the highest antioxidant capacity compared to the other samples at different incubation times. A comparative study between SPIH-YCE (day 0) and SPIH-YCE after 10 days of incubation showed significantly higher anti-inflammatory and ACE inhibitory activities for the conjugates subjected to the humid-dry heating process. This suggests that SPIH-YCE conjugates could serve as an alternative substance with the potential to provide health benefits by mitigating or preventing non-communicable diseases (NCDs). This research highlights the importance of the Maillard reaction in enhancing bioactivity and offers insights into the alterations of the chemical structure of these conjugates.
Collapse
Affiliation(s)
- Rewat Phongphisutthinant
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand; (R.P.); (S.T.)
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pairote Wiriyacharee
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.P.); (P.U.); (W.W.)
- Processing and Product Development Factory, The Royal Project Foundation, Chiang Mai 50100, Thailand;
| | - Kongsak Boonyapranai
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.B.); (S.O.)
| | - Sakaewan Ounjaijean
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.B.); (S.O.)
| | - Sirinya Taya
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand; (R.P.); (S.T.)
| | | | | | - Patamaphorn Utarat
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.P.); (P.U.); (W.W.)
| | | | - Chalermkwan Somjai
- Processing and Product Development Factory, The Royal Project Foundation, Chiang Mai 50100, Thailand;
| | - Supakit Chaipoot
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand; (R.P.); (S.T.)
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
7
|
de Souza CJF, da Silva CS, Ramos AV, Garcia-Rojas EE, Pierucci APTR. Yeast cells-xanthan gum coacervation for hydrosoluble bioactive encapsulation. Int J Biol Macromol 2023; 253:127148. [PMID: 37832622 DOI: 10.1016/j.ijbiomac.2023.127148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
This study assessed the technological feasibility of microencapsulating vitamin C (VC) via coacervation between yeast cells (YC) and xanthan gum (XG). The interaction efficiency between YC and XG was examined across various pHs and ratios, while characterizing the microcapsules in terms of encapsulation efficiency, particle size, and thermal and chemical stability. Additionally, in vitro digestion experiments were conducted to determine the digestion efficiency and bioavailability of the bioactive compound. The optimally produced microcapsules exhibited favorable functional attributes, including low water activity (≤ 0.3) and particle size (≤ 33.52 μm), coupled with a high encapsulation efficiency (∼ 86.12 %). The microcapsules were able to increase the stability of VC at high temperatures and during storage when compared to the control. The in vitro experiment revealed that the microcapsules effectively retained approximately 50 % of the VC in simulated gastric fluid, with up to 80 % released in simulated intestinal fluid. However, due to prior degradation in the simulated gastric fluid, the achieved bioavailability was around 68 %. These results are promising, underscoring the potential of these microcapsules as a viable technology for encapsulating, protect, and releasing water-soluble bioactives in the GI tract.
Collapse
Affiliation(s)
- Clitor Júnior Fernandes de Souza
- Program in Food, Nutrition and Health (PPGANS), School of Health Sciences, Federal University of Grande Dourados, Avenue Dourados-Itahum, Km 12, Dourados, MS 79804-970, Brazil; Josué de Castro Nutrition Institute, Federal University of Rio de Janeiro, Health Sciences Center, 373 Carlos Chagas Filho Avenue, Unit J, 21941-902 Rio de Janeiro, Brazil.
| | - Caroline Santos da Silva
- Program in Food, Nutrition and Health (PPGANS), School of Health Sciences, Federal University of Grande Dourados, Avenue Dourados-Itahum, Km 12, Dourados, MS 79804-970, Brazil
| | - Andresa Viana Ramos
- Nanotechnology Engineering Department, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Edwin Elard Garcia-Rojas
- Agroindustrial Engineering and Technology Laboratory (LETA), Fluminense Federal University (UFF), Av. dos Trabalhadores, 420, Volta Redonda, RJ 27255-125, Brazil
| | - Anna Paola Trindade Rocha Pierucci
- Josué de Castro Nutrition Institute, Federal University of Rio de Janeiro, Health Sciences Center, 373 Carlos Chagas Filho Avenue, Unit J, 21941-902 Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Umego EC, Barry-Ryan C. Review of the valorization initiatives of brewing and distilling by-products. Crit Rev Food Sci Nutr 2023; 64:8231-8247. [PMID: 37039081 DOI: 10.1080/10408398.2023.2198012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Beer and spirits are two of the most consumed alcoholic beverages in the world, and their production generates enormous amounts of by-product materials. This ranges from spent grain, spent yeast, spent kieselguhr, trub, carbon dioxide, pot ale, and distilled gin spent botanicals. The present circular economy dynamics and increased awareness on resource use for enhanced sustainable production practices have driven changes and innovations in the management practices and utilization of these by-products. These include food product development, functional food applications, biotechnological applications, and bioactive compounds extraction. As a result, the brewing and distilling sector of the food and drinks industry is beginning to see a shift from conventional uses of by-products such as animal feed to more innovative applications. This review paper therefore explored some of these valorization initiatives and the current state of the art.
Collapse
Affiliation(s)
- Ekene Christopher Umego
- School of Food Science and Environmental Health & Environmental Sustainability and Health Institute (ESHI), Technological University Dublin City Campus, Dublin 7, Ireland
| | - Catherine Barry-Ryan
- School of Food Science and Environmental Health & Environmental Sustainability and Health Institute (ESHI), Technological University Dublin City Campus, Dublin 7, Ireland
| |
Collapse
|
9
|
Valorization of Spent Brewer’s Yeast for the Production of High-Value Products, Materials, and Biofuels and Environmental Application. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Spent brewer’s yeast (SBY) is a byproduct of the brewing industry traditionally used as a feed additive, although it could have much broader applications. In this paper, a comprehensive review of valorization of SBY for the production of high-value products, new materials, and biofuels, as well as environmental application, is presented. An economic perspective is given by mirroring marketing of conventional SBY with innovative high-value products. Cascading utilization of fine chemicals, biofuels, and nutrients such as proteins, carbohydrates, and lipids released by various SBY treatments has been proposed as a means to maximize the sustainable and circular economy.
Collapse
|
10
|
Cerqueira e Silva KF, Rabelo RS, Feltre G, Hubinger M. Bitter substances recovery from hot trub: A study of polymeric membranes performance in a sequential mode with fouling investigation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Guo Q, Tang J, Li S, Qiang L, Chang S, Du G, Yue T, Yuan Y. Lactobacillus plantarum 21805 encapsulated by whey protein isolate and dextran conjugate for enhanced viability. Int J Biol Macromol 2022; 216:124-131. [DOI: 10.1016/j.ijbiomac.2022.06.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022]
|
12
|
Nascimento RF, Ávila MF, Taranto OP, Kurozawa LE. Agglomeration in fluidized bed: Bibliometric analysis, a review, and future perspectives. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Ye Y, Ye S, Wanyan Z, Ping H, Xu Z, He S, Cao X, Chen X, Hu W, Wei Z. Producing beef flavors in hydrolyzed soybean meal-based Maillard reaction products participated with beef tallow hydrolysates. Food Chem 2022; 378:132119. [PMID: 35033715 DOI: 10.1016/j.foodchem.2022.132119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/18/2021] [Accepted: 01/07/2022] [Indexed: 11/04/2022]
Abstract
This work investigated the effect of oxidized beef tallow on the volatile compositions and sensory properties of soybean meal-based Maillard reaction products (MRPs). Various tallow oxidation methods included thermal treatment (TT), enzymatic hydrolysis (ET) and enzymatic hydrolysis combined with mild thermal (ETT) treatment. Results showed that all these oxidized tallow contained more types of volatile compounds than those of untreated tallow. Moreover, the composition of almost all types of volatile substances was greatly increased with the addition of the oxidized beef tallow into the hydrolyzed soybean meal-based Maillard reaction system. More importantly, the composition of oxygen-containing heterocycles (63.89 μg/mL), sulfur-containing compounds (76.64 μg/mL), and nitrogen-containing heterocycles (19.81 μg/mL) that contribute positively to sensory properties in ETT-MRPs was found to be the highest among all the MRPs. Correlation assessment revealed that ETT was closely related to the most typical volatile products and sensory attributes, indicating this approach can effectively enhance the sensory and flavor of hydrolyzed soybean meal derived MRPs.
Collapse
Affiliation(s)
- Yongkang Ye
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China; School of Food Science and Biological Engineering, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Shuangshuang Ye
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhangxiang Wanyan
- School of Food Science and Biological Engineering, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, China
| | - Hao Ping
- School of Food Science and Biological Engineering, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, China
| | - Zixun Xu
- School of Food Science and Biological Engineering, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, China
| | - Shudong He
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaodong Cao
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Xiangyang Chen
- School of Life and Environmental Sciences, Huangshan University, Huangshan 245041, China
| | - Wanwan Hu
- Huangshan Chaogang Food Co., Ltd, Huangshan 245000, China
| | - Zhaojun Wei
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| |
Collapse
|
14
|
Rubio FTV, Haminiuk CWI, Santos PDDF, Martelli-Tosi M, Thomazini M, Balieiro JCDC, Makimori GYF, Favaro-Trindade CS. Investigation of brewer’s spent yeast as a bio-vehicle for encapsulation of natural colorants from pumpkin (Cucurbita moschata) peels. Food Funct 2022; 13:10096-10109. [DOI: 10.1039/d2fo00759b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Brewer’s spent yeast (BSY) Saccharomyces cerevisiae has been currently explored as a bio-vehicle for encapsulation of bioactive compounds and as a delivery system. The main objectives of this work were...
Collapse
|
15
|
Dimopoulos G, Limnaios A, Aerakis E, Andreou V, Taoukis P. Effect of high pressure on the proteolytic activity and autolysis of yeast Saccharomyces cerevisiae. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Tan C, Huang M, McClements DJ, Sun B, Wang J. Yeast cell-derived delivery systems for bioactives. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Zhong SR, Li MF, Zhang ZH, Zong MH, Wu XL, Lou WY. Novel Antioxidative Wall Materials for Lactobacillus casei Microencapsulation via the Maillard Reaction between the Soy Protein Isolate and Prebiotic Oligosaccharides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13744-13753. [PMID: 34780175 DOI: 10.1021/acs.jafc.1c02907] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, three kinds of Maillard reaction products (MRPs) have been, for the first time, successfully prepared by conjugating soy protein isolate (SPI) with isomaltooligosaccharide, xylooligosaccharide, or galactooligosaccharide at 80 °C for 30 or 60 min and applied for the construction of Lactobacillus casei (L. casei) microcapsules. The results showed that MRPs exhibited enhanced antioxidative activities compared with their physically mixed counterparts. The digested MRPs displayed excellent resistance to pathogenic bacteria and promoted the growth of L. casei. Moreover, MRP-encapsulated L. casei showed a higher survival rate than free L. casei under tested adverse conditions including heat treatment, storage, and mechanical forces. Under simulated digestion conditions, the viability of L. casei decreased from 8.8 log cfu/mL to 1.6 log cfu/mL, while that of MRP-encapsulated L. casei was maintained at 7.4 log cfu/mL. Thus, MRP-based SPI-oligosaccharide conjugates exhibited great potential for microencapsulation of probiotics.
Collapse
Affiliation(s)
- Shu-Rui Zhong
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Meng-Fan Li
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhi-Hua Zhang
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Min-Hua Zong
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiao-Ling Wu
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Wen-Yong Lou
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
18
|
Evaluation of the addition of artichoke by-products to O/W emulsions for oil microencapsulation by spray drying. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Marson GV, Pereira DTV, da Costa Machado MT, Di Luccio M, Martínez J, Belleville MP, Hubinger MD. Ultrafiltration performance of spent brewer's yeast protein hydrolysate: Impact of pH and membrane material on fouling. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Zhang Z, Chen W, Zhou X, Deng Q, Dong X, Yang C, Huang F. Astaxanthin-loaded emulsion gels stabilized by Maillard reaction products of whey protein and flaxseed gum: Physicochemical characterization and in vitro digestibility. Food Res Int 2021; 144:110321. [PMID: 34053526 DOI: 10.1016/j.foodres.2021.110321] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 01/29/2023]
Abstract
In order to evaluate the effect of ultrasound and Maillard reaction on the physicochemical properties and gastrointestinal fate of astaxanthin-loaded emulsion gels, the Maillard reaction products (MRPs) of whey protein and flaxseed gum (FG) were prepared by traditional or ultrasonic assisted wet-heating. The MRPs obtained by ultrasonic assisted wet-heating had higher grafting degree and more expanded structures evidenced by the browning intensity, fluorescence intensity and circular dichroism (CD) analysis, thus enhancing its functional properties like solubility and emulsifying capacity. The MRPs improved the water holding capacity, encapsulation efficiency, stability of emulsion gels, in which astaxanthin was wrapped as a model bioactive compound. During the simulated digestion process, the bioaccessibility of loaded astaxanthin reached 72.08% for the emulsion gels stabilized by MRPs. The results highlighted the potential of MRPs in improving functionality of protein and as a delivery carrier of bioactive compounds in food industry.
Collapse
Affiliation(s)
- Zhao Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, No. 2 Xudong 2nd Road, Wuhan 430062, China
| | - Wenchao Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, No. 2 Xudong 2nd Road, Wuhan 430062, China
| | - Xin Zhou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, No. 2 Xudong 2nd Road, Wuhan 430062, China
| | - Qianchun Deng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, No. 2 Xudong 2nd Road, Wuhan 430062, China
| | - Xuyan Dong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Chen Yang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, No. 2 Xudong 2nd Road, Wuhan 430062, China.
| | - Fenghong Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, No. 2 Xudong 2nd Road, Wuhan 430062, China
| |
Collapse
|
21
|
Yeast Cells in Microencapsulation. General Features and Controlling Factors of the Encapsulation Process. Molecules 2021; 26:molecules26113123. [PMID: 34073703 PMCID: PMC8197184 DOI: 10.3390/molecules26113123] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Besides their best-known uses in the food and fermentation industry, yeasts have also found application as microcapsules. In the encapsulation process, exogenous and most typically hydrophobic compounds diffuse and end up being passively entrapped in the cell body, and can be released upon application of appropriate stimuli. Yeast cells can be employed either living or dead, intact, permeabilized, or even emptied of all their original cytoplasmic contents. The main selling points of this set of encapsulation technologies, which to date has predominantly targeted food and-to a lesser extent-pharmaceutical applications, are the low cost, biodegradability and biocompatibility of the capsules, coupled to their sustainable origin (e.g., spent yeast from brewing). This review aims to provide a broad overview of the different kinds of yeast-based microcapsules and of the main physico-chemical characteristics that control the encapsulation process and its efficiency.
Collapse
|
22
|
Dadkhodazade E, Khanniri E, Khorshidian N, Hosseini SM, Mortazavian AM, Moghaddas Kia E. Yeast cells for encapsulation of bioactive compounds in food products: A review. Biotechnol Prog 2021; 37:e3138. [PMID: 33634951 DOI: 10.1002/btpr.3138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/21/2022]
Abstract
Nowadays bioactive compounds have gained great attention in food and drug industries owing to their health aspects as well as antimicrobial and antioxidant attributes. Nevertheless, their bioavailability, bioactivity, and stability can be affected in different conditions and during storage. In addition, some bioactive compounds have undesirable flavor that restrict their application especially at high dosage in food products. Therefore, food industry needs to find novel techniques to overcome these problems. Microencapsulation is a technique, which can fulfill the mentioned requirements. Also, there are many wall materials for use in encapsulation procedure such as proteins, carbohydrates, lipids, and various kinds of polymers. The utilization of food-grade and safe carriers have attracted great interest for encapsulation of food ingredients. Yeast cells are known as a novel carrier for microencapsulation of bioactive compounds with benefits such as controlled release, protection of core substances without a significant effect on sensory properties of food products. Saccharomyces cerevisiae was abundantly used as a suitable carrier for food ingredients. Whole cells as well as cell particles like cell wall and plasma membrane can act as a wall material in encapsulation process. Compared to other wall materials, yeast cells are biodegradable, have better protection for bioactive compounds and the process of microencapsulation by them is relatively simple. The encapsulation efficiency can be improved by applying some pretreatments of yeast cells. In this article, the potential application of yeast cells as an encapsulating material for encapsulation of bioactive compounds is reviewed.
Collapse
Affiliation(s)
- Elahe Dadkhodazade
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Khanniri
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Khorshidian
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Seyede Marziyeh Hosseini
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir M Mortazavian
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Moghaddas Kia
- Department of Food Science and Technology, Maragheh University of Medical Science, Maragheh, Iran
| |
Collapse
|
23
|
Comunian TA, Silva MP, Souza CJ. The use of food by-products as a novel for functional foods: Their use as ingredients and for the encapsulation process. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Vélez-Erazo EM, Saturno RP, Marson GV, Hubinger MD. Spent brewer’s yeast proteins and cell debris as innovative emulsifiers and carrier materials for edible oil microencapsulation. Food Res Int 2021; 140:109853. [DOI: 10.1016/j.foodres.2020.109853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/28/2020] [Accepted: 10/25/2020] [Indexed: 02/06/2023]
|
25
|
Abstract
The repurposing of by-products and the reduction of waste from food processing streams is an ever-increasing area of interest. Brewer’s spent yeast (BSY) is a prevalent by-product of the brewing industry. The spent yeast cells are removed at the end of the bulk fermentation. A small amount of it is used to start the next batch of fermentation; however, the majority of the spent yeast is discarded. This discarded yeast is high in nutrients, in particular proteins, vitamins and minerals, as well as containing functional and biologically active compounds such as polyphenols, antioxidants, β-glucans and mannoproteins. At present, BSY is mainly used in animal feed as a cheap and readily available source of protein. This review explores alternative, value-added applications for brewer’s spent yeast including nutritional ingredients, functional food additives as well as non-food applications. A major challenge in the utilization of BSY in food for human consumption is the high level of RNA. An excess of RNA in the diet can lead to an increase in uric acid in the bloodstream, potentially causing painful health conditions like gout. This issue can be overcome by RNA degradation and removal via additional treatment, namely heat treatment and enzymatic treatment. There is potential for the use of BSY ingredients in various food applications, including meat substitutes, bakery products and savory snacks.
Collapse
|