1
|
Wang P, Lv W, Wang H. Effects of freeze-hot air drying on physicochemical properties and anti-tyrosinase activity of quince peels. Food Chem 2025; 463:141507. [PMID: 39393110 DOI: 10.1016/j.foodchem.2024.141507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024]
Abstract
Xinjiang quince peels (XQP) are rich in bioactive compounds and have anti-tyrosinase potential. However, due to their short shelf life, effective preservation techniques are needed to retain their nutritional and medicinal properties. While freeze drying (FD) is effective, combining FD with hot air drying (HAD) offers greater efficiency. The study aimed to evaluate the effects of freeze-hot air drying on the physicochemical properties and anti-tyrosinase activity of XQP. The results showed that peels subjected to FD for 18 h followed by HAD for 0.3 h (FD18-HAD0.3) had the highest contents of total phenolics, total flavonoids, chlorogenic acid, rutin, and ascorbic acid, while reducing drying time by 25 % compared to FD alone. FD18-HAD0.3 peels also showed the highest anti-tyrosinase activity, with the smallest IC50 value (7.84 ± 0.03 mg/mL). The study concludes that FD18-HAD0.3 showed potential as the optimal drying process for XQP.
Collapse
Affiliation(s)
- Pei Wang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wenping Lv
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Hongxin Wang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
2
|
Di Lorenzo R, Maisto M, Ricci L, Piccolo V, Marzocchi A, Greco G, Tenore GC, Laneri S. Annurca Apple Oleolite as Functional Ingredient for the Formulation of Cosmetics with Skin-Antiaging Activity. Int J Mol Sci 2024; 25:1677. [PMID: 38338954 PMCID: PMC10855134 DOI: 10.3390/ijms25031677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The identification of natural remedies for the management of the skin aging process is an increasingly growing issue. In this context, ursolic acid (UA), a ubiquitous molecule, mainly contained in Annurca apple (AA) fruit, has demonstrated valuable cosmetic potential. To this end, in the current study, the AA oleolite (AAO, extract in sunflower oil containing 784.40 ± 7.579 µg/mL of UA) was evaluated to inhibit porcine elastase enzymatic reactions through a validated spectrophotometric method. AAO has shown a valuable capacity to contrast the elastase enzyme with a calculated IC50 of 212.76 mg/mL, in comparison to UA (IC50 of 135.24 μg/mL) pure molecules and quercetin (IC50 of 72.47 μg/mL) which are used as positive controls. In this context and in view of the valuable antioxidant potential of AAO, its topical formulation with 2.5% (w/w) AAO was tested in a placebo-controlled, double-blind, two-arm clinical study on 40 volunteers. Our results indicated that after 28 days of treatment, a significant reduction of the nasolabial fold (-7.2 vs. baseline T0, p < 0.001) and forehead wrinkles (-5.3 vs. baseline T0, p < 0.001) were registered in combination with a valuable improvement of the viscoelastic skin parameters, where skin pliability/firmness (R0) and gross elasticity (R2) were significantly ameliorated (-13% vs. baseline T0, p < 0.001 for R0 and +12% vs. baseline T0, p < 0.001 for R2). Finally, considering the positive correlation between skin elasticity and hydration, the skin moisture was evaluated through the estimation of Trans epidermal water loss (TEWL) and skin conductance.
Collapse
Affiliation(s)
- Ritamaria Di Lorenzo
- RD Cosmetics, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (R.D.L.); (L.R.); (G.G.); (S.L.)
| | - Maria Maisto
- ChimNutra Labs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (V.P.); (A.M.); (G.C.T.)
| | - Lucia Ricci
- RD Cosmetics, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (R.D.L.); (L.R.); (G.G.); (S.L.)
| | - Vincenzo Piccolo
- ChimNutra Labs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (V.P.); (A.M.); (G.C.T.)
| | - Adua Marzocchi
- ChimNutra Labs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (V.P.); (A.M.); (G.C.T.)
| | - Giovanni Greco
- RD Cosmetics, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (R.D.L.); (L.R.); (G.G.); (S.L.)
| | - Gian Carlo Tenore
- ChimNutra Labs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (V.P.); (A.M.); (G.C.T.)
| | - Sonia Laneri
- RD Cosmetics, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (R.D.L.); (L.R.); (G.G.); (S.L.)
| |
Collapse
|
3
|
Asma U, Morozova K, Ferrentino G, Scampicchio M. Apples and Apple By-Products: Antioxidant Properties and Food Applications. Antioxidants (Basel) 2023; 12:1456. [PMID: 37507993 PMCID: PMC10376361 DOI: 10.3390/antiox12071456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/08/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, there has been a growing interest in utilizing natural antioxidants as alternatives to synthetic additives in food products. Apples and apple by-products have gained attention as a potential source of natural antioxidants due to their rich phenolic content. However, the extraction techniques applied for the recovery of phenolic compounds need to be chosen carefully. Studies show that ultrasound-assisted extraction is the most promising technique. High yields of phenolic compounds with antioxidant properties have been obtained by applying ultrasound on both apples and their by-products. Promising results have also been reported for green technologies such as supercritical fluid extraction, especially when a co-solvent is used. Once extracted, recent studies also indicate the feasibility of using these compounds in food products and packaging materials. The present review aims to provide a comprehensive overview of the antioxidant properties of apples and apple by-products, their extraction techniques, and potential applications in food products because of their antioxidant or nutritional properties. The findings reported here highlight the proper utilization of apples and their by-products in food to reduce the detrimental effect on the environment and provide a positive impact on the economy.
Collapse
Affiliation(s)
- Umme Asma
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy
| | - Ksenia Morozova
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy
| | - Giovanna Ferrentino
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy
| | - Matteo Scampicchio
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy
| |
Collapse
|
4
|
Beghelli D, Zallocco L, Angeloni C, Bistoni O, Ronci M, Cavallucci C, Mazzoni MR, Nuccitelli A, Catalano C, Hrelia S, Lucacchini A, Giusti L. Dietary Supplementation with Boswellia serrata, Verbascum thapsus, and Curcuma longa in Show Jumping Horses: Effects on Serum Proteome, Antioxidant Status, and Anti-Inflammatory Gene Expression. Life (Basel) 2023; 13:life13030750. [PMID: 36983904 PMCID: PMC10055707 DOI: 10.3390/life13030750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Intense exercise can cause inflammation and oxidative stress due to the production of reactive oxygen species. These pathophysiological processes are interdependent, and each one can induce the other, creating a vicious circle. A placebo-controlled blind study was carried out in show jumping horses (n. 16) to evaluate the effects of a commercial dietary supplement (Dolhorse® N.B.F. Lanes srl, Milan, Italy) containing Verbascum thapsus leaf powder (1.42%), Curcuma longa (14.280 mg/kg), and Boswellia serrata (Roxb ex Colebr) (14.280 mg/kg) extracts. Before and after 10 days of dietary supplementation, blood samples were collected to evaluate the protein levels, antioxidants, and inflammatory responses by proteomic analysis or real-time Reverse Transcriptase-Polymerase Chain Reaction (real-time RT-PCR). A total of 36 protein spots, connected to 29 proteins, were modulated by dietary supplementation, whereas real-time RT-PCR revealed a significant downregulation of proinflammatory cytokines (interleukin 1α (p < 0.05) and interleukin-6 (0.005), toll-like receptor 4 (p < 0.05), and IKBKB (p < 0.05) in supplemented sport horses. Immunoglobulin chains, gelsolin, plasminogen, vitamin D binding protein, apolipoprotein AIV, and filamin B were overexpressed, whereas haptoglobin, α-2-HS-glycoprotein, α2-macroglobulin, afamin, amine oxidase, 60S acidic ribosomal protein, and complement fragments 3, 4, and 7 were reduced. No effect was observed on the antioxidant defense systems. The present results suggest this phytotherapy may reinforce the innate immune responses, thus representing a valid adjuvant to alleviate inflammation, which is a pathophysiological process in sport horses.
Collapse
Affiliation(s)
- Daniela Beghelli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
- Correspondence: (D.B.); (L.G.); Tel.: +39-737-403201 (D.B.); +39-737-402916 (L.G.)
| | - Lorenzo Zallocco
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Cristina Angeloni
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47921 Rimini, Italy
| | - Onelia Bistoni
- Rheumatology Unit, Department of Medicine, University of Perugia, 06126 Perugia, Italy
| | - Maurizio Ronci
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | | | | | - Anna Nuccitelli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | | | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47921 Rimini, Italy
| | - Antonio Lucacchini
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Laura Giusti
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy
- Correspondence: (D.B.); (L.G.); Tel.: +39-737-403201 (D.B.); +39-737-402916 (L.G.)
| |
Collapse
|
5
|
Alimenti C, Lianza M, Antognoni F, Giusti L, Bistoni O, Liotta L, Angeloni C, Lupidi G, Beghelli D. Characterization and Biological Activities of In Vitro Digested Olive Pomace Polyphenols Evaluated on Ex Vivo Human Immune Blood Cells. Molecules 2023; 28:molecules28052122. [PMID: 36903372 PMCID: PMC10004623 DOI: 10.3390/molecules28052122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Olive pomace (OP) represents one of the main by-products of olive oil production, which still contains high quantities of health-promoting bioactive compounds. In the present study, three batches of sun-dried OP were characterized for their profile in phenolic compounds (by HPLC-DAD) and in vitro antioxidant properties (ABTS, FRAP and DPPH assays) before (methanolic extracts) and after (aqueous extracts) their simulated in vitro digestion and dialysis. Phenolic profiles, and, accordingly, the antioxidant activities, showed significant differences among the three OP batches, and most compounds showed good bioaccessibility after simulated digestion. Based on these preliminary screenings, the best OP aqueous extract (OP-W) was further characterized for its peptide composition and subdivided into seven fractions (OP-F). The most promising OP-F (characterized for its metabolome) and OP-W samples were then assessed for their potential anti-inflammatory properties in ex vivo human peripheral mononuclear cells (PBMCs) triggered or not with lipopolysaccharide (LPS). The levels of 16 pro-and anti-inflammatory cytokines were measured in PBMC culture media by multiplex ELISA assay, whereas the gene expressions of interleukin-6 (IL-6), IL-10 and TNF-α were measured by real time RT-qPCR. Interestingly, OP-W and PO-F samples had a similar effect in reducing the expressions of IL-6 and TNF-α, but only OP-W was able to reduce the release of these inflammatory mediators, suggesting that the anti-inflammatory activity of OP-W is different from that of OP-F.
Collapse
Affiliation(s)
- Claudio Alimenti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Mariacaterina Lianza
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47921 Rimini, Italy
| | - Fabiana Antognoni
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47921 Rimini, Italy
| | - Laura Giusti
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Onelia Bistoni
- Rheumatology Unit, Department of Medicine, University of Perugia, 06126 Perugia, Italy
| | - Luigi Liotta
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy
| | - Cristina Angeloni
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47921 Rimini, Italy
| | - Giulio Lupidi
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Daniela Beghelli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
- Correspondence:
| |
Collapse
|
6
|
Illiano A, Pinto G, Carrera MA, Palmese A, Di Novella R, Casoria P, Amoresano A. LC-MS/MS-Based Quantification Method of Polyphenols for Valorization of Ancient Apple Cultivars from Cilento. ACS FOOD SCIENCE & TECHNOLOGY 2022; 2:647-654. [PMID: 35465209 PMCID: PMC9016709 DOI: 10.1021/acsfoodscitech.1c00439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 04/14/2023]
Abstract
Safeguarding the biodiversity of plant species is of fundamental importance for their defense against pests and diseases even through the maintenance and dissemination of ancient agricultural traditions rooted within the small rural environments. The investigation area of the current research covered some municipalities belonging to the "Parco Nazionale del Cilento e Vallo di Diano" including the sub-mountainous part of "Comunità Montana del Vallo di Diano (Salerno, Campania)". Fifteen ancient apple varieties were collected from local communities to be analyzed and compared to some commercially available apples. To this aim, a Folin-Ciocâlteu assay was preliminarily used to measure the total polyphenol content in both ancient and commercial apple cultivars. Then, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis in the multiple reaction monitoring (MRM) ion mode was then implemented to detect and quantify specific polyphenols and to obtain a molecular comparison of a wide panel of polyphenols. The main finding of the present work pointed out that ancient apple cultivars are richer than commercial ones in anthocyanins, dihydrochalcones, and chlorogenic acid, whose beneficial effects on health are widely known. Thus, the safeguarding of these ancient varieties is greatly encouraged for the richness of polyphenols crucial both for the defense of plants from insects and for remarkable nutraceutical properties, in addition to the need for germplasm conservation as a source of genetic variability.
Collapse
Affiliation(s)
- Anna Illiano
- Department
of Chemical Sciences, University of Naples
Federico II, 80126 Naples, Italy
- CEINGE
Advanced Biotechnologies, University of
Naples Federico II, 80145 Naples, Italy
- INBB,
Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Gabriella Pinto
- Department
of Chemical Sciences, University of Naples
Federico II, 80126 Naples, Italy
- INBB,
Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | | | - Angelo Palmese
- Pharmaceutical
& Analytical Development Biotech Products, Merck Serono SpA, an affiliate of Merck
KgaA, Darmstadt, Germany, 00176 Roma, Italy
| | - Riccardo Di Novella
- Ecomuseo
della Valle delle Orchidee e delle Antiche Coltivazioni-Sassano (Sa)-PNCVDA, 84038 Sassano, Italy
| | - Paolo Casoria
- Department
of Sciences and Technology, University of
Naples Parthenope, 80143 Naples, Italy
| | - Angela Amoresano
- Department
of Chemical Sciences, University of Naples
Federico II, 80126 Naples, Italy
- INBB,
Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| |
Collapse
|
7
|
López-Fernández O, Bohrer BM, Munekata PES, Domínguez R, Pateiro M, Lorenzo JM. Improving oxidative stability of foods with apple-derived polyphenols. Compr Rev Food Sci Food Saf 2021; 21:296-320. [PMID: 34897991 DOI: 10.1111/1541-4337.12869] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/24/2021] [Accepted: 10/19/2021] [Indexed: 01/09/2023]
Abstract
Consumers demand healthy and natural food products. Thus, naturally derived antioxidants are emerging as a promising alternative to the use of present ingredients. Apples and apple derivative products (e.g., apple juice, apple cider, apple sauce, and others) are widely consumed throughout the world for a variety of different reasons and supply a large quantity of polyphenolic compounds. The extraction of polyphenolic compounds from apples and their incorporation into processed foods as naturally sourced ingredients could be a preferred alternative to commonly used commercial antioxidants that are used in many foods. In addition, they could have a positive impact on the environment and on the economy due to the utilization of byproducts generated during processing of apples, like apple pomace. In terms of the extraction procedures for the antioxidant compounds found in apples, the most efficient processes are methods that use ultrasound as the extraction tool. With this technique, greater yields are achieved, and less extraction time is required when compared with other, more conventional, extraction methods. However, parameters such as the extraction solvent, temperature during extraction, and extraction time must be suitably optimized in order to obtain the best performance and the highest antioxidant capacity. From an application standpoint, the use of apple-derived polyphenol extracts as a naturally derived food additive has documented applications for bread, meat, fish, cookies, and juices and there is evidence of increased antioxidant capacity, reduced rate of lipid oxidation, and increased storage time without compromising on sensory properties.
Collapse
Affiliation(s)
| | - Benjamin M Bohrer
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, USA
| | | | | | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
| | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain.,Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| |
Collapse
|
8
|
Nezbedova L, McGhie T, Christensen M, Heyes J, Nasef NA, Mehta S. Onco-Preventive and Chemo-Protective Effects of Apple Bioactive Compounds. Nutrients 2021; 13:4025. [PMID: 34836282 PMCID: PMC8618396 DOI: 10.3390/nu13114025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 01/16/2023] Open
Abstract
Cancer is one of the leading causes of death globally. Epidemiological studies have strongly linked a diet high in fruits to a lower incidence of cancer. Furthermore, extensive research shows that secondary plant metabolites known as phytochemicals, which are commonly found in fruits, have onco-preventive and chemo-protective effects. Apple is a commonly consumed fruit worldwide that is available all year round and is a rich source of phytochemicals. In this review, we summarize the association of apple consumption with cancer incidence based on findings from epidemiological and cohort studies. We further provide a comprehensive review of the main phytochemical patterns observed in apples and their bioavailability after consumption. Finally, we report on the latest findings from in vitro and in vivo studies highlighting some of the key molecular mechanisms targeted by apple phytochemicals in relation to inhibiting multiple 'hallmarks of cancer' that are important in the progression of cancer.
Collapse
Affiliation(s)
- Linda Nezbedova
- School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand; (L.N.); (J.H.)
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand;
| | - Tony McGhie
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4442, New Zealand;
| | - Mark Christensen
- Heritage Food Crops Research Trust, Whanganui 4501, New Zealand;
| | - Julian Heyes
- School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand; (L.N.); (J.H.)
| | - Noha Ahmed Nasef
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand;
| | - Sunali Mehta
- Pathology Department, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
9
|
Analytical Methods for Exploring Nutraceuticals Based on Phenolic Acids and Polyphenols. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phenolic compounds such as phenolic acids, flavonoids, and stilbenes comprise an enormous family of bioactive molecules with a range of positive properties, including antioxidant, antimicrobial, or anti-inflammatory effects. As a result, plant extracts are often purified to recover phenolic compound-enriched fractions to be used to develop nutraceutical products or dietary supplements. In this article, we review the properties of some remarkable plant-based nutraceuticals in which the active molecules are mainly polyphenols and related compounds. Methods for the characterization of these extracts, the chemical determination of the bioactivities of key molecules, and the principal applications of the resulting products are discussed in detail.
Collapse
|
10
|
Dynamics of Phloridzin and Related Compounds in Four Cultivars of Apple Trees during the Vegetation Period. Molecules 2021; 26:molecules26133816. [PMID: 34206687 PMCID: PMC8270342 DOI: 10.3390/molecules26133816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 01/14/2023] Open
Abstract
Apple trees (Malus domestica Borgh) are a rich source of dihydrochalcones, phenolic acids and flavonoids. Considering the increasing demand for these phytochemicals with health-benefitting properties, the objective of this study was to evaluate the profile of the main bioactive compounds—phloridzin, phloretin, chlorogenic acid and rutin—in apple tree bark, leaves, flower buds and twigs. The variety in the phenolic profiles of four apple tree cultivars was monitored during the vegetation period from March to September using chromatography analysis. Phloridzin, the major glycoside of interest, reached the highest values in the bark of all the tested cultivars in May (up to 91.7 ± 4.4 mg g−1 of the dried weight (DW), cv. ‘Opal’). In the leaves, the highest levels of phloridzin were found in cv. ‘Opal’ in May (82.5 ± 22.0 mg g−1 of DW); in twigs, the highest levels were found in cv. ‘Rozela’ in September (52.4 ± 12.1 mg g−1 of DW). In the flower buds, the content of phloridzin was similar to that in the twigs. Aglycone phloretin was found only in the leaves in relatively low concentrations (max. value 2.8 ± 1.4 mg g−1 of DW). The highest values of rutin were found in the leaves of all the tested cultivars (10.5 ± 2.9 mg g−1 of DW, cv. ‘Opal’ in September); the concentrations in the bark and twigs were much lower. The highest content of chlorogenic acid was found in flower buds (3.3 ± 1.0 mg g−1 of DW, cv. ‘Rozela’). Whole apple fruits harvested in September were rich in chlorogenic acid and phloridzin. The statistical evaluation by Scheffe’s test confirmed the significant difference of cv. ‘Rozela’ from the other tested cultivars. In conclusion, apple tree bark, twigs, and leaves were found to be important renewable resources of bioactive phenolics, especially phloridzin and rutin. The simple availability of waste plant material can therefore be used as a rich source of phenolic compounds for cosmetics, nutraceuticals, and food supplement preparation.
Collapse
|
11
|
Guarrasi V, Rappa GC, Costa MA, Librizzi F, Raimondo M, Di Stefano V, Germanà MA, Vilasi S. Valorization of Apple Peels through the Study of the Effects on the Amyloid Aggregation Process of κ-Casein. Molecules 2021; 26:molecules26082371. [PMID: 33921801 PMCID: PMC8073991 DOI: 10.3390/molecules26082371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 01/13/2023] Open
Abstract
Waste valorization represents one of the main social challenges when promoting a circular economy and environmental sustainability. Here, we evaluated the effect of the polyphenols extracted from apple peels, normally disposed of as waste, on the amyloid aggregation process of κ-casein from bovine milk, a well-used amyloidogenic model system. The effect of the apple peel extract on protein aggregation was examined using a thioflavin T fluorescence assay, Congo red binding assay, circular dichroism, light scattering, and atomic force microscopy. We found that the phenolic extract from the peel of apples of the cultivar “Fuji”, cultivated in Sicily (Caltavuturo, Italy), inhibited κ-casein fibril formation in a dose-dependent way. In particular, we found that the extract significantly reduced the protein aggregation rate and inhibited the secondary structure reorganization that accompanies κ-casein amyloid formation. Protein-aggregated species resulting from the incubation of κ-casein in the presence of polyphenols under amyloid aggregation conditions were reduced in number and different in morphology.
Collapse
Affiliation(s)
- Valeria Guarrasi
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.C.R.); (M.A.C.); (F.L.); (M.R.); (S.V.)
- Correspondence: ; Tel.: +39-0916809356
| | - Giacoma Cinzia Rappa
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.C.R.); (M.A.C.); (F.L.); (M.R.); (S.V.)
| | - Maria Assunta Costa
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.C.R.); (M.A.C.); (F.L.); (M.R.); (S.V.)
| | - Fabio Librizzi
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.C.R.); (M.A.C.); (F.L.); (M.R.); (S.V.)
| | - Marco Raimondo
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.C.R.); (M.A.C.); (F.L.); (M.R.); (S.V.)
| | - Vita Di Stefano
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy;
| | - Maria Antonietta Germanà
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze Ed. 4, 90128 Palermo, Italy;
| | - Silvia Vilasi
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.C.R.); (M.A.C.); (F.L.); (M.R.); (S.V.)
| |
Collapse
|
12
|
Chiocchio I, Prata C, Mandrone M, Ricciardiello F, Marrazzo P, Tomasi P, Angeloni C, Fiorentini D, Malaguti M, Poli F, Hrelia S. Leaves and Spiny Burs of Castanea Sativa from an Experimental Chestnut Grove: Metabolomic Analysis and Anti-Neuroinflammatory Activity. Metabolites 2020; 10:E408. [PMID: 33066101 PMCID: PMC7601974 DOI: 10.3390/metabo10100408] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 01/22/2023] Open
Abstract
Castanea sativa cultivation has been present in Mediterranean regions since ancient times. In order to promote a circular economy, it is of great importance to valorize chestnut groves' by-products. In this study, leaves and spiny burs from twenty-four Castanea trees were analyzed by 1H NMR metabolomics to provide an overview of their phytochemical profile. The Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) performed on these data allowed us to distinguish 'Marrone' from 'Castagna', since the latter were generally more enriched with secondary metabolites, in particular, flavonoids (astragalin, isorhamnetin glucoside, and myricitrin) were dominant. Knowing that microglia are involved in mediating the oxidative and inflammatory response of the central nervous system, the potential anti-inflammatory effects of extracts derived from leaves and spiny burs were evaluated in a neuroinflammatory cell model: BV-2 microglia cells. The tested extracts showed cytoprotective activity (at 0.1 and 0.5 mg/mL) after inflammation induction by 5 µg/mL lipopolysaccharide (LPS). In addition, the transcriptional levels of IL-1β, TNF-α, and NF-kB expression induced by LPS were significantly decreased by cell incubation with spiny burs and leaves extracts. Taken together, the obtained results are promising and represent an important step to encourage recycling and valorization of chestnut byproducts, usually considered "waste".
Collapse
Affiliation(s)
- Ilaria Chiocchio
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (I.C.); (C.P.); (P.T.); (D.F.); (F.P.)
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (I.C.); (C.P.); (P.T.); (D.F.); (F.P.)
| | - Manuela Mandrone
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (I.C.); (C.P.); (P.T.); (D.F.); (F.P.)
| | - Fortuna Ricciardiello
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (F.R.); (P.M.); (M.M.); (S.H.)
| | - Pasquale Marrazzo
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (F.R.); (P.M.); (M.M.); (S.H.)
| | - Paola Tomasi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (I.C.); (C.P.); (P.T.); (D.F.); (F.P.)
| | - Cristina Angeloni
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy;
| | - Diana Fiorentini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (I.C.); (C.P.); (P.T.); (D.F.); (F.P.)
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (F.R.); (P.M.); (M.M.); (S.H.)
| | - Ferruccio Poli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (I.C.); (C.P.); (P.T.); (D.F.); (F.P.)
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (F.R.); (P.M.); (M.M.); (S.H.)
| |
Collapse
|