1
|
Liu C, Yi F, Niu C, Li Q. Unravelling microbial interactions in a synthetic broad bean paste microbial community. Food Microbiol 2025; 130:104767. [PMID: 40210396 DOI: 10.1016/j.fm.2025.104767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/12/2024] [Accepted: 03/04/2025] [Indexed: 04/12/2025]
Abstract
The biotic factors governing the assembly and functionality of broad bean paste microbiota remain largely unexplored due to its highly complex fermentation ecosystem. This study constructed a synthetic community comprising Zygosaccharomyces rouxii, Staphylococcus carnosus, Bacillus subtilis, Bacillus amyloliquefaciens, Tetragenococcus halophilus and Weissella confusa, representing key microorganisms involved in broad bean paste fermentation. The generalized Lotka-Volterra (gLV) model revealed that the microbial interaction network among the six species was dominated by pairwise interactions. The abundances of most species in the multi-species communities at 2 and 4 days were accurately predicted using the gLV model, based on pairwise species combinations outcomes. Among pairwise interactions, negative interactions (57 %) were significantly more prevalent than positive interactions (37 %), with the former generally being stronger. Subsequent investigations demonstrated that the tested Z. rouxii inhibited acid accumulation by acid-producing bacteria, while the two strains belonging to the genus Bacillus stimulated lactic acid bacteria growth and lactic acid accumulation. The sequential inoculation strategy, informed by the interaction network, enhanced the synthetic community's bioaugmentation in broad bean paste, significantly improving ester and mellow flavors, reducing unpleasant odors, and increasing volatile flavor substances to 9.43 times that of natural fermentation. Overall, this study revealed the interaction network of six key microorganisms in broad bean paste using the gLV model and guided the application of the synthetic community in its fermentation, significantly enhancing flavor quality.
Collapse
Affiliation(s)
- Chunfeng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Feng Yi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Chengtuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
2
|
Liu H, Zhou W, Lu J, Wu D, Ge F. Construction of a synthetic microbial community and its application in salt-reduced soy sauce fermentation. Food Microbiol 2025; 128:104738. [PMID: 39952753 DOI: 10.1016/j.fm.2025.104738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/02/2025] [Accepted: 01/29/2025] [Indexed: 02/17/2025]
Abstract
High salt conditions negatively affect the fermentation efficiency of soy sauce and human health. This study aimed to construct a synthetic microbial community based on dominant functional microorganisms for salt-reduced soy sauce fermentation by investigating the succession and function of the microbial community during factory soy sauce fermentation. The findings revealed that the interplay between salinity and microorganisms influenced the dynamic changes of microbial communities. Furthermore, Aspergillus, Wickerhamomyces, Zygosaccharomyces, Staphylococcus, Weissella, and Tetragenococcus were analyzed to play key roles during soy sauce fermentation. Subsequently, the core strains were isolated and their strains and metabolic characteristics were evaluated. Finally, six strains (Aspergillus oryzae JQ09, Wickerhamomyces anomalus HJ07, Zygosaccharomyces rouxii JZ11, Staphylococcus carnosus QJ26, Weissella paramesenteroides ZJ19, and Tetragenococcus halophilus GY03) were employed to reconstruct the synthetic microbial community and conduct salt-reduced soy sauce fermentation. Biofortification increased the accumulation of metabolites in salt-reduced soy sauce. When the salt content was reduced to 14%, the sensory characteristics of soy sauce were closest to those of traditional soy sauce. Overall, this research presents a bottom-up approach to establish a simplified microbial community model with desired functions through deconstructing and reconstructing microbial structure and function. It has the potential to enhance the fermentation efficiency and realize the fermentation of salt-reduced traditional fermented food.
Collapse
Affiliation(s)
- Hua Liu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, PR China
| | - Wenjun Zhou
- Nanjing Huawei Medicine Technology Group Co., Ltd, No. 9 Weidi Road, Nanjing, 210046, PR China
| | - Jian Lu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, PR China
| | - Dianhui Wu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, PR China
| | - Fei Ge
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, PR China.
| |
Collapse
|
3
|
Xiang Q, Zhou W, Yang A, Wei Y, Xu M, Liu P. Unraveling key non-volatiles responsible for taste differences of Pixian broad bean paste based on sensory analysis and untargeted metabolomics. Food Chem 2025; 469:142565. [PMID: 39708645 DOI: 10.1016/j.foodchem.2024.142565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/01/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Besides aroma, the tastes of Pixian Broad Bean Paste (PBBP) are also important, however, they have not yet been thoroughly elucidated. Therefore, this study employed sensory and untargeted metabolomics approaches to investigate taste characteristics, molecular basis and their metabolic pathways of PBBP from three different manufacturers and two grades. Results showed PBBP was predominantly characterized by strong sour, umami and salty tastes, and significant differences were observed in samples from different manufacturers and grades (p < 0.05), especially higher sourness, saltiness and umami in premium PBBP. Based on non-volatiles, 55 key differential metabolites were identified through orthogonal partial least square discriminant analysis (OPLS-DA, P value<0.05, VIP value>1.0) and Pearson correlation analysis (|ρ| > 0.7). These key differential metabolites responsible for taste differences were metabolized by 36 crucial KEGG pathways (P value<0.05, impact value>0.05). These results could expand our understandings of PBBP taste compounds and their metabolisms, and provide theoretical evidences for further quality improvement.
Collapse
Affiliation(s)
- Qin Xiang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Wenjing Zhou
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Aiping Yang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yilan Wei
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Min Xu
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Ping Liu
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China.
| |
Collapse
|
4
|
Xu M, Guo Y, Song X, Li L, Xu Z, Zhao J, Zhao J, Lin H, Dong S, Lu J, Ding W, Liu P, Tang J. Analysis on microbial communities and characteristic flavor metabolic of PXDB-meju by partially substituting wheat flour with soybean flour and gluten flour. Curr Res Food Sci 2024; 9:100904. [PMID: 39628602 PMCID: PMC11612369 DOI: 10.1016/j.crfs.2024.100904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/12/2024] [Accepted: 10/27/2024] [Indexed: 12/06/2024] Open
Abstract
Pixian Douban (PXDB) is one of the most popular condiments in China due to its unique flavor. Wheat flour that contains abundant nutrients is an important raw material in producing flavors during PXDB fermentation. In this study, wheat flour was substituted with soybean flour and gluten flour that have higher proteins in portions of 10.4% and 4.2% (F1), 8.9% and 7.2% (F2), 9.6% and 5.8% (F3). The results indicated that the substitutions increased the amino acid nitrogen content and improved flavor quality compared with traditional group (CT). Especially, the key amino acids including spartate, glutamic, arginine and lysine, and the phenylacetaldehyde as one of the most important volatile compounds exhibited preferable higher contents in F2 group than those in CT group. Metagenomic analysis showed that the abundances of predominant bacteria, including Kosakonia_cowanii, unclassified_f__Enterobacteriaceae and unclassified_g__Enterobacter, were higher in the F2 compared to the CT. Lupinus_albus and Plutella_xylostella were the top two fungi in relative abundance, with higher growth rates in F2 than in CT. Furthermore, metabolism pathway analysis revealed higher relative abundance of enzymes producing key amino acids and phenethylaldehyde in the F2 compared to the CT. Meanwhile, these enzymes were exclusively annotated to the Kosakonia_cowanii, Bacillus_velezensis and Escherichia_coli in F2. This study provided a theoretical foundation for improving PXDB flavor quality in industry production.
Collapse
Affiliation(s)
- Min Xu
- College of Food and Bioengineering, Xihua University, Chengdu, 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, 610039, China
| | - Yuxin Guo
- College of Food and Bioengineering, Xihua University, Chengdu, 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, 610039, China
| | - Xiaoyan Song
- College of Food and Bioengineering, Xihua University, Chengdu, 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, 610039, China
| | - Ling Li
- College of Food and Bioengineering, Xihua University, Chengdu, 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, 610039, China
| | - Zedong Xu
- College of Food and Bioengineering, Xihua University, Chengdu, 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, 610039, China
| | - Jianhua Zhao
- College of Food and Bioengineering, Xihua University, Chengdu, 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, 610039, China
| | - Jie Zhao
- College of Food and Bioengineering, Xihua University, Chengdu, 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, 610039, China
| | - Hongbin Lin
- College of Food and Bioengineering, Xihua University, Chengdu, 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, 610039, China
| | - Shirong Dong
- Sichuan Fansaoguang Food Grp Co., Ltd. Chengdu, 611732, China
| | - Jing Lu
- Sichuan Fansaoguang Food Grp Co., Ltd. Chengdu, 611732, China
| | - Wenwu Ding
- College of Food and Bioengineering, Xihua University, Chengdu, 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, 610039, China
| | - Ping Liu
- College of Food and Bioengineering, Xihua University, Chengdu, 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, 610039, China
| | - Jie Tang
- College of Food and Bioengineering, Xihua University, Chengdu, 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, 610039, China
| |
Collapse
|
5
|
Ping C, Deng X, Guo Z, Luo W, Li X, Xin S. Characterizing the flavor profiles of Linjiangsi broad bean ( Vicia faba L.) paste using bionic sensory and multivariate statistics analyses based on ripening time and fermentation environment. Food Chem X 2024; 23:101677. [PMID: 39189012 PMCID: PMC11345688 DOI: 10.1016/j.fochx.2024.101677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 08/28/2024] Open
Abstract
The flavor profile of Linjiangsi broad bean paste (LBBP) is significantly influenced by fermentation environment and ripening time. This study aims to investigate the flavor of outdoor-treated (OT) and indoor-treated (IT) LBBP. Gas chromatography-mass spectrometry, electronic-nose, and electronic-tongue, combined with multivariate statistical analyses, were employed to identify the characteristic flavor profiles of OT and IT LBBP in ripening periods of one and three years. Overall, 95 volatile organic compounds (VOCs) were identified. Relative odor activity values and multivariate statistical analysis indicated that nine VOCs were responsible for the flavor differences. The most abundant VOCs in OT were aldehydes, providing caramel and nutty flavors, whereas the most abundant compounds in IT were esters, contributing fruity flavors to LBBP. Notably, three years of ripening significantly intensified the characteristic flavors of both OT and IT. These findings may elucidate the ripening time and fermentation environment effect on LBBP characteristic flavor profiles.
Collapse
Affiliation(s)
- Chunyuan Ping
- College of Culinary Science, Sichuan Tourism University, 610100 Chengdu, China
- School of Food Science and Technology, Henan Institute of Science and Technology, Henan, 453003, China
| | - Xiaoqing Deng
- College of Culinary Science, Sichuan Tourism University, 610100 Chengdu, China
| | - Ziyuan Guo
- College of Culinary Science, Sichuan Tourism University, 610100 Chengdu, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wen Luo
- College of Culinary Science, Sichuan Tourism University, 610100 Chengdu, China
| | - Xiang Li
- College of Culinary Science, Sichuan Tourism University, 610100 Chengdu, China
| | - Songlin Xin
- College of Culinary Science, Sichuan Tourism University, 610100 Chengdu, China
| |
Collapse
|
6
|
Ji L, Zhou Y, Nie Q, Luo Y, Yang R, Kang J, Zhao Y, Zeng M, Jia Y, Dong S, Gan L, Zhang J. The Potential Correlation between Bacterial Diversity and the Characteristic Volatile Flavor Compounds of Sichuan Sauce-Flavored Sausage. Foods 2024; 13:2350. [PMID: 39123542 PMCID: PMC11312067 DOI: 10.3390/foods13152350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
The distinctive taste of Sichuan sauce-flavored sausage comes from an intricate microbial metabolism. The correlation between microbial composition and distinct flavor components has not been researched. The study used headspace solid-phase microextraction action with gas chromatography mass spectrometry to find flavor components and high-throughput sequencing of 16S rRNA to look at the diversity and succession of microbial communities. The correlation network model forecasted the connection between essential bacteria and the development of flavors. The study revealed that the primary flavor compounds in Sichuan sauce-flavored sausages were alcohols, aldehydes, and esters. The closely related microbes were Leuconostoc, Pseudomonas, Psychrobacter, Flavobacterium, and Algoriella. The microbes aided in the production of various flavor compounds, such as 1-octen-3-ol, benzeneacetaldehyde, hexanal, (R,R)-2,3-butanediol, and ethyl caprylate. This work has enhanced our comprehension of the diverse functions that bacteria serve in flavor development during the fermentation of Sichuan sauce-flavored sausage.
Collapse
Affiliation(s)
- Lili Ji
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (L.J.); (Y.Z.); (Q.N.); (Y.L.); (R.Y.); (Y.Z.)
| | - Yanan Zhou
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (L.J.); (Y.Z.); (Q.N.); (Y.L.); (R.Y.); (Y.Z.)
| | - Qing Nie
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (L.J.); (Y.Z.); (Q.N.); (Y.L.); (R.Y.); (Y.Z.)
| | - Yi Luo
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (L.J.); (Y.Z.); (Q.N.); (Y.L.); (R.Y.); (Y.Z.)
| | - Rui Yang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (L.J.); (Y.Z.); (Q.N.); (Y.L.); (R.Y.); (Y.Z.)
| | - Jun Kang
- Key Laboratory of Natural Products and Functional Food Development Research, Sichuan Vocational College of Chemical Industry, Chengdu 646000, China;
| | - Yinfeng Zhao
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (L.J.); (Y.Z.); (Q.N.); (Y.L.); (R.Y.); (Y.Z.)
| | - Mengzhao Zeng
- Sichuan Stega Biotechnology Co., Ltd., Chengdu 610199, China;
| | - Yinhua Jia
- Sichuan Fansaoguang Food Group Co., Ltd., Chengdu 611732, China; (Y.J.); (S.D.)
| | - Shirong Dong
- Sichuan Fansaoguang Food Group Co., Ltd., Chengdu 611732, China; (Y.J.); (S.D.)
| | - Ling Gan
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China;
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (L.J.); (Y.Z.); (Q.N.); (Y.L.); (R.Y.); (Y.Z.)
| |
Collapse
|
7
|
Liu J, Xu Y, Yan J, Bai L, Hua J, Luo S. Polymethoxylated flavones from the leaves of Vitex negundo have fungal-promoting and antibacterial activities during the production of broad bean koji. Front Microbiol 2024; 15:1401436. [PMID: 38751721 PMCID: PMC11094617 DOI: 10.3389/fmicb.2024.1401436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Broad bean paste is a popular condiment in Asian countries. Leaves of Vitex negundo Linn. were used extensively in China during the koji-making of broad bean paste. Spreading V. negundo leaves on raw broad beans during fermentation was able to facilitate the rapid growth of fungi to form mature koji. We isolated two strains of fungi from mature koji, and four strains of bacteria from the rotten broad beans resulting from a failed attempt. According to microbial activity assays, two polymethoxylated flavones, 5-hydroxy-3,6,7,8,3',4'-hexamethoxy flavone (HJ-1) and 5,4'-dihydroxy-3,6,7,8,3'-pentamethoxy flavone (HJ-2) were isolated from V. negundo leaves, and the fungal growth promotion and inhibition of bacterial growth of these two compounds were found to improve the production of broad bean koji. This study reveals the compounds present in V. negundo leaves with bioactivity against important microbes in koji manufacture, and provides a theoretical basis for the application of V. negundo in broad bean paste production.
Collapse
Affiliation(s)
| | | | | | | | - Juan Hua
- Research Center of Protection and Utilization of Plant Resources, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Shihong Luo
- Research Center of Protection and Utilization of Plant Resources, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
8
|
Wu Q, Xu Z, Feng S, Shi X, Qin L, Zeng H. Correlation Analysis between Microbial Communities and Flavor Compounds during the Post-Ripening Fermentation of Traditional Chili Bean Paste. Foods 2024; 13:1209. [PMID: 38672882 PMCID: PMC11048965 DOI: 10.3390/foods13081209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Chili bean paste is a traditional flavor sauce, and its flavor compounds are closely related to its microflora. This study focused on investigating the content of bioactive compounds, flavor compounds, and microbial communities during the post-ripening fermentation of chili bean paste, aiming to provide a reference for improving the flavor of chili bean paste by regulating microorganisms. Compared to no post-ripening fermentation, the content of organic acids increased significantly (p < 0.05), especially that of citric acid (1.51 times). Glutamic acid (Glu) was the most abundant of the 17 free amino acids at 4.0 mg/g. The aroma profiles of the samples were significantly influenced by fifteen of the analyzed volatile compounds, especially methyl salicylate, methyl caproate, and 2-octanol (ROAV > 1). Latilactobacillus (27.45%) and Pseudomonas (9.01%) were the dominant bacterial genera, and Starmerella (32.95%) and Pichia (17.01%) were the dominant fungal genera. Weissella, Lacticaseibacillus, Pichia, and Kazachstania had positive effects on volatile flavoring compounds, which enriched the texture and flavor of the chili bean paste. Therefore, the microbial-community activity during the post-ripening fermentation is the key to enhance the flavor quality of the product.
Collapse
Affiliation(s)
- Quanye Wu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (Q.W.); (Z.X.); (L.Q.)
| | - Zhaona Xu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (Q.W.); (Z.X.); (L.Q.)
- Sichuan Gulin Langjiu Distillery (Luzhou) Co., Ltd., Luzhou 646601, China
| | - Shirong Feng
- Zunyi Zhongyuanyuan Food Co., Zunyi 563125, China;
| | - Xunzhu Shi
- Majiang Mingyang Food Co., Majiang 557600, China;
| | - Likang Qin
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (Q.W.); (Z.X.); (L.Q.)
| | - Haiying Zeng
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (Q.W.); (Z.X.); (L.Q.)
| |
Collapse
|
9
|
Wen L, Lei J, Yang L, Kan Q, Wang P, Li J, Chen C, He L, Fu J, Ho CT, Huang Q, Cao Y. Metagenomics and untargeted metabolomics analyses to unravel the formation mechanism of characteristic metabolites in Cantonese soy sauce during different fermentation stages. Food Res Int 2024; 181:114116. [PMID: 38448100 DOI: 10.1016/j.foodres.2024.114116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
Cantonese soy sauce (CSS) is an important Chinese condiment due to its distinctive flavor. Microorganisms play a significant role in the flavor formation of CSS during fermentation. However, the correlation between microbes and flavor compounds as well as the potential fermentation mechanism remained poorly uncovered. Here we revealed the dynamic changes of microbial structure and characteristics metabolites as well as their correlation of CSS during the fermentation process. Metagenomics sequencing analysis showed that Tetragenococcus halophilus, Weissella confusa, Weissella paramesenteroides, Aspergillus oryzae, Lactiplantibacillus plantarum, Weissella cibaria were top six dominant species from day 0 to day 120. Sixty compounds were either positively or tentatively identified through untargeted metabolomics profile and they were 27 peptides, amino acids and derivatives, 8 carbohydrates and conjugates, 14 organic acids and derivatives, 5 amide compounds, 3 flavonoids and 3 nucleosides. Spearman correlation coefficient indicated that Tetragenococcus halophilus, Zygosaccharomyces rouxii, Pediococcus pentosaceus and Aspergillus oryzae were significantly related with the formation of taste amino acids and derivatives, peptides and functional substances. Additionally, the metabolisms of flavor amino acids including 13 main free amino acids were also profiled. These results provided valuable information for the production practice in the soy sauce industry.
Collapse
Affiliation(s)
- Linfeng Wen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jianping Lei
- WENS Foodstuff Group Co., Ltd, Yunfu 527400, China
| | - Lixin Yang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qixin Kan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Peipei Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jun Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Meiweixian Flavoring Foods Co., Ltd, Zhongshan 528437, China
| | - Cong Chen
- Guangdong Eco-engineering Polytechnic, Guangzhou 510520, China
| | - Liping He
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Instrumental Analysis & Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Jiangyan Fu
- Guangdong Meiweixian Flavoring Foods Co., Ltd, Zhongshan 528437, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Qingrong Huang
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
10
|
Li N, Lin S, Sun W, Xu M, Liu P, Che Z. Application effects of NaCl substitute on the fermentation profile of Pixian douban (broad bean paste). J Food Sci 2024; 89:2137-2157. [PMID: 38465700 DOI: 10.1111/1750-3841.17018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 03/12/2024]
Abstract
The effects of a reduced-salt substitute (composed of NaCl, sodium gluconate, KCl, L-histidine, and L-lysine) applied in the fermentation of traditional Pixian douban (PXDB) were explored in this study according to sensory quality, physicochemical characteristics, color, colony count, and the contents of free amino acids (FAAs), organic acids, and volatile flavor compounds. The results showed that the PXDB with a 15% salt substitution had the most attractive reddish-brown color, a mellow fragrance, and the lowest total colony count of the three pastes. The fermentation quality of the 15% salt substitute PXDB was superior to that of the control groups, its sensory quality was more readily accepted, and the contents of its amino acid nitrogen, FAAs and organic acids had increased by 0.1050, 0.3290, and 3.9068 mg/g, respectively. Moreover, the concentrations of the main aroma compounds in the PXDB containing the salt substitute were higher than those of the control. These included phenylethanol, 3-methylthiopropanol, isoamyl alcohol, furfural, benzaldehyde, phenylacetaldehyde, nonanal, isoamyl aldehyde, 4-ethylphenol, and, particularly, 2,6-dimethylpyrazine, which had increased as much as 100 times. Correlation analysis showed that Glu, Phe, Tyr, Gly, Leu, Val, Asp, Ile, citric acids, and succinic acids were all positively correlated with the main aroma and contributed to the generation of PXDB's characteristic flavor, and main aroma substances in turn positively influence PXDB flavor sensory attributes. Overall, these results showed the application of the 15% salt substitute during PXDB fermentation improved the quality of the paste and, thus, would benefit the development of reduced-salt PXDB.
Collapse
Affiliation(s)
- Na Li
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan, People's Republic of China
| | - Shengchao Lin
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan, People's Republic of China
| | - Wenjia Sun
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan, People's Republic of China
| | - Min Xu
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan, People's Republic of China
| | | | - Zhenming Che
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
11
|
Xiang Y, Zhou B, Jiang C, Tang Z, Liu P, Ding W, Lin H, Tang J. Revealing the formation mechanisms of key flavors in fermented broad bean paste. Food Res Int 2024; 177:113880. [PMID: 38225117 DOI: 10.1016/j.foodres.2023.113880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024]
Abstract
Pixian Douban (PXDB) is a popular Chinese condiment for its distinctive flavor. Broad bean fermentation (Meju) is the most important process in the formation of flavor substances. Key flavors were analyzed qualitatively and quantitatively, and metagenomic technology was applied to study the microbial diversity during broad bean fermentation. In addition, the main metabolic pathways of key flavors were explored. Results indicated that Staphylococcus_gallinarum was the main microorganism in the microbial community, accounting for 39.13%, followed by Lactobacillus_agilis, accounting for 13.76%. Aspergillus_flavus was the fungus with the highest species abundance, accounting for 3.02%. The KEGG Pathway enrichment analysis showed that carbohydrate metabolism and amino acid metabolism were the main metabolic pathways. Glycoside hydrolase and glycosyltransferase genes were the most abundant, accounting for more than 70% of the total number of active enzyme genes. A total of 113 enzymes related to key flavors and 39 microorganisms corresponding to enzymes were annotated. And Staphylococcus_gallinarum, Lactobacillus_agilis, Weissella_confusa, Pediococcus_acidilactici, Staphylococcus_kloosii, Aspergillus_oryzae, and Aspergillus_flavus played a key role in the metabolic pathway. This study reveals the formation mechanism of key flavors in fermented broad bean, it is important for guiding the industrial production of PXDB and improving product quality.
Collapse
Affiliation(s)
- Yue Xiang
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China; Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, China.
| | - Binbin Zhou
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China
| | - Chunyan Jiang
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Zhirui Tang
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Ping Liu
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Wenwu Ding
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Hongbin Lin
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China.
| | - Jie Tang
- Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, China.
| |
Collapse
|
12
|
Guo Q, Peng J, He Y. A Systematic Comparative Study on the Physicochemical Properties, Volatile Compounds, and Biological Activity of Typical Fermented Soy Foods. Foods 2024; 13:415. [PMID: 38338550 PMCID: PMC10855112 DOI: 10.3390/foods13030415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Fermented soy foods can effectively improve the unpleasant odor of soybean and reduce its anti-nutritional factors while forming aromatic and bioactive compounds. However, a differential analysis of characteristic flavor and function among different fermented soy foods has yet to be conducted. In this study, a systematic comparison of different fermented soy foods was performed using E-nose, HS-SMPE-GC×GC-MS, bioactivity validation, and correlation analysis. The results showed that soy sauce and natto flavor profiles significantly differed from other products. Esters and alcohols were the main volatile substances in furu, broad bean paste, douchi, doujiang, and soy sauce, while pyrazine substances were mainly present in natto. Phenylacetaldehyde contributed to the sweet aroma of furu, while 1-octene-3-ol played a crucial role in the flavor formation of broad bean paste. 2,3-Butanediol and ethyl phenylacetate contributed fruity and honey-like aromas to douchi, doujiang, and soy sauce, respectively, while benzaldehyde played a vital role in the flavor synthesis of douchi. All six fermented soy foods demonstrated favorable antioxidative and antibacterial activities, although their efficacy varied significantly. This study lays the foundation for elucidating the mechanisms of flavor and functionality formation in fermented soy foods, which will help in the targeted development and optimization of these products.
Collapse
Affiliation(s)
- Qingyan Guo
- Food Microbiology Key Laboratory of Sichuan Province, School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (J.P.); (Y.H.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Jiabao Peng
- Food Microbiology Key Laboratory of Sichuan Province, School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (J.P.); (Y.H.)
| | - Yujie He
- Food Microbiology Key Laboratory of Sichuan Province, School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (J.P.); (Y.H.)
| |
Collapse
|
13
|
Zhao J, Li L, Zhao J, Dong S, Liu G, Wang Y, Xu Z, Lin H, Lu J, Liu P, Xu M. Partial substitution of wheat flour with soybean and gluten powder: impact on flavor characteristics of Pixian Douban-Meju and its quality. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:303-314. [PMID: 37582691 DOI: 10.1002/jsfa.12919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/16/2023] [Accepted: 08/16/2023] [Indexed: 08/17/2023]
Abstract
BACKGROUND In this study, different proportions of soybean flour and gluten flour were used as partial replacements for wheat flour for the fermentation of Pixian Douban-Meju (PXDB). The aim was to study the effects of soybean flour/gluten flour on the quality improvement of PXDB. RESULTS In comparison with the control group (CT) (0% substitution of wheat flour), substitution of wheat flower with 12.5% soybean flour (the H2 group), 7.5% gluten flour (G2), and 10% gluten flour (G3) improved the amino acid nitrogen content by 3.8%, 5.6%, and 9.4% respectively. The mixtures of wheat flour and gluten flour (G2 or G3) increased the organic acid and free amino acid content. The results of two-dimensional gas chromatography mass spectrometry (GC × GC-MS) showed that the amount of key aroma substances increased about sixfold in comparison with the CT group (194.61 g.kg-1 ), achieving 1283.67, 1113.883, and 1160.19 g.kg-1 in the H2, G2, and G3 groups, respectively. There were also more aldehydes and pyrazines in all the substitution groups. Quantitative descriptive analysis indicated that the G3 sample presented the best organoleptic quality with a reddish-brown color and a more mellow aroma than the control sample. CONCLUSION In conclusion, the fermentation of G3 resulted in higher quality PXDB-meju, showing that partial substitution of wheat flour with gluten improved the quality of PXDB. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jie Zhao
- College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Ling Li
- College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Jianhua Zhao
- College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Shirong Dong
- Sichuan Fansaoguang Food Grp Co., Ltd, Chengdu, China
| | - Gefei Liu
- College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Yin Wang
- College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Zedong Xu
- College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Hongbin Lin
- College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Jing Lu
- Sichuan Fansaoguang Food Grp Co., Ltd, Chengdu, China
| | - Ping Liu
- College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Min Xu
- College of Food and Bioengineering, Xihua University, Chengdu, China
| |
Collapse
|
14
|
Yuan Y, Yang Y, Xiao L, Qu L, Zhang X, Wei Y. Advancing Insights into Probiotics during Vegetable Fermentation. Foods 2023; 12:3789. [PMID: 37893682 PMCID: PMC10606808 DOI: 10.3390/foods12203789] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Fermented vegetables have a long history and are enjoyed worldwide for their unique flavors and health benefits. The process of fermentation improves the nutritional value, taste, and shelf life of foods. Microorganisms play a crucial role in this process through the production of metabolites. The flavors of fermented vegetables are closely related to the evaluation and succession of microbiota. Lactic acid bacteria (LABs) are typically the dominant bacteria in fermented vegetables, and they help inhibit the growth of spoilage bacteria and maintain a healthy gut microbiota in humans. However, homemade and small-scale artisanal products rely on spontaneous fermentation using bacteria naturally present on fresh vegetables or from aged brine, which may introduce external microorganisms and lead to spoilage and substandard products. Hence, understanding the role of LABs and other probiotics in maintaining the quality and safety of fermented vegetables is essential. Additionally, selecting probiotic fermentation microbiota and isolating beneficial probiotics from fermented vegetables can facilitate the use of safe and healthy starter cultures for large-scale industrial production. This review provides insights into the traditional fermentation process of making fermented vegetables, explains the mechanisms involved, and discusses the use of modern microbiome technologies to regulate fermentation microorganisms and create probiotic fermentation microbiota for the production of highly effective, wholesome, safe, and healthy fermented vegetable foods.
Collapse
Affiliation(s)
- Yingzi Yuan
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China (L.X.)
| | - Yutong Yang
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China (L.X.)
| | - Lele Xiao
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China (L.X.)
| | - Lingbo Qu
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China (L.X.)
- Food Laboratory of Zhongyuan, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoling Zhang
- Food Laboratory of Zhongyuan, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yongjun Wei
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China (L.X.)
| |
Collapse
|
15
|
Li S, Guo L, Gu J, Mu G, Tuo Y. Screening lactic acid bacteria and yeast strains for soybean paste fermentation in northeast of China. Food Sci Nutr 2023; 11:4502-4515. [PMID: 37576040 PMCID: PMC10420762 DOI: 10.1002/fsn3.3372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 08/15/2023] Open
Abstract
Soybean paste was a traditional fermented product in northeast China, mainly fermented by molds, yeast, Bacillus, and lactic acid bacteria. In this study, the safety and fermentation ability of lactic acid bacteria and yeast strains isolated from traditional soybean paste in northeast China were evaluated, and the dynamic changes of biogenic amines, aflatoxin, total acids, amino acid nitrogen, and volatile compounds were investigated during the fermentation of the traditional soybean paste. Among the tested strains, Lactiplantibacillus plantarum DPUL-J8 could decompose putrescine by 100%, and no biogenic amine was produced by Pichia kudriavzevii DPUY-J8. Lactiplantibacillus plantarum DPUL-J8 and P. kudriavzevii DPUY-J8 with strong biogenic amine degrading capacities were inoculated into the soybean paste. After 30 days of fermentation, the content of biogenic amines and aflatoxin in the fermented soybean paste declined by more than 60% and 50%, respectively. At the same time, compared with the control group without inoculation, the contents of total acid (1.29 ± 0.05 g/100 g), amino acid nitrogen (0.82 ± 0.01 g/100 g), and volatile compounds in soybean paste fermented by L. plantarum DPUL-J8 and P. kudriavzevii DPUY-J8 were significantly increased, which had a good flavor. These results indicated that the use of L. plantarum DPUL-J8 and P. kudriavzevii DPUY-J8 as starter cultures for soybean paste might be a good strategy to improve the safety and flavor of traditional Chinese soybean paste.
Collapse
Affiliation(s)
- Siyi Li
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| | - Linjie Guo
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| | - Jinhong Gu
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| | - Guangqing Mu
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
- Dalian Probiotics Function Research Key LaboratoryDalian Polytechnic UniversityDalianChina
| | - Yanfeng Tuo
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| |
Collapse
|
16
|
Wen L, Yang L, Chen C, Li J, Fu J, Liu G, Kan Q, Ho CT, Huang Q, Lan Y, Cao Y. Applications of multi-omics techniques to unravel the fermentation process and the flavor formation mechanism in fermented foods. Crit Rev Food Sci Nutr 2023; 64:8367-8383. [PMID: 37068005 DOI: 10.1080/10408398.2023.2199425] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Fermented foods are important components of the human diet. There is increasing awareness of abundant nutritional and functional properties present in fermented foods that arise from the transformation of substrates by microbial communities. Thus, it is significant to unravel the microbial communities and mechanisms of characteristic flavor formation occurring during fermentation. There has been rapid development of high-throughput and other omics technologies, such as metaproteomics and metabolomics, and as a result, there is growing recognition of the importance of integrating these approaches. The successful applications of multi-omics approaches and bioinformatics analyses have provided a solid foundation for exploring the fermentation process. Compared with single-omics, multi-omics analyses more accurately delineate microbial and molecular features, thus they are more apt to reveal the mechanisms of fermentation. This review introduces fermented foods and an overview of single-omics technologies - including metagenomics, metatranscriptomics, metaproteomics, and metabolomics. We also discuss integrated multi-omics and bioinformatic analyses and their role in recent research progress related to fermented foods, as well as summarize the main potential pathways involved in certain fermented foods. In the future, multilayered analyses of multi-omics data should be conducted to enable better understanding of flavor formation mechanisms in fermented foods.
Collapse
Affiliation(s)
- Linfeng Wen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Lixin Yang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Cong Chen
- Guangdong Eco-engineering Polytechnic, Guangzhou, China
| | - Jun Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Meiweixian Flavoring Foods Co., Ltd, Zhongshan, China
| | - Jiangyan Fu
- Guangdong Meiweixian Flavoring Foods Co., Ltd, Zhongshan, China
| | - Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qixin Kan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Qingrong Huang
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
17
|
Succession and Diversity of Microbial Flora during the Fermentation of Douchi and Their Effects on the Formation of Characteristic Aroma. Foods 2023; 12:foods12020329. [PMID: 36673421 PMCID: PMC9857697 DOI: 10.3390/foods12020329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
This study aims to understand the development and succession of the microbial community during the production of traditional Aspergillus-type Douchi as well as their effects on the formation and variation of characteristic aroma compounds. High-throughput sequencing technology, solid-phase microextraction, gas chromatography-mass spectrometry, and Spearman correlation analysis were conducted to study the changes in the microbial community and characteristic flavor during the fermentation process. Aspergillus spp. was dominant in the early stage of fermentation, whereas Staphylococcus spp., Bacillus spp., and Millerozyma spp. became dominant later. At the early stage, the main flavor compounds were characteristic soy-derived alcohols and aldehydes, mainly 1-hexanol, 1-octen-3-ol, and nonanal. In the later stage, phenol, 2-methoxy-, and 3-octanone were formed. Correlation analysis showed that six bacterial genera and nine fungal genera were significantly correlated with the main volatile components, with higher correlation coefficients, occurring on fungi rather than bacteria. Alcohols and aldehydes were highly correlated with the relative abundance of bacteria, while that of yeast species such as Millerozyma spp., Kodamaea spp., and Candida spp. was positively correlated with decanal, 3-octanol, 2-methoxy-phenol, 4-ethyl-phenol, 3-octanone, and phenol. The novelty of this work lies in the molds that were dominant in the pre-fermentation stage, whereas the yeasts increased rapidly in the post-fermentation stage. This change was also an important reason for the formation of the special flavor of Douchi. Correlation analysis of fungi and flavor substances was more relevant than that of bacteria. As a foundation of our future focus, this work will potentially lead to improved quality of Douchi and shortening the production cycle by enriching the abundance of key microbes.
Collapse
|
18
|
Contribution of microbial communities to flavors of Pixian Douban fermented in the closed system of multi-scale temperature and flow fields. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
19
|
Characterization and correlation of dominant bacteria and volatile compounds in post-fermentation process of Ba-bao Douchi. Food Res Int 2022; 160:111688. [DOI: 10.1016/j.foodres.2022.111688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022]
|
20
|
Jiang L, Liu L, Chen H, Zhang W, He L, Zeng X. Effects of autochthonous starter cultures on bacterial communities and metabolites during fermentation of Yu jiangsuan, a Chinese traditional fermented condiment. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Yin H, Chen M, Li P, Wang R, Xie S, Jiang L, Liu Y. Study on the potential contribution of bacterial community on the volatile flavour of Yongfeng chilli paste. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Hanliang Yin
- College of Food Science and Technology Hunan Agricultural University Changsha 410128 China
| | - Mengjuan Chen
- College of Food Science and Technology Hunan Agricultural University Changsha 410128 China
| | - Pao Li
- College of Food Science and Technology Hunan Agricultural University Changsha 410128 China
- Human Provincial Key Laboratory of Food Science and Biotechnology Changsha 410128 China
| | - Rongrong Wang
- College of Food Science and Technology Hunan Agricultural University Changsha 410128 China
- Human Provincial Key Laboratory of Food Science and Biotechnology Changsha 410128 China
| | - Songlai Xie
- Shuangfeng Fengxin Agricultural Development Co., Ltd. Loudi 417000 China
| | - Liwen Jiang
- College of Food Science and Technology Hunan Agricultural University Changsha 410128 China
- Human Provincial Key Laboratory of Food Science and Biotechnology Changsha 410128 China
| | - Yang Liu
- College of Food Science and Technology Hunan Agricultural University Changsha 410128 China
- Human Provincial Key Laboratory of Food Science and Biotechnology Changsha 410128 China
| |
Collapse
|
22
|
Liu Y, Zhang Y, Shi Y, Zhang M, Liu Y, Che Z, Lin H, Lv G, Zhu Q, Dong S, Ding W. Flavor quality evaluation of Pixian Douban fermented in the closed system of multi-scale temperature and flow fields. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Dynamics of microbial communities, flavor, and physicochemical properties of pickled chayote during an industrial-scale natural fermentation: Correlation between microorganisms and metabolites. Food Chem 2022; 377:132004. [PMID: 35030338 DOI: 10.1016/j.foodchem.2021.132004] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/13/2021] [Accepted: 11/28/2021] [Indexed: 01/20/2023]
Abstract
Pickled chayote is a Chinese fermented vegetable with unique flavors and is favored by local consumers. However, little is known about its quality changes and microbial community succession during fermentation and the relationship between microbes and quality. In the work, the physicochemical quality attributes (pH, acidity, nitrite, texture, and color) and flavor properties (sugars, organic acids, free amino acid [FAA], and volatiles) were investigated. The results revealed that organic acids, FAAs, and key volatiles (esters, terpenes, alcohols, and phenols) significantly increased during fermentation. Lactobacillus was the dominant bacterial genus with Lactobacillus alimentarius being the prevalent species; Kazachstania and Pichia were dominant fungal genera with Kazachstania humilis and Pichia membranifaciens being the prevalent species. The microbial metabolic network found that bacteria (L. alimentarius, L. futsaii, and L. paralimentarius) and fungi (K. humilis and P. membranifaciens) played significant roles in the physicochemical changes and flavor production of pickled chayote.
Collapse
|
24
|
Fermentation process monitoring of broad bean paste quality by NIR combined with chemometrics. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01392-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Systematic analysis of the aroma profiles produced by Zygosaccharomyces rouxii Y-8 in different environmental conditions and its contribution to doubanjiang (broad bean paste) fermentation with different salinity. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Ye Z, Shang Z, Zhang S, Li M, Zhang X, Ren H, Hu X, Yi J. Dynamic analysis of flavor properties and microbial communities in Chinese pickled chili pepper (Capsicum frutescens L.): A typical industrial-scale natural fermentation process. Food Res Int 2022; 153:110952. [DOI: 10.1016/j.foodres.2022.110952] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/13/2021] [Accepted: 01/10/2022] [Indexed: 01/03/2023]
|
27
|
Exploring major variable factors influencing flavor and microbial characteristics of Pixian Doubanjiang. Food Res Int 2022; 152:110920. [DOI: 10.1016/j.foodres.2021.110920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/21/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022]
|
28
|
Ding W, Ye X, Zhao X, Liu Y, Zhang M, Luo Y, Xiong Y, Liu Y, Che Z, Lin H, Huang J, Tang X. Fermentation characteristics of Pixian broad bean paste in closed system of gradient steady-state temperature field. Food Chem 2021; 374:131560. [PMID: 34848085 DOI: 10.1016/j.foodchem.2021.131560] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 11/04/2022]
Abstract
A closed system of gradient steady-state temperature field (GSTF) was constructed to ferment Pixian broad bean paste (PBP). The contents of physicochemical factors and organic acids in the fermentation under GSTF (FG) were closer to those in the traditional fermentation (TF). The taste intensities of 8 free amino acids in the FG were higher than those in the constant temperature fermentation (CTF), but 14 in the TF showed the highest among the processes of FG, CTF and TF. The FG product had the most volatiles with 87, and its flavor properties were more stable. The FG produced great effects on the microbe evolutions especially improved the fungal diversity. Bacillus were identified as the core microbes in the FG while the roles of Staphylococcus, Lactobacillus and Pantoea were strengthened. The results indicated that the fermentation characteristics in the FG had been further improved compared with the CTF.
Collapse
Affiliation(s)
- Wenwu Ding
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| | - Xiaoqing Ye
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Xiaoyan Zhao
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Sichuan Pixian Douban Company Limited, Chengdu 611730, China
| | - Yan Liu
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Manna Zhang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yifei Luo
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yuanru Xiong
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yi Liu
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Zhenming Che
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Hongbin Lin
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Jiaquan Huang
- Sichuan Pixian Douban Company Limited, Chengdu 611730, China
| | - Xiaoyu Tang
- Institute of Modern Agricultural Equipment, Xihua University, Chengdu 610039, China.
| |
Collapse
|
29
|
Wei G, Regenstein JM, Zhou P. The aroma profile and microbiota structure in oil furu, a Chinese fermented soybean curd. Food Res Int 2021; 147:110473. [PMID: 34399470 DOI: 10.1016/j.foodres.2021.110473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/24/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
The aroma compounds and the microbial community of oil furu, a specific fermented soybean curd, during fermentation were investigated using HS-SPME-GC/MS and high-throughput sequencing, respectively, and their correlations and the predicted functional roles of the microbiota in oil furu were analyzed. Twenty two volatile flavor compounds (relative odor activity value ≥1) were identified that contributed to the aroma profile, which were mainly associated with the aroma attributes. Lactobacillales, Trichosporon and Mucor racemosus were the predominant genera during pre-fermentation, while Candida and Tetragenococcus were predominant during ripening. Correlation analysis showed significant correlation between the microbiota and aroma profiles, and Candida, Empedobacter, Lactobacillus, Pseudomonas, Stenotrophomonas, Trichosporon and Mucor racemosus were significantly and strongly correlated with the characteristic volatile aroma compounds of oil furu (P < 0.05, r > 0.6). Functional analysis showed that metabolic pathways showed higher activity in oil furu, which mainly included amino acid, lipid and carbohydrate metabolism. The results allowed identification of the important aroma compounds and understanding the contribution of the microbiota, and would be useful for designing starter cultures to produce oil furu with desirable aroma properties and understanding its aroma formation pathways.
Collapse
Affiliation(s)
- Guanmian Wei
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei Province 071001, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA
| | - Peng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| |
Collapse
|
30
|
Ding W, Zhao X, Xie S, Liu Y, Zhang M, Che Z, Liu Y, Liu P, Lin H. Dynamics and correlation of microbial community and flavor in Pixian Douban fermented with closed process of constant temperature. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4142-4153. [PMID: 33368355 DOI: 10.1002/jsfa.11050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/30/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND As a Chinese traditional flavor condiment, Pixian Douban (PXDB) is produced using a traditional open fermentation process. In this study, an experimental fermentation of PXDB was conducted at 40 °C for 90 days in a closed system, which has not been applied to PXDB production. The flavor, microbial community and correlations of the samples in the closed system were compared with those in the traditional fermentation. RESULTS The content of organic acids and free amino acids in the closed fermentation of constant temperature (CFCT) achieved the standards of product quality, although they were lower than those in the traditional fermentation. Of the 140 detected aroma components, 98 were shared in the two fermentation processes. Enterobacter, Bacteroides and Megamonas were the core microbial genera related to 26 flavor components in the traditional fermentation, while Pantoea was the core microbial genus related to 18 flavor components in CFCT. The CFCT has its own unique advantages over traditional fermentation in forming aromas. It produced a greater impact on the succession of fungi than those of bacteria after changing traditional fermentation to CFCT. The influence of microorganisms on the formation of flavor components was relatively more balanced in CFCT, while the changed fermentation process impacted greatly on the functions of Zygosaccharomomyces and Pichia but little on those of Sphingomonas, Megamonas and Parabacteroides. CONCLUSION The study indicated that it was feasible to ferment PXDB in the closed system, and provides a basis to realize controllable PXDB production. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenwu Ding
- College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Xiaoyan Zhao
- College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Si Xie
- College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Yan Liu
- College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Manna Zhang
- College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Zhenming Che
- College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Yi Liu
- College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Ping Liu
- College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Hongbin Lin
- College of Food and Bioengineering, Xihua University, Chengdu, China
| |
Collapse
|
31
|
Lin H, Bi X, Zhou B, Fang J, Liu P, Ding W, Che Z, Wang Q, He Q. Microbial communities succession and flavor substances changes during Pixian broad-bean paste fermentation. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
32
|
Ding W, Liu Y, Zhao X, Peng C, Ye X, Che Z, Liu Y, Liu P, Lin H, Huang J, Xu M. Characterization of volatile compounds of Pixian Douban fermented in closed system of gradient steady-state temperature field. Food Sci Nutr 2021; 9:2862-2876. [PMID: 34136154 PMCID: PMC8194942 DOI: 10.1002/fsn3.2242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 11/22/2022] Open
Abstract
As an essential flavor condiment in Sichuan cuisine, Pixian Douban (PXDB) is usually produced by open fermentation process in strip pools or ceramic vats. In this study, an experiment of PXDB fermentation was conducted for 90 days in a closed system of gradient steady-state temperature field (GSTF). To investigate the characterization of volatile compounds of PXDB in the closed system, the volatiles in three kinds of samples including samples of GSTF (SGT), samples of constant temperature (SCT), and samples of traditional fermentation (STF) were analyzed. The results showed that 75, 67, and 68 volatile compounds were detected in SGT, SCT, and STF, respectively. Compared with the traditional fermentation, the process in the closed system of GSTF was conducive to produce more kinds of esters and alcohols. A total of 22 major aroma active compounds were identified in three samples by combination analyses of gas chromatography-olfactometry (GC-O) and odor activity value (OAV). The appearance, smell, texture, and taste of the three different samples had shown different changes, but the sensory characteristics of the SGT were more similar to those of the STF by quantitative descriptive analysis (QDA) and principal component analysis (PCA). This study indicated that the closed system of GSTF could be applied in PXDB fermentation to obtain higher quality products, which brought a bright prospect of replacing the traditional fermentation process to realize the controllable industrialized production of PXDB.
Collapse
Affiliation(s)
- Wenwu Ding
- College of Food and BioengineeringXihua UniversityChengduChina
| | - Yan Liu
- College of Food and BioengineeringXihua UniversityChengduChina
| | - Xiaoyan Zhao
- College of Food and BioengineeringXihua UniversityChengduChina
| | - Changbo Peng
- College of Food and BioengineeringXihua UniversityChengduChina
| | - Xiaoqing Ye
- College of Food and BioengineeringXihua UniversityChengduChina
| | - Zhenming Che
- College of Food and BioengineeringXihua UniversityChengduChina
| | - Yi Liu
- College of Food and BioengineeringXihua UniversityChengduChina
| | - Ping Liu
- College of Food and BioengineeringXihua UniversityChengduChina
| | - Hongbin Lin
- College of Food and BioengineeringXihua UniversityChengduChina
| | | | - Min Xu
- College of Food and BioengineeringXihua UniversityChengduChina
| |
Collapse
|
33
|
Characterization of volatile compounds between industrial closed fermentation and traditional open fermentation doubanjiang-meju. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03772-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Li D, Duan F, Tian Q, Zhong D, Wang X, Jia L. Physiochemical, microbiological and flavor characteristics of traditional Chinese fermented food Kaili Red Sour Soup. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Zhou S, Zeng H, Qin L, Zhou Y, Hasan KMF, Wu Y. Screening of enzyme-producing strains from traditional Guizhou condiment. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2020.1868334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Shaoqin Zhou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Science, School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, PR China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, College of Food Science, Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Haiying Zeng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Science, School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, PR China
| | - Likang Qin
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Science, School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, PR China
| | - Yan Zhou
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, College of Food Science, Guizhou Medical University, Guiyang, Guizhou, PR China
| | - K. M. Faridul Hasan
- Simonyi Károly Faculty of Engineering, University of Sopron, Sopron, Hungary
| | - Yingmei Wu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, College of Food Science, Guizhou Medical University, Guiyang, Guizhou, PR China
| |
Collapse
|