1
|
Tsai S, Tikekar RV. Exploring the Nexus Between Emulsifier Characteristics and Salmonella Typhimurium Viability in Oil-in-Water Emulsions. Food Sci Nutr 2024; 12:10275-10283. [PMID: 39723055 PMCID: PMC11666915 DOI: 10.1002/fsn3.4569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 12/28/2024] Open
Abstract
Molecular characteristics of emulsifiers such as their molecular weight (MW) and surface charge, not only affect the stability of the emulsion but also can have an impact on its capacity to either inhibit or promote microbial proliferation. These characteristics can affect the behavior of pathogens such as Salmonella Typhimurium in emulsion systems. The growth and thermal resistance of S. Typhimurium were monitored at different oil content levels (20%, 40%, and 60%) in emulsions stabilized by three whey protein-based emulsifiers: whey protein isolate (WPI), whey protein hydrolysate (WPH), and a modified WPI with an alteration of charge (WPI+). Our study revealed that emulsifier itself with different MW and surface charge had no effect on bacterial growth and inactivation without oil inclusion (p > 0.05). However, it was found that higher bacterial growth rate at 60% oil content emulsion stabilized with WPI+ (0.65 ± 0.03 log CFU/h) than WPI (0.19 ± 0.04 log CFU/h), which showed the charge of emulsifiers has different effects on microbial dynamics in oil-in-water emulsion. Interestingly, WPI+ in emulsions also seemed to convey protection against thermal inactivation of bacteria. These data describe a complex interrelationship between the physicochemical characteristics of the emulsifier and its interacting nature with bacterial cells. They throw even more light on the insight about the importance of a strategic approach toward emulsifier selection in food formulations. This is crucial for the food safety and stability of products.
Collapse
Affiliation(s)
- Shawn Tsai
- Department of Nutrition and Food ScienceUniversity of MarylandCollege ParkMarylandUSA
| | - Rohan V. Tikekar
- Department of Nutrition and Food ScienceUniversity of MarylandCollege ParkMarylandUSA
| |
Collapse
|
2
|
Sun S, Xie Y, Zhou X, Zhu MJ, Sablani S, Tang J. Survival and thermal resistance of Salmonella in chocolate products with different water activities. Food Res Int 2023; 172:113209. [PMID: 37689954 DOI: 10.1016/j.foodres.2023.113209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 09/11/2023]
Abstract
Contamination of Salmonella in chocolate products has caused worldwide outbreaks and recalls. There is a lack of information on the impact of water activity (aw) on the stability of Salmonella in chocolate products during storage and thermal treatments. In this research, the survival and thermal resistance of a Salmonella cocktail (S. Enteritidis PT30, S. Tennessee K4643, S. Typhimurium S544) was examined in different chocolate products (dark chocolate, white chocolate, milk chocolate) at two aw levels (0.25, 0.50) over 12 months at 22 °C. A reduction of 4.19 log10 CFU/gof Salmonella was obtained in dark chocolate after 12 months (aw = 0.50, at 22 °C); less reductions were observed in white and milk chocolates. In all three products, more reductions were observed ataw = 0.50 than at aw = 0.25 over the 12-months storage. When treated at 80 °C, the D-values (time required to cause 1 log reduction) of the Salmonella cocktail in the chocolate samples with initial aw of 0.25 were 35.7, 25.2 and 11.6 min in dark, white and milk chocolate, respectively, before the storage. The D80°C -values of Salmonella cocktail in the samples with initial aw of 0.50 were 6.45, 7.46, and 3.98 min in dark, white and milk chocolate, respectively. After 12 months of storage at 22 °C, the D80°C-value of Salmonella cocktail decreased to 9.43 min (p < 0.05) in milk chocolate but remained 22.7 min in white chocolate with an aw of 0.25 at 22 °C. The data suggests that Salmonella can survive in chocolate products for up to 12 months, and its thermal resistance remained relatively stable. Thus, Salmonella is resistant to desiccation in chocolates, particularly in milk and white chocolates, and its thermal resistance remains during one-year storage, which could pose a potential threat for future outbreaks.
Collapse
Affiliation(s)
- Sicheng Sun
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, USA
| | - Yucen Xie
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, USA
| | - Xu Zhou
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Shyam Sablani
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, USA
| | - Juming Tang
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
3
|
Sun S, Xie Y, Yang R, Zhu MJ, Sablani S, Tang J. The influence of temperature and water activity on thermal resistance of Salmonella in milk chocolate. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Yang R, Lombardo SP, Conway WF, Tang J. Inactivation of Salmonella Enteritidis PT30 on black peppercorns in thermal treatments with controlled relative humidities. Food Res Int 2022; 162:112101. [DOI: 10.1016/j.foodres.2022.112101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
|
5
|
Thermal death kinetics of Salmonella Enteritidis PT30 in peanut butter as influenced by water activity. Food Res Int 2022; 157:111288. [DOI: 10.1016/j.foodres.2022.111288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/22/2022]
|
6
|
Yang R, Cheng T, Hong Y, Wei L, Tang J. The effect of dry headspace on the thermal resistance of bacteria in peanut oil and peanut butter in thermal treatments. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Szpinak V, Ganz M, Yaron S. Factors affecting the thermal resistance of Salmonella Typhimurium in tahini. Food Res Int 2022; 155:111088. [DOI: 10.1016/j.foodres.2022.111088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/16/2022] [Accepted: 02/28/2022] [Indexed: 11/25/2022]
|
8
|
Xu J, Xie Y, Paul NC, Roopesh MS, Shah DH, Tang J. Water sorption characteristics of freeze-dried bacteria in low-moisture foods. Int J Food Microbiol 2021; 362:109494. [PMID: 34895752 DOI: 10.1016/j.ijfoodmicro.2021.109494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 10/08/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022]
Abstract
Water sorption isotherms of bacteria reflect the water activity with the change of moisture content of bacteria at a specific temperature. The temperature-dependency of water activity change can help to understand the thermal resistance of bacteria during a thermal process. Thermal resistance of bacteria in low-moisture foods may differ significantly depending on the physiological characteristics of microorganisms, including cell structure, existence of biofilms, and growth state. Previous studies demonstrated that the incremental change of aw in bacterial cells during thermal treatments resulted in changes in their thermotolerance. In this study, a pathogen associated with low-moisture foods outbreaks, Salmonella Enteritidis PT30 (in planktonic and biofilm forms), and its validated surrogate, Enterococcus faecium, were lyophilized and their water sorption isotherms (WSI) at 20, 40, and 60 °C were determined by using a vapor sorption analyzer and simulated by the Guggenheim, Anderson and De Boer model (GAB). The published thermal death times at 80 °C (D80 °C-values) of these bacteria in low-moisture environments were related with their WSI-derived aw changes. The results showed that planktonic E. faecium and biofilms of Salmonella, exhibiting higher thermal resistance compared to the planktonic cultures of Salmonella, had a smaller increase in aw when thermally treated from 20 to 60 °C in sealed test cells. The computational modeling also showed that when temperature increased from 20 to 60 °C, with an increase in relative humidity from 10% to 60%, freeze-dried planktonic E. faecium and Salmonella cells would equilibrate to their surrounding environments in 0.15 s and 0.25 s, respectively, suggesting a rapid equilibration of bacterial cells to their microenvironment. However, control of bacteria with different cell structure and growth state would require further attentions on process design adjustment because of their different water sorption characteristics.
Collapse
Affiliation(s)
- Jie Xu
- Department of Biological Systems Engineering, Washington State University, P.O. Box 646120, Pullman, WA 99164-6120, USA; Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA.
| | - Yucen Xie
- Department of Biological Systems Engineering, Washington State University, P.O. Box 646120, Pullman, WA 99164-6120, USA
| | - Narayan C Paul
- Texas A&M Veterinary Medical Diagnostic Laboratory, 483 Agronomy Rd, College Station, TCX 77843, USA
| | - M S Roopesh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 3-16 Agriculture/Forestry Centre, Edmonton, AB T6G 2P5, Canada
| | - Devendra H Shah
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6120, USA
| | - Juming Tang
- Department of Biological Systems Engineering, Washington State University, P.O. Box 646120, Pullman, WA 99164-6120, USA
| |
Collapse
|
9
|
Cheng T, Tang J, Yang R, Xie Y, Chen L, Wang S. Methods to obtain thermal inactivation data for pathogen control in low-moisture foods. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Thermal inactivation of Salmonella Enteritidis PT30 in ground cinnamon as influenced by water activity and temperature. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
|
12
|
Isothermal inactivation of Salmonella, Listeria monocytogenes, and Enterococcus faecium NRRL B-2354 in peanut butter, powder infant formula, and wheat flour. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Moisture Content of Bacterial Cells Determines Thermal Resistance of Salmonella enterica Serotype Enteritidis PT 30. Appl Environ Microbiol 2021; 87:AEM.02194-20. [PMID: 33158899 DOI: 10.1128/aem.02194-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/04/2020] [Indexed: 11/20/2022] Open
Abstract
Salmonella spp. are resilient bacterial pathogens in low-moisture foods. There has been a general lack of understanding of critical factors contributing to the enhanced thermal tolerance of Salmonella spp. in dry environments. In this study, we hypothesized that the moisture content (XW ) of bacterial cells is a critical intrinsic factor influencing the resistance of Salmonella spp. to thermal inactivation. We selected Salmonella enterica serotype Enteritidis PT 30 to test this hypothesis. We first produced viable freeze-dried S. Enteritidis PT 30, conditioned the bacterial cells to different XW s (7.7, 9.2, 12.4, and 15.7 g water/100 g dry solids), and determined the thermal inactivation kinetics of those cells at 80°C. The results show that the D-value (the time required to achieve a 1-log reduction) decreased exponentially with increasing XW We further measured the water activities (aw) of the freeze-dried S. Enteritidis PT 30 as influenced by temperatures between 20 and 80°C. By using those data, we estimated the XW of S. Enteritidis PT 30 from the published papers that related the D-values of the same bacterial strain at 80°C with the aw of five different food and silicon dioxide matrices. We discovered that the logarithmic D-values of S. Enteritidis PT 30 in all those matrices also decreased linearly with increasing XW of the bacterial cells. The findings suggest that the amount of moisture in S. Enteritidis PT 30 is a determining factor of its ability to resist thermal inactivation. Our results may help future research into fundamental mechanisms for thermal inactivation of bacterial pathogens in dry environments.IMPORTANCE This study established a logarithmic relationship between the thermal death time (D-value) of S. Enteritidis PT 30 and the moisture content (XW ) of the bacterial cells by conducting thermal inactivation tests on freeze-dried S Enteritidis PT 30. We further verified this relationship using literature data for S. Enteritidis PT 30 in five low-moisture matrices. The findings suggest that the XW of S. Enteritidis PT 30, which is rapidly adjusted by microenvironmental aw, or relative humidity, during heat treatments, is the key intrinsic factor determining the thermal resistance of the bacterium. The quantitative relationships reported in this study may help guide future designs of industrial thermal processes for the control of S. Enteritidis PT 30 or other Salmonella strains in low-moisture foods. Our findings highlight a need for further fundamental investigation into the role of water in protein denaturation and the accumulation of compatible solutes during thermal inactivation of bacterial pathogens in dry environments.
Collapse
|