1
|
Xue H, Gao Y, Shi Z, Gao H, Xie K, Tan J. Interactions between polyphenols and polysaccharides/proteins: Mechanisms, effect factors, and physicochemical and functional properties: A review. Int J Biol Macromol 2025; 309:142793. [PMID: 40194573 DOI: 10.1016/j.ijbiomac.2025.142793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/16/2025] [Accepted: 04/01/2025] [Indexed: 04/09/2025]
Abstract
Polyphenols have attracted much attention in the food industry and nutrition because of their unique biological activities. However, the health benefits of polyphenols are compromised due to their structural instability and sensitivity to the external environment. The interaction between polyphenols and polysaccharides/proteins largely determines the stability and functional characteristics of polyphenols in food processing and storage. Hence, this topic has attracted widespread attention in recent years. This review initially outlines the basic properties of polyphenols and their applications in food. Subsequently, the interaction mechanisms between polyphenols and polysaccharides/proteins are discussed in detail including non-covalent bonding, covalent modification, and conformational changes. These interactions can display profound impacts on the nutritional value, taste, stability, and safety of food. Additionally, this article also systematically reviews the influencing factors (type, concentration, temperature, pH, and other factors) of interaction between polyphenols and proteins/polysaccharides. Finally, this paper also summarizes systematically the effects of the interaction between polyphenols and polysaccharides/proteins on the physicochemical and functional properties of polyphenols/proteins. The findings provide prospects for the application of composite materials in food preservation, functional food development, and nanocarrier development, which can provide theoretical references for the in-depth development of polyphenols in the food industry.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yuchao Gao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Zhangmeng Shi
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Haiyan Gao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Kaifang Xie
- College of Textile and Fashion, Hunan Institute of Engineering, No. 88 East Fuxing Road, Yuetang District, Xiangtan, 411100, China
| | - Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China; Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
2
|
da Silva CM, Corrêa Filho LC, Sá Ferreira JC, Tonon RV, da Matta VM, Cabral LMC. Valorization of persimmon fruit ( Diospyrus kaki) waste as a source of carotenoids. FOOD SCI TECHNOL INT 2025:10820132251336073. [PMID: 40255069 DOI: 10.1177/10820132251336073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
The production and commercialization of persimmon fruits generate waste that is often not reused and wrongly discarded. These residues are rich in bioactive compounds such as carotenoids, which can be recovered for later use as natural colourants. Ultrasound-assisted extraction (UAE) has been used to recover bioactive compounds from plant materials, considerably improving the extraction yield when compared to conventional extraction. This work aimed to evaluate the UAE of carotenoids from persimmon residues, considering three process variables: types of solvent (ethyl acetate and sunflower oil), ultrasound power (80-220 W), and extraction time (11 to 329 s). The obtained extracts were evaluated for colour (parameters L, a*, and b*) and carotenoid content. The ultrasound process resulted in a carotenoid content three times higher than conventional extraction. Ethyl acetate promoted a carotenoid extraction 50% higher (1887.04 µg/100 g of extract) than sunflower oil (930.85 µg/100 g of extract). The highest concentration was obtained with ethyl acetate when the ultrasound was applied at 150 W for 5.5 min. The extracts with the most intense yellow colour were those with the highest concentration of carotenoids and obtained by UAE with ethyl acetate, with good potential to be used as a natural colourant in the food industry.
Collapse
Affiliation(s)
- Carine Moutinho da Silva
- Graduate Program in Food Science and Technology, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Luiz Carlos Corrêa Filho
- Graduate Program in Food Science and Technology, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | | | | | | | | |
Collapse
|
3
|
Cao X, Islam MN, Lu D, Han C, Wang L, Tan M, Chen Y, Xin N. Effects of barley seedling powder on rheological properties of dough and quality of steamed bread. FOOD SCI TECHNOL INT 2025; 31:155-166. [PMID: 37464807 DOI: 10.1177/10820132231188988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
In order to find the optimal share of barley seedling powder (BSP) to improve the rheological properties of wheat dough and physico-chemical properties of steamed bread (SB), BSP was added with wheat flour at various proportions (2-10%). Results showed that with the increasing amount of BSP additive, the farinograph index (86.33-123), dough stability (9.37-12.63 min), and dough development time (6.23-7.63 min) in blend flour increased. Similarly, with the increasing BSP, SB became darker and more greenish, and the total flavonoid content increased. The content of chlorophyll-b, and total chlorophyll demonstrated a faster increase than that of chlorophyll-a. The hardness and chewability of SB improved as well whereas the springiness increased first and then decreased. The best springiness and gumminess of SB were found with 2% and 8% BSP additives respectively. 2%, 4%, and 6% addition of BSP resulted in a slight fluctuation in the bound water quantity than 8% and 10% BSP additive. No new compound formation was confirmed by Infrared analysis and there was only a heat and mass transfer process. Results from this study indicated that SB with improved quality attributes can be prepared from wheat flour fortified with BSP at 2-4%.
Collapse
Affiliation(s)
- Xiaohuang Cao
- School of Chemistry and Food Science, Yulin Normal University, Yulin, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, China
| | - Md Nahidul Islam
- Department of Agro-Processing, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
- Institute of Food Safety and Processing, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Dandan Lu
- School of Chemistry and Food Science, Yulin Normal University, Yulin, China
| | - Congying Han
- School of Chemistry and Food Science, Yulin Normal University, Yulin, China
| | - Lei Wang
- School of Chemistry and Food Science, Yulin Normal University, Yulin, China
| | - Mingxiong Tan
- School of Chemistry and Food Science, Yulin Normal University, Yulin, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, China
| | - Yuan Chen
- School of Chemistry and Food Science, Yulin Normal University, Yulin, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, China
| | - Ning Xin
- School of Chemistry and Food Science, Yulin Normal University, Yulin, China
| |
Collapse
|
4
|
Ma QY, Xu QD, Chen N, Zeng WC. Effects of catechins with different structure characteristics on the structure and properties of gluten-catechin covalent complex. Food Res Int 2025; 201:115529. [PMID: 39849691 DOI: 10.1016/j.foodres.2024.115529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/25/2025]
Abstract
Effects of catechins with different structure characteristics on the structure and properties of gluten-catechin covalent complex were investigated, and the structure-activity relationship was further explored. Catechins including epicatechin (EC), epigallocatechin (EGC), epicatechin-3-gallate (ECG), and epigallocatechin-3-gallate (EGCG) could successfully covalently bind with gluten through C-N and/or C-S bonds. The physicochemical properties of covalent complex, including particle size, thermal stability, content of free amino groups, free sulfhydryl groups and disulfide bonds, were significantly affected by different catechins, and the action order was: EGCG > ECG > EGC > EC. Multispectral analysis indicated that catechins significantly changed the tertiary and secondary structures of covalent complex, while galloylated catechins (ECG and EGCG) showed stronger capability than non-galloylated catechins (EC and EGC). Furthermore, the in vitro protein digestibility of covalent complexes reduced with all catechins, and its polyphenols release rate and antioxidant activity were improved. Combining multispectral analysis and molecular dynamics simulation, the hydroxyl group at 5th position in B ring and the galloyl group at 3rd position in C ring played an important role to affect the covalent binding of catechins and gluten, while the amount of hydroxyl groups and the molecule size of catechins both significantly affected its capability to covalently bind with gluten.
Collapse
Affiliation(s)
- Qiu-Yue Ma
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu 610065, PR China
| | - Qian-Da Xu
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu 610065, PR China; The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu 610065, PR China
| | - Nan Chen
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu 610065, PR China
| | - Wei-Cai Zeng
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu 610065, PR China; The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
5
|
Cao H, Wang X, Wu W, Wang M, Zhang Y, Huang K, Song H, Sun Z, Guan X. Exploring the influence of lysine incorporation on the physicochemical properties of quinoa protein gels formed under microwave versus conventional heating conditions. Food Res Int 2025; 202:115678. [PMID: 39967091 DOI: 10.1016/j.foodres.2025.115678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 02/20/2025]
Abstract
Quinoa protein (QP) has emerged as a promising alternative to gluten-based proteins in food applications due to its nutritional value and gluten-free nature. This study aimed to investigate the effect of microwave (MW) combined lysine (Lys) on the dielectric and gel properties. With increasing Lys concentrations, the dielectric constant initially declined then rose, while dielectric loss showed an inverse pattern. MW processed samples exhibited deeper penetration than water bath (WB), with penetration depth initially dipping then rising with amino acid levels. The combo treatment enhanced electromagnetic wave absorption and optimized absorber thickness. Optimal gel thickness for MW heating was approximately 1 cm, ensuring uniform radiation penetration, high absorption, and efficient energy conversion. Infrared analysis showed reduced α-helix/β-sheet and increased β-turn/random coil structures. The red shift and fluorescence intensity indicated Lys-induced partial unfolding QP. Notably, 0.6 % Lys with MW maximized gel hardness, adhesiveness, chewiness, elasticity, and viscoelastic properties (G', G"), significantly improving texture and rheology. The results provided a promising approach for the development of high-quality and gluten-free quinoa-based products.
Collapse
Affiliation(s)
- Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Xiaoxue Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Weibin Wu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Man Wang
- Joint Center for Translational Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai, PR China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Zhenliang Sun
- Joint Center for Translational Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai, PR China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China.
| |
Collapse
|
6
|
Jia Y, Wang Z, Liang X, Tu C, Khalifa I, Wang C, Zhu Y, Chen H, Hu L, Li C. Unlocking the potential of persimmons: A comprehensive review on emerging technologies for post-harvest challenges, processing innovations, and prospective applications. Food Chem 2024; 459:140344. [PMID: 38991450 DOI: 10.1016/j.foodchem.2024.140344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/17/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Persimmons are widely acknowledged as a valuable source of both medicinal and nutritional components, providing a diverse spectrum of nutrients and phytochemicals. Despite these benefits, biases against persimmons persists due to their characteristic astringent flavor that sets them apart from other fruits. Although several studies have explored various aspects of persimmons, a comprehensive review that addresses post-harvest challenges, processing innovations, and potential applications is notably absent in the literature. This review aims to fill this gap by discussing a range of topics, including emerging preservation technologies, methods for detecting and eliminating astringency, identification of functional elements, health-promoting prospects, and advancements in processed persimmon products. The primary objective is to enhance the utilization of persimmons and promote the development of diverse, customized products, thereby fostering the emergence of functional and futuristic foods.
Collapse
Affiliation(s)
- Yangyang Jia
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhen Wang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xinhong Liang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Cunjian Tu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, 13736, Egypt; Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Chuang Wang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yingheng Zhu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Haoyu Chen
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Lanlan Hu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
7
|
Wang Y, Chen J, Xu F, Xue Y, Wang L. Effects of Moisture Migration and Changes in Gluten Network Structure during Hot Air Drying on Quality Characteristics of Instant Dough Sheets. Foods 2024; 13:3171. [PMID: 39410206 PMCID: PMC11475067 DOI: 10.3390/foods13193171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
The impact of hot air drying temperature on instant dough sheets' qualities was investigated based on water migration and gluten network structure changes. The results revealed that the drying process redistributed the hydrogen proton, with deeply bound water accounting for more than 90%. The T2 value decreased as the drying temperature increased, effectively restricting moisture mobility. Meanwhile, microstructural analysis indicated that instant dough sheets presented porous structures, which significantly reduced the rehydration time of instant dough sheets (p < 0.05). In addition, elevated drying temperatures contributed to the cross-linking of proteins, as evidenced by increased GMP and disulfide bond content (reaching a maximum at 80 °C), which improved the texture and cooking properties. Hence, the water mobility was effectively reduced by controlling the drying temperature. The temperature had a facilitating impact on promoting the aggregation of the gluten network structure, which improved the quality of the instant dough sheets.
Collapse
Affiliation(s)
- Yuwen Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (Y.W.); (F.X.); (Y.X.); (L.W.)
- Henan Province Wheat-Flour Staple Food Engineering Technology Research Center, Zhengzhou 450001, China
| | - Jie Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (Y.W.); (F.X.); (Y.X.); (L.W.)
- Henan Province Wheat-Flour Staple Food Engineering Technology Research Center, Zhengzhou 450001, China
- Henan Province Zhongyuan Food Laboratory, Luohe 462000, China
| | - Fei Xu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (Y.W.); (F.X.); (Y.X.); (L.W.)
- Henan Province Wheat-Flour Staple Food Engineering Technology Research Center, Zhengzhou 450001, China
| | - Yuqi Xue
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (Y.W.); (F.X.); (Y.X.); (L.W.)
- Henan Province Wheat-Flour Staple Food Engineering Technology Research Center, Zhengzhou 450001, China
| | - Lei Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (Y.W.); (F.X.); (Y.X.); (L.W.)
- Henan Province Wheat-Flour Staple Food Engineering Technology Research Center, Zhengzhou 450001, China
| |
Collapse
|
8
|
Xie L, Liu M, Zeng H, Zheng Z, Ye Y, Liu F. Effects of purple cabbage anthocyanin extract on the gluten characteristics and the gluten network evolution of high-gluten dough. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7629-7638. [PMID: 38779957 DOI: 10.1002/jsfa.13598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Anthocyanins are polyphenolic pigments that have hypoglycemic, antioxidation, anti-aging, and other effects. Research has shown that polyphenols can optimize the processing of dough and improve the texture and nutritional characteristics of dough products. The formation of gluten networks is decisive for the quality of flour products. The effects of purple cabbage anthocyanin (PCA) extract on the structure, microscopic morphology, and network formation of gluten protein were studied, and the types of cross-linking between PCA and gluten protein are discussed. RESULTS The results show that PCA extract increased the free sulfhydryl (SH) group content and the free amino group of gluten proteins, stimulated an increase in the β-sheet ratio and the decrease of α-helix ratio, and increased the gluten index significantly (P < 0.05). The PCA extract also induced gluten protein aggregation, increased the height of protein molecular chains, and stimulated the formation of gluten networks. When PCA extract concentrations were 4 g kg-1 and 8 g kg-1, the gluten network was more homogeneous, continuous, and dense. CONCLUSION Appropriate anthocyanins have a positive effect on the properties of gluten and promote the formation of gluten networks. Excessive anthocyanins destroy gluten protein interaction and harm gluten cross-linking. This study may provide a useful source of data for the production of functional flour products rich in anthocyanins. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li Xie
- Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Minglong Liu
- Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Huawei Zeng
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Department of Bioengineering, College of Life Science, Huaibei Normal University, Huaibei, China
| | - Zhi Zheng
- Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yongkang Ye
- Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Fengru Liu
- Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
9
|
Aksoy M, Hamzalıoğlu A, Gökmen V. Investigating the Formation of In Vitro Immunogenic Gluten Peptides after Covalent Modification of Their Structure with Green Tea Phenolic Compounds under Alkaline Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13898-13905. [PMID: 38835329 PMCID: PMC11191684 DOI: 10.1021/acs.jafc.4c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
Celiac disease is an autoimmune disorder triggered by immunogenic gluten peptides produced during gastrointestinal digestion. To prevent the production of immunogenic gluten peptides, the stimulation of covalent-type protein-polyphenol interactions may be promising. In this study, gluten interacted with green tea extract (GTE) at pH 9 to promote the covalent-type gluten-polyphenol interactions, and the number of immunogenic gluten peptides, 19-mer, 26-mer, and 33-mer, was monitored after in vitro digestion. Treatment of gluten with GTE provided an increased antioxidant capacity, decreased amino group content, and increased thermal properties. More importantly, there was a remarkable (up to 73%) elimination of immunogenic gluten peptide release after the treatment of gluten with 2% GTE at 50 °C and pH 9 for 2 h. All of these confirmed that gluten was efficiently modified by GTE polyphenols under the stated conditions. These findings are important in developing new strategies for the development of gluten-free or low-gluten food products with reduced immunogenicity.
Collapse
Affiliation(s)
- Merve Aksoy
- Food Quality and Safety (FoQuS)
Research Group, Department of Food Engineering, Hacettepe University, Beytepe 06800, Ankara, Turkey
| | - Aytül Hamzalıoğlu
- Food Quality and Safety (FoQuS)
Research Group, Department of Food Engineering, Hacettepe University, Beytepe 06800, Ankara, Turkey
| | - Vural Gökmen
- Food Quality and Safety (FoQuS)
Research Group, Department of Food Engineering, Hacettepe University, Beytepe 06800, Ankara, Turkey
| |
Collapse
|
10
|
Li Y, Zheng H, Qi Y, Ashraf J, Zhu S, Xu B. Folding during sheeting improved qualities of dried noodles through gluten network proteins. J Texture Stud 2024; 55:e12826. [PMID: 38528687 DOI: 10.1111/jtxs.12826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/28/2024] [Accepted: 02/20/2024] [Indexed: 03/27/2024]
Abstract
The texture properties after cooking for 12 min were selected to optimize the sheeting parameters, and the results were verified using the comprehensive quality of dried noodles. The distribution of water, characteristics of gluten protein, and interaction between gluten network and starch were analyzed to clarify the mechanism of the quality of dried noodles. Results showed that the optimal folding angle was 45°, under this condition, the largest anti-extension displacement perpendicular to the rolling direction and the smallest cooking loss were obtained. The hardness and smoothness of cooked noodles increased by about 14% to 17%. Further, the transverse relaxation time of strongly bound water significantly decreased, while the relative content and binding strength increased. The hydrogen bonds and α-helix contents increased by about 68.8% and 53.1%, respectively. Folding and sheeting enhanced the combination of starch granules and gluten network causing, decreased in the average length and porosity of the gluten network. It is depicted from the results that the method of optimizing the sheeting process based on the texture of dried noodles cooked for 12 min was feasible. And the 45° folding and sheeting could help to improve the quality of dried noodles.
Collapse
Affiliation(s)
- Yaojia Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haitao Zheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yajing Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jawad Ashraf
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shuyun Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
11
|
Guo Z, Huang J, Mei X, Sui Y, Li S, Zhu Z. Noncovalent Conjugates of Anthocyanins to Wheat Gluten: Unraveling Their Microstructure and Physicochemical Properties. Foods 2024; 13:220. [PMID: 38254520 PMCID: PMC10815003 DOI: 10.3390/foods13020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/16/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Intake of polyphenol-modified wheat products has the potential to reduce the incidence of chronic diseases. In order to determine the modification effect of polyphenols on wheat gluten protein, the effects of grape skin anthocyanin extract (GSAE, additional amounts of 0.1%, 0.2%, 0.3%, 0.4%, and 0.5%, respectively) on the microstructure and physicochemical properties of gluten protein were investigated. The introduction of GSAE improves the maintenance of the gluten network and increases viscoelasticity, as evidenced by rheological and creep recovery tests. The tensile properties of gluten protein were at their peak when the GSAE level was 0.3%. The addition of 0.5% GSAE may raise the denaturation temperature of gluten protein by 6.48 °C-9.02 °C at different heating temperatures, considerably improving its thermal stability. Furthermore, GSAE enhanced the intermolecular hydrogen bond of gluten protein and promoted the conversion of free sulfhydryl groups to disulfide bonds. Meanwhile, the GSAE treatment may also lead to protein aggregation, and the average pore size of gluten samples decreased significantly and the structure became denser, indicating that GSAE improved the stability of the gluten spatial network. The positive effects of GSAE on gluten protein properties suggest the potential of GSAE as a quality enhancer for wheat products.
Collapse
Affiliation(s)
- Ziqi Guo
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.G.); (J.H.)
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
- National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jian Huang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.G.); (J.H.)
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xin Mei
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (X.M.); (Y.S.)
| | - Yong Sui
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (X.M.); (Y.S.)
| | - Shuyi Li
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.G.); (J.H.)
| | - Zhenzhou Zhu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
- National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
12
|
Liu M, Fan M, Qian H, Li Y, Wang L. Effect of different enzymes on thermal and structural properties of gluten, gliadin, and glutenin in triticale whole-wheat dough. Int J Biol Macromol 2023; 253:127384. [PMID: 37838124 DOI: 10.1016/j.ijbiomac.2023.127384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Three enzymes promoted the development of the gluten network in triticale whole-wheat noodles (TWWN). To further understand the mechanism of gluten enhancement, the effects of three enzymes on the structure of gluten and its fractions (gliadin and glutenin) were evaluated. The results showed that glucose oxidase (GOD), xylanase (XYL), and laccase (LAC) decreased the content of sodium dodecyl sulfate (SDS) extractable proteins. The content of glutenin subunits was reduced by 17.25 %, 30.60 %, and 20.09 % with the addition of GOD, XYL, and LAC, respectively. Furthermore, GOD and LAC increased the content of glutenin macropolymer (GMP) by 2.64 % and 7.71 %, respectively, suggesting the promotion of glutenin aggregation. The addition of three enzymes decreased the weight loss and increased the degradation temperature of the gluten and its fractions. GOD and XYL decreased the fluorescence intensity of gluten and its fractions, except for XYL which increased the fluorescence intensity of glutenin by 10.50 %. Intermolecular interactions and surface hydrophobicity were enhanced by XYL in gluten and its fractions. GOD and LAC decreased the free sulfhydryl content and increased the β-sheet content, suggesting that the covalent interaction between gluten fractions was enhanced. Therefore, this research can enrich the theoretical study of enzymatic cross-linking.
Collapse
Affiliation(s)
- Minnan Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
13
|
Guan Y, Yang X, Pan C, Kong J, Wu R, Liu X, Wang Y, Chen M, Li M, Wang Q, He G, Yang G, Chang J, Li Y, Wang Y. Comprehensive Analyses of Breads Supplemented with Tannic Acids. Foods 2023; 12:3756. [PMID: 37893648 PMCID: PMC10606112 DOI: 10.3390/foods12203756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/21/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Tannic acid (TA) has been recently considered as a new dough additive for improving the bread-making quality of wheat. However, the effects of TA supplementation on the sensory quality parameters (color, crumb grain structure, and sensory properties) of bread have not been studied. Further, the potential of TA supplementation in bread-making quality improvement has not been evaluated by using commercial flour. In the present study, three commercial wheat flours (namely, XL, QZG, and QZZ) with different gluten qualities were used to evaluate the effects of TA supplementation (in concentrations of 0.1% and 0.3%, respectively). TA supplementation did not change the proximate composition of the breads but increased the volumes and specific volumes of XL and QZG breads. TA supplementation enhanced antioxidant activities, with 0.3% TA significantly increasing the antioxidant capacities of bread made from all three flour samples by approximately four-fold (FRAP method)/three-fold (ABTS method). Positive effects of TA on the reduction in crumb hardness, gumminess, and chewiness were observed in the XL bread, as determined by the texture profile analysis. For the analyses on visual and sensory attributes, our results suggest that TA did not affect the crust color, but only slightly reduced the L* (lightness) and b* (yellowness) values of the crumb and increased the a* (redness) value. TA supplementation also increased the porosity, total cell area, and mean cell area. Satisfactorily, the sensory evaluation results demonstrate that TA-supplemented breads did not exhibit negative sensory attributes when compared to the non-TA-added breads; rather, the attributes were even increased. In summary, TA-supplemented breads generally had not only better baking quality attributes and enhanced antioxidant activities, but, more importantly, presented high consumer acceptance in multiple commercial flour samples. Our results support the commercial potential of TA to be used as a dough improver.
Collapse
Affiliation(s)
- Yanbin Guan
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.G.); (X.Y.); (C.P.); (J.K.); (R.W.); (Y.W.); (M.C.); (G.H.); (G.Y.)
| | - Xun Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.G.); (X.Y.); (C.P.); (J.K.); (R.W.); (Y.W.); (M.C.); (G.H.); (G.Y.)
| | - Chuang Pan
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.G.); (X.Y.); (C.P.); (J.K.); (R.W.); (Y.W.); (M.C.); (G.H.); (G.Y.)
| | - Jie Kong
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.G.); (X.Y.); (C.P.); (J.K.); (R.W.); (Y.W.); (M.C.); (G.H.); (G.Y.)
| | - Ruizhe Wu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.G.); (X.Y.); (C.P.); (J.K.); (R.W.); (Y.W.); (M.C.); (G.H.); (G.Y.)
| | - Xueli Liu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.G.); (X.Y.); (C.P.); (J.K.); (R.W.); (Y.W.); (M.C.); (G.H.); (G.Y.)
| | - Yuesheng Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.G.); (X.Y.); (C.P.); (J.K.); (R.W.); (Y.W.); (M.C.); (G.H.); (G.Y.)
| | - Mingjie Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.G.); (X.Y.); (C.P.); (J.K.); (R.W.); (Y.W.); (M.C.); (G.H.); (G.Y.)
| | - Miao Li
- Grain Storage and Security Engineering Research Center of Education Ministry, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450052, China;
| | - Qiong Wang
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.G.); (X.Y.); (C.P.); (J.K.); (R.W.); (Y.W.); (M.C.); (G.H.); (G.Y.)
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.G.); (X.Y.); (C.P.); (J.K.); (R.W.); (Y.W.); (M.C.); (G.H.); (G.Y.)
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.G.); (X.Y.); (C.P.); (J.K.); (R.W.); (Y.W.); (M.C.); (G.H.); (G.Y.)
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.G.); (X.Y.); (C.P.); (J.K.); (R.W.); (Y.W.); (M.C.); (G.H.); (G.Y.)
| | - Yaqiong Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.G.); (X.Y.); (C.P.); (J.K.); (R.W.); (Y.W.); (M.C.); (G.H.); (G.Y.)
| |
Collapse
|
14
|
Tsurunaga Y, Arima S, Kumagai S, Morita E. Low Allergenicity in Processed Wheat Flour Products Using Tannins from Agri-Food Wastes. Foods 2023; 12:2722. [PMID: 37509814 PMCID: PMC10378952 DOI: 10.3390/foods12142722] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The present study aimed to investigate the effect of the addition of tannins from unutilized resources on wheat allergen reduction, antioxidant properties, and quality by substituting 3%, 5%, and 10% of the flour with chestnut inner skin (CIS) and young persimmon fruit (YPF) powders to produce cookies. The enzyme-linked immunosorbent assay and Western blotting showed significantly lower wheat allergen content in CIS- or YPF-substituted cookies than in control cookies, and this effect was pronounced for CIS-substituted cookies. In addition, the tannin content and antioxidant properties of the CIS- or YPF-substituted cookies were markedly higher than those of the control cookies. Quality analysis of the CIS- and YPF-substituted cookies showed that the specific volume and spread factor, which are quality indicators for cookies, were slightly lower in the CIS- and YPF-substituted cookies than in the control cookies. Compared to the control, CIS substitution did not affect the breaking stress and total energy values of the cookies; however, YPF substitution at 10% increased these values. Color was also affected by the addition of CIS and YPF. The results suggest that the addition of CIS and YPF can reduce wheat allergens in cookies and improve tannin content and antioxidant properties.
Collapse
Affiliation(s)
- Yoko Tsurunaga
- Faculty of Human Science, Shimane University, Shimane 690-8504, Japan
| | - Shiori Arima
- Faculty of Human Science, Shimane University, Shimane 690-8504, Japan
| | - Sae Kumagai
- Graduate School of Human and Social Sciences, Shimane University, Shimane 690-8504, Japan
| | - Eishin Morita
- Department of Dermatology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| |
Collapse
|
15
|
Guan Y, Wang Y, Pan C, Li L, Shi F, Wang Y, Chen M, Yang G, He G, Chang J, Li Y. The additive interactions between high-molecular-weight glutenin subunits and tannic acid improve the wheat quality. Food Res Int 2023; 168:112756. [PMID: 37120207 DOI: 10.1016/j.foodres.2023.112756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Wheat gluten proteins, especially high-molecular-weight glutenin subunits (HMW-GS), are the main contributor to flour processing quality. Tannic acid (TA) consisting of a central glucose unit and ten gallic acid molecules is a phenolic acid that improves the processing quality. However, the underlying mechanism of TA's improvement remains largely unknown. Here, we showed that TA's improving effects on gluten aggregation, dough-mixing and bread-making properties were directly associated with the kinds of HMW-GS expressed in wheat seeds in HMW-GS near-isogenic lines (NILs). We established a biochemical framework, elucidated the additive effects of HMW-GS-TA interaction and discovered that TA cross-linked specifically with wheat glutenins but not gliadins, and reduced gluten surface hydrophobicity and SH content depending on the kinds of expressed HMW-GS in the wheat seeds. We also demonstrated that hydrogen bonds play an essential role in TA-HMW-GS interactions and improvement of wheat processing quality. Additionally, the effects of TA on the antioxidant capacity and on nutrient (protein and starch) digestibility were also investigated in the NILs of HMW-GS. TA increased antioxidant capacity but did not affect the digestion of starches and proteins. Our results revealed that TA more effectively strengthened wheat gluten in the presence of more HMW-GS kinds, highlighting TA's potential as an improver toward healthy and quality bread and demonstrating that manipulating hydrogen bonds was a previously overlooked approach to improve wheat quality.
Collapse
|
16
|
Wang L, Tang H, Li Y, Guo Z, Zou L, Li Z, Qiu J. Milling of buckwheat hull to cell-scale: Influences on the behaviors of protein and starch in dough and noodles. Food Chem 2023; 423:136347. [PMID: 37207513 DOI: 10.1016/j.foodchem.2023.136347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/14/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023]
Abstract
Superfine grinding of insoluble dietary fiber (IDF) is a promising method to improve the product quality by regulating the interaction between protein and starch. In this study, the effects of buckwheat-hull IDF powder, at cell-scale (50-10 μm) and tissue-scale (500-100 μm), on the dough rheology and noodle quality were investigated. Results showed that cell-scale IDF with higher exposure of active groups increased the viscoelasticity and deformation resistance of the dough, due to the aggregation of protein-protein and protein-IDF. Compared with the control sample, the addition of tissue-scale or cell-scale IDF significantly increased the starch gelatinization rate (β, C3-C2) and decreased the starch hot-gel stability. Cell-scale IDF increased the rigid structure (β-sheet) of protein, thus improving the noodle texture. The decreased cooking quality of cell-scale IDF-fortified noodles was related to the poor stability of rigid gluten matrix and the weakened interaction between water and macromolecules (starch and protein) during cooking.
Collapse
Affiliation(s)
- Lijuan Wang
- Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, No.17 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Hanqi Tang
- Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, No.17 Tsinghua East Road, Haidian District, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Yang Li
- Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, No.17 Tsinghua East Road, Haidian District, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Zicong Guo
- Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, No.17 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Zaigui Li
- Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, No.17 Tsinghua East Road, Haidian District, Beijing 100083, China.
| | - Ju Qiu
- Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, No.17 Tsinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
17
|
Peng P, Wang X, Liao M, Zou X, Ma Q, Zhang X, Hu X. Effects of HMW-GSs at Glu-B1 locus on starch-protein interaction and starch digestibility during thermomechanical processing of wheat dough. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2134-2145. [PMID: 36397183 DOI: 10.1002/jsfa.12340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/30/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The composition of glutenin protein significantly affects protein-starch interactions and starch digestion characteristics in wheat dough matrices. To elucidate the effects of high molecular weight glutenin subunits at the Glu-B1 locus on dough processing quality, the detailed structural changes of protein, starch, and their complexes were compared in Mixolab dough samples of two near isogenic lines 7 + 8 and 7 + 9. RESULTS The results showed that the degree of protein aggregation increased continuously during dough processing, as did the destruction and rearrangement of the gluten network. Compared to 7 + 8, the stronger and more stable protein network formed in 7 + 9 dough induced intensive interactions between protein and starch, primarily through hydrogen bonds and isomeric glycosidic bonds. In 7 + 9 dough, the more compact and extensive protein-starch network significantly inhibited starch gelatinization during dough pasting, while during the dough cooling stage [from C4 (82.8 °C) to C5 (52.8 °C)], more protein-starch complexes composed of monomeric proteins and short-chain starch were generated, which remarkably inhibited starch retrogradation. All protein-starch interactions in the 7 + 9 dough improved the starch digestion resistance, as reflected by the high content of resistant starch. CONCLUSION The more extensive and intensive protein-starch interactions in the 7 + 9 dough inhibited the gelatinization and enzymatic hydrolysis of starch, thereby producing more slowly digestible starch and resistant starch. These findings demonstrate the feasibility of optimizing the texture and digestibility of wheat-based food products by regulating the behavior and interactions of proteins and starch during dough processing. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pai Peng
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xiaolong Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Mei Liao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xiaoyang Zou
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Qianying Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xiaoke Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
18
|
Ge W, Xu Y, Niu M, Jia C, Zhao S. The differentiation between condensed and hydrolyzed tannins with different molecular weights in affecting the rheological property of wheat flour-based dough. J Cereal Sci 2023. [DOI: 10.1016/j.jcs.2023.103666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
19
|
Krekora M, Markiewicz KH, Wilczewska AZ, Nawrocka A. Raman and thermal (TGA and DSC) studies of gluten proteins supplemented with flavonoids and their glycosides. J Cereal Sci 2023. [DOI: 10.1016/j.jcs.2023.103672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
20
|
Immunomodulatory Effects of Spherical Date Seed Pills Industrially Fabricated on RAW264.7 Cells. Foods 2023; 12:foods12040784. [PMID: 36832859 PMCID: PMC9956016 DOI: 10.3390/foods12040784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Dates have been demonstrated to display a variety of bioactivities and are rich in polyphenols. In this work, we assessed the underlying immunomodulatory effects of date seed polyphenol extracts that had been industrially encapsulated and fabricated into commercial pills in RAW264.7 macrophages using the NF-κB and Nrf2 signaling pathways. The outcomes showed that in RAW264.7 cells, the date seed pills effectively stimulated nuclear translocation of NF-E2-related factor 2 (Nrf2) and NF-κB, along with downstream cytokines (IL-1β, TNF-α, IL-6, and IFN-γ), ROS ratios, and SOD activity. It is interesting to note that the encapsulated pills activated Nrf2 nuclear translocation more effectively than the non-encapsulated ones did. Additionally, pills at 50 µg mL-1 improved immunological responses, but pills at 1000 µg mL-1 prevented macrophages from becoming inflamed. These results showed that the immunomodulatory effects were differently impacted by commercial date seed pills, a finding which was related to the large-scale manufacturing of the pills and the incubation concentrations used. These results also shed light on a new trend of using food byproducts as an innovative supplement.
Collapse
|
21
|
Qi X, Hong T, Nie A, Xu D, Jin Y, Xu X, Wu F. Impacts of surfactin on the qualities and gluten network structure of fresh noodles during storage. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Krekora M, Nawrocka A. The influence of selected polyphenols on the gluten structure - A study on gluten dough with application of FT-IR and FT-Raman spectroscopy. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
23
|
Effect of sono-pre-texturization on β-lactoglobulin-anthocyanins energy appetizers. Int J Biol Macromol 2022; 222:1908-1917. [DOI: 10.1016/j.ijbiomac.2022.09.280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
|
24
|
Jia Y, Du J, Li K, Li C. Emulsification mechanism of persimmon pectin with promising emulsification capability and stability. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
25
|
Welc R, Kłosok K, Szymańska-Chargot M, Nawrocka A. Effect of chemical structure of selected phenolic acids on the structure of gluten proteins. Food Chem 2022; 389:133109. [PMID: 35504071 DOI: 10.1016/j.foodchem.2022.133109] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/07/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022]
Abstract
Effect of overmixing process and structure of selected phenolic acids belonging to hydroxycinnamic and hydroxybenzoic group on the structure of gluten network were analysed with application of FT-Raman Spectroscopy. Modification of gluten by acids resulted in formation of aggregates and unordered structures at the expense of protein stabilizing structures (e.g. β-sheets or β-turns). Supplementation with most of the acids caused reduction in the amount of disulphide bonds in the most stable conformation (g-g-g). Changes in the molecular organization of gluten proteins depended on the chemical structure of particular acids. The presence of bands assigned to aggregates was connected with the number of OH groups present at the aromatic ring of the acids. Acids belonging to hydroxycinnamic group did not incorporate or incorporate only partially into gluten network by formation of covalent or hydrogen bonds. Spectrophotometric analysis showed that hydroxycinnamic acids can interact stronger with gluten proteins compared to hydroxybenzoic acids.
Collapse
Affiliation(s)
- Renata Welc
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Konrad Kłosok
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | | | - Agnieszka Nawrocka
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| |
Collapse
|
26
|
Kłosok K, Welc R, Szymańska-Chargot M, Nawrocka A. Phenolic acids-induced aggregation of gluten proteins. Structural analysis of the gluten network using FT-Raman spectroscopy. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Ge Z, Wang W, Xu M, Gao S, Zhao Y, Wei X, Zhao G, Zong W. Effects of Lactobacillus plantarum and Saccharomyces cerevisiae co-fermentation on the structure and flavor of wheat noodles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4697-4706. [PMID: 35191031 DOI: 10.1002/jsfa.11830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Although traditional fermented noodles possess high eating quality, it is difficult to realize large-scale industrialization as a result of the complexity of spontaneous fermentation. In present study, commercial Lactobacillus plantarum and Saccharomyces cerevisiae were applied in the preparation of fermented noodles. RESULTS The changes in the structural characteristics and aroma components of noodles after fermentation were investigated via scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), low-field magenetic resonance imaging, electronic nose, and simultaneous distillation and extraction/gas chromatography-mass spectrometry (GC-MS) analysis. SEM images revealed that co-fermentation of the L. plantarum and S. cerevisiae for 10-40 min enhanced the continuity of the gluten network and promoted the formation of pores. FTIR spectra analysis showed that the co-fermentation increased significantly (P < 0.05) the proportion of α-helices of noodles gluten protein, enhancing the orderliness of the molecular structure of protein. After fermentation for 10-40 min, the signal density of hydrogen protons increased from the surface to the core, indicating that the water in the noodles migrated inward during a short fermentation process. The results of multivariate statistical analysis demonstrated that the main aroma differences between unfermented and fermented noodles were mainly in hydrocarbons, aromatic compounds and inorganic sulfides. GC-MS analysis indicated that the main volatile compounds detected were 2, 4-di-tert-butylphenol, bis (2-ethylhexyl) adipate, butyl acetate, dibutyl phthalate, dioctyl terephthalate, bis (2-ethylhexyl) phthalate, pentanol and 2-pentylfuran, etc. CONCLUSION: Co-fermentation with L. plantarum and S. cerevisiae improved the structure of gluten network and imparted more desirable volatile components to wheat noodles. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhenzhen Ge
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
- Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
| | - Weijing Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
- HaoXiangNi Health Food Co., Ltd, Zhengzhou, China
| | - Mingyue Xu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Shanshan Gao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yuxiang Zhao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xiaopeng Wei
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
- Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
| | - Guangyuan Zhao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
- Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
| | - Wei Zong
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
- Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
| |
Collapse
|
28
|
Li S, Li M, Cao H, Guan X, Zhang Y, Huang K, Zhang Y. The intervening effect of l-Lysine on the gel properties of wheat gluten under microwave irradiation. Food Chem X 2022; 14:100299. [PMID: 35399583 PMCID: PMC8991317 DOI: 10.1016/j.fochx.2022.100299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 11/26/2022] Open
Abstract
To improve the quality of wheat gluten (WG) gels, the effect of l-Lysine on gelatin formation of WG under microwave (MW) irradiation was studied. The strength of WG gels treated by MW heating increased significantly (P < 0.05) in the alternating electromagnetic fields with zwitterionic l-Lysine. l-Lysine enhanced the surface hydrophobicity of WG under MW irradiation indicating that the dielectric buffering of l-Lysine changed the conformation of WG. The second structure of WG by Fourier transformed infrared spectroscopy showed that the α-helix content of WG decreased, while the β-sheet content. Furthermore, compared to the non-l-Lysine addition group, the ultraviolet absorption and fluorescence intensity of the WG increased. Scanning electron microscopy presented denser porous network microstructure of WG gels by MW treatment with adding l-Lysine. These results elucidate the regulation effect of l-Lysine on WG gelation in the MW field.
Collapse
Affiliation(s)
- Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, PR China
| | - Mengyao Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, PR China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, PR China
| | - Ying Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, PR China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, PR China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, PR China
| |
Collapse
|
29
|
Yang Z, Xu D, Zhou H, Wu F, Xu X. Rheological, microstructure and mixing behaviors of frozen dough reconstituted by wheat starch and gluten. Int J Biol Macromol 2022; 212:517-526. [PMID: 35623461 DOI: 10.1016/j.ijbiomac.2022.05.144] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/05/2022]
Abstract
The effects of starch and gluten on the physicochemical properties of frozen dough were studied using reconstituted flour. The profiles of frozen dough were studied by Mixolab, rheometer, scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). Results revealed that starch, rather than gluten, played a decisive role in mixing properties. The breakdown and aggregation of the gluten network structure as well as the formation of β-turns and β-sheets in the frozen dough would be aggravated by the freezing of wheat starch. Smaller wheat starch granules (B-Type granules) affected the secondary structure of gluten network more than larger granules (A-Type granules), resulting in greater rheological property changes. The viscoelastic properties and freezable water content of frozen dough were more influenced by the freezing of gluten.
Collapse
Affiliation(s)
- Zixuan Yang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Dan Xu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Hongling Zhou
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Fengfeng Wu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Xueming Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
30
|
Effect of a polyphenol molecular size on the gluten proteins – polyphenols interactions studied with FT-Raman spectroscopy. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09740-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
31
|
Du J, Dang M, Jia Y, Xu Y, Li C. Persimmon tannin unevenly changes the physical properties, morphology, subunits composition and cross-linking types of gliadin and glutenin. Food Chem 2022; 387:132913. [PMID: 35421646 DOI: 10.1016/j.foodchem.2022.132913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 11/18/2022]
Abstract
To answer which is the key component caused the alterations of gluten in the presence of persimmon tannin (PT), the changes on physical properties, morphology, subunits coposition and cross-linking types of glutenin and gliadin were investigated. The results showed that compared with gliadin, glutenin was more sensitive to PT due to the greater changes in the thermal stability, network structure and aggregation behavior. This might be explained by the remarkable decreases in soluble subunits content, free sulfhydryl groups (SH), disulfide bonds (SS) and free amino groups (-NH2) cross-linking of glutenin after 8% of PT addition, as well as the varying degree in subunits composition. Therefore, glutenin played a more important role in the changes in the properties and network structure of gluten induced by PT than gliadin. Our work provided a guidance for the incorporation of phenolic compounds in wheat flour-based products.
Collapse
Affiliation(s)
- Jing Du
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Meizhu Dang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Henan University of Animal Husbandry and Economy, Henan 477100, China
| | - Yangyang Jia
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yujuan Xu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Products, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
32
|
Confirmation and understanding the potential emulsifying characterization of persimmon pectin: From structural to diverse rheological aspects. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Liquid metal-tailored gluten network for protein-based e-skin. Nat Commun 2022; 13:1206. [PMID: 35260579 PMCID: PMC8904466 DOI: 10.1038/s41467-022-28901-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 02/10/2022] [Indexed: 11/18/2022] Open
Abstract
Designing electronic skin (e-skin) with proteins is a critical way to endow e-skin with biocompatibility, but engineering protein structures to achieve controllable mechanical properties and self-healing ability remains a challenge. Here, we develop a hybrid gluten network through the incorporation of a eutectic gallium indium alloy (EGaIn) to design a self-healable e-skin with improved mechanical properties. The intrinsic reversible disulfide bond/sulfhydryl group reconfiguration of gluten networks is explored as a driving force to introduce EGaIn as a chemical cross-linker, thus inducing secondary structure rearrangement of gluten to form additional β-sheets as physical cross-linkers. Remarkably, the obtained gluten-based material is self-healing, achieves synthetic material-like stretchability (>1600%) and possesses the ability to promote skin cell proliferation. The final e-skin is biocompatible and biodegradable and can sense strain changes from human motions of different scales. The protein network microregulation method paves the way for future skin-like protein-based e-skin. E-skins currently suffer from issues to do with the predominantly non-biological materials they are made from. Here, the authors report on a gluten network which is cross-linked with EGaIn liquid metal to make a self-healing, biocompatible, biodegradable, stretchable and conductive material which is demonstrated as a movement strain sensor.
Collapse
|
34
|
Effects of interaction between hesperetin/hesperidin and glutenin on the structure and functional properties of glutenin. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Li H, Ma Y, Pan Y, Yu L, Tian R, Wu D, Xie Y, Wang Z, Chen X, Gao X. Starch other than gluten may make a dominant contribution to wheat dough mixing properties: A case study on two near-isogenic lines. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Li Y, Wang J, Wang K, Lyu S, Ren L, Huang C, Pei D, Xing Y, Wang Y, Xu Y, Li P, Xi J, Si X, Ye H, Huang J. Comparison analysis of widely-targeted metabolomics revealed the variation of potential astringent ingredients and their dynamic accumulation in the seed coats of both Carya cathayensis and Carya illinoinensis. Food Chem 2021; 374:131688. [PMID: 34915369 DOI: 10.1016/j.foodchem.2021.131688] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/21/2022]
Abstract
Pecan and hickory nuts are two of consumers' favorite ones. Pecan seeds can be eaten fresh, while hickory ones must remove astringency before eating. Here, we reported that total phenols, flavonoids and condensed tannins of hickory seeds were reduced after de-astringent treatments. They gradually increased with development, showing higher levels in hickory seed coat at mid-late periods than that in pecan's. Widely-targeted metabonomics analysis of developing testa identified 424 kinds of components, including 101, 38, 58, 27 classes of flavonoids, tannins, phenolic acids, organic acids and others, showing 16 different changing trends. Notably, most kinds of flavonoids, hydrolysable tannins and phenolic acids at maturity were more than that of pecan's, while oligomeric condensed tannins were opposite. Gene expression analysis provided further explanations for their dynamic accumulation. These results unraveled potential astringent components in hickory testa and preliminary molecular mechanisms of their dynamic changes, offering theoretical basis for the targeted de-astringency.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Jianhua Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Ketao Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Zhejiang 311300, China.
| | - Shiheng Lyu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Liying Ren
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Chunying Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Dong Pei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yulin Xing
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Yige Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Yifan Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Peipei Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Jianwei Xi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Xiaolin Si
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Hongyu Ye
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Jianqin Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Zhejiang 311300, China.
| |
Collapse
|
37
|
Liu L, Shi Z, Wang X, Ren T, Ma Z, Li X, Xu B, Hu X. Interpreting the correlation between repeated sheeting process and wheat noodle qualities: From water molecules movement perspective. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Wang Z, Hao J, Deng Y, Liu J, Wei Z, Zhang Y, Tang X, Zhou P, Iqbal Z, Zhang M, Liu G. Viscoelastic properties, antioxidant activities and structure of wheat gluten modified by rice bran. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
39
|
Zhang C, Yang YH, Zhao XD, Zhang L, Li Q, Wu C, Ding X, Qian JY. Assessment of impact of pulsed electric field on functional, rheological and structural properties of vital wheat gluten. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Kłosok K, Welc R, Fornal E, Nawrocka A. Effects of Physical and Chemical Factors on the Structure of Gluten, Gliadins and Glutenins as Studied with Spectroscopic Methods. Molecules 2021; 26:508. [PMID: 33478043 PMCID: PMC7835854 DOI: 10.3390/molecules26020508] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 11/17/2022] Open
Abstract
This review presents applications of spectroscopic methods, infrared and Raman spectroscopies in the studies of the structure of gluten network and gluten proteins (gliadins and glutenins). Both methods provide complimentary information on the secondary and tertiary structure of the proteins including analysis of amide I and III bands, conformation of disulphide bridges, behaviour of tyrosine and tryptophan residues, and water populations. Changes in the gluten structure can be studied as an effect of dough mixing in different conditions (e.g., hydration level, temperature), dough freezing and frozen storage as well as addition of different compounds to the dough (e.g., dough improvers, dietary fibre preparations, polysaccharides and polyphenols). Additionally, effect of above mentioned factors can be determined in a common wheat dough, model dough (prepared from reconstituted flour containing only wheat starch and wheat gluten), gluten dough (lack of starch), and in gliadins and glutenins. The samples were studied in the hydrated state, in the form of powder, film or in solution. Analysis of the studies presented in this review indicates that an adequate amount of water is a critical factor affecting gluten structure.
Collapse
Affiliation(s)
- Konrad Kłosok
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland; (K.K.); (R.W.)
| | - Renata Welc
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland; (K.K.); (R.W.)
| | - Emilia Fornal
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Agnieszka Nawrocka
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland; (K.K.); (R.W.)
| |
Collapse
|