1
|
Tangjaidee P, Braspaiboon S, Singhadechachai N, Phongthai S, Therdtatha P, Rachtanapun P, Sommano SR, Seesuriyachan P. Enhanced Bioactive Coffee Cherry: Infusion of Submerged-Fermented Green Coffee Beans via Vacuum Impregnation. Foods 2025; 14:1165. [PMID: 40238315 PMCID: PMC11989068 DOI: 10.3390/foods14071165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Submerged fermentation offers a controlled environment for coffee processing, ensuring a consistent temperature and aerobic-anaerobic conditions, making it a superior alternative to solid-state fermentation. This study aimed to optimize submerged fermentation conditions for green coffee beans to maximize total phenolic content (TPC) and antioxidant activity, such as ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), DPPH (2,2-Diphenyl-1-picrylhydrazyl), and FRAP (the ferric reducing antioxidant power). Additionally, pH, yeast, and lactic acid bacteria counts were monitored. Fermentation was conducted with selective microbial starters, a varying temperature (25-35 °C), incubation time (3-9 days), and coffee weight (5-10 g) using a Box-Behnken design. To enhance bioactive compound infusion, fresh coffee cherries underwent ultrasonic treatment, increasing their porosity and water-holding capacity. Vacuum impregnation was then used to infuse fermented green coffee bean extract into the cherries. The lowest pH coincided with peak yeast growth, while the coffee weight significantly influenced all responses. The incubation time affected most parameters except DPPH activity, and the temperature impacted only ABTS and DPPH activities. Optimal conditions (35 °C; 7.21 days; 10 g) yielded a TPC of 480.25 µmol GAE/100 g with ABTS, DPPH, and FRAP activities of 725.71, 164.15 and 443.60 µmol TE/g, respectively. Ultrasound-treated coffee cherries exhibited increased porosity and absorption capacity, facilitating enhanced bioactive compound infusion during 3 h of vacuum impregnation. In conclusion, submerged fermentation effectively improves bioactive compound production, while ultrasound treatment and vacuum impregnation present promising methods for developing high-value dehydrated coffee cherry products.
Collapse
Affiliation(s)
- Pipat Tangjaidee
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.T.); (S.B.); (N.S.); (S.P.); (P.T.); (P.R.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Sukan Braspaiboon
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.T.); (S.B.); (N.S.); (S.P.); (P.T.); (P.R.)
| | - Naphatsawan Singhadechachai
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.T.); (S.B.); (N.S.); (S.P.); (P.T.); (P.R.)
| | - Suphat Phongthai
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.T.); (S.B.); (N.S.); (S.P.); (P.T.); (P.R.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Phatthanaphong Therdtatha
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.T.); (S.B.); (N.S.); (S.P.); (P.T.); (P.R.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Pornchai Rachtanapun
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.T.); (S.B.); (N.S.); (S.P.); (P.T.); (P.R.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Sarana Rose Sommano
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand;
- Department of Plant and Soil Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Phisit Seesuriyachan
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.T.); (S.B.); (N.S.); (S.P.); (P.T.); (P.R.)
- Department of Plant and Soil Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Advanced Technology and Innovation Management for Creative Economy Research Group (AIMCE), Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
de Abreu DJM, Nadaleti DHS, Andrade RP, dos Santos TL, Tavares DG, Botelho CE, de Resende MLV, Duarte WF. Kluyveromyces lactis and Saccharomyces cerevisiae for Fermentation of Four Different Coffee Varieties. Foods 2025; 14:111. [PMID: 39796402 PMCID: PMC11719620 DOI: 10.3390/foods14010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
One strategy for adding unique characteristics and flavors to improve coffee quality is the selection of starter microorganisms. Here, we aimed to evaluate the effect of Saccharomyces cerevisiae LNFCA11 and Kluyveromyces lactis B10 as starter cultures on the quality of four different wet-fermented coffee varieties. Microbiological, molecular, and chemical analyses were carried out to identify yeast, bacteria, volatile compounds, carbohydrates and bioactive compounds in coffee. Sensory analysis was performed by Q-graders certified in coffee. Starter yeasts affected bioactive and volatile compounds as well as sensory descriptors in the coffee varieties. S. cerevisiae CA11 allowed a higher content of trigonelline and chlorogenic acid in MGS Paraíso 2 (P2) and Catuai Amarelo IAC62 (CA62) varieties. K. lactis B10 fermentation resulted in higher chlorogenic acid only on the P2 cultivar and MGS Catucaí Pioneira (CP). In addition, 5-methyl-2-furfuryl alcohol and n-hexadecanoic acid were produced exclusively by yeast fermentation compared to spontaneous fermentation. The coffee cultivars P2 presented more complex sensory descriptors and the attributes of aroma, acidity, and balance when fermented with S. cerevisiae CA11. Sensory descriptors such as lemongrass, citrus, and lemon with honey were related to K. lactis B10. Starter cultures allowed the coffees to be classified as specialty coffees. The fermentation showed that the choice of starter yeast depends on the desired sensory descriptors in the final product.
Collapse
Affiliation(s)
- Danilo José Machado de Abreu
- Instituto Nacional de Ciência e Tecnologia do Café (INCT), Lavras CEP 37203-202, MG, Brazil; (D.J.M.d.A.); (R.P.A.); (T.L.d.S.)
- Biology Department, Federal University of Lavras (UFLA), Lavras CEP 37203-202, MG, Brazil
| | | | - Rafaela Pereira Andrade
- Instituto Nacional de Ciência e Tecnologia do Café (INCT), Lavras CEP 37203-202, MG, Brazil; (D.J.M.d.A.); (R.P.A.); (T.L.d.S.)
| | - Tamara Leite dos Santos
- Instituto Nacional de Ciência e Tecnologia do Café (INCT), Lavras CEP 37203-202, MG, Brazil; (D.J.M.d.A.); (R.P.A.); (T.L.d.S.)
| | | | - Cesar Elias Botelho
- Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG), Lavras CEP 37203-202, MG, Brazil; (D.H.S.N.); (C.E.B.)
| | - Mário Lúcio Vilela de Resende
- Instituto Nacional de Ciência e Tecnologia do Café (INCT), Lavras CEP 37203-202, MG, Brazil; (D.J.M.d.A.); (R.P.A.); (T.L.d.S.)
- Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG), Lavras CEP 37203-202, MG, Brazil; (D.H.S.N.); (C.E.B.)
| | - Whasley Ferreira Duarte
- Instituto Nacional de Ciência e Tecnologia do Café (INCT), Lavras CEP 37203-202, MG, Brazil; (D.J.M.d.A.); (R.P.A.); (T.L.d.S.)
- Biology Department, Federal University of Lavras (UFLA), Lavras CEP 37203-202, MG, Brazil
| |
Collapse
|
3
|
Zhao N, Kokawa M, Suzuki T, Khan AR, Dong W, Nguyen MQ, Kitamura Y. Refermentation with yeast and lactic acid bacteria isolates: a strategy to improve the flavor of green coffee beans. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9137-9150. [PMID: 39007339 DOI: 10.1002/jsfa.13735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Yeast and lactic acid bacteria (LAB) play an important part in the post-harvest fermentation of coffee. This study applied lab-scale fermentation to commercial green coffee beans using dry coffee pulp as the substrate, with the aim of modifying coffee-bean flavor. In addition to spontaneous fermentation, yeast and LAB isolated from coffee beans and dried coffee pulp were added during fermentation. RESULTS Co-inoculation of yeast and LAB showed a significant effect on the chlorogenic acid content after between 24 and 72 h of fermentation. Acetic, citric, malic, lactic, and quinic acids were shown to be affected significantly (P < 0.05) by fermentation and inoculation. Gas chromatography detected that esters, alcohols, aldehydes, furans, and pyrazines were the primary compounds in the coffee beans. Certain volatile groups were present in greater concentrations and broader varieties within the inoculated beans. The highest cupping scores were given to beans that had been co-inoculated with yeast and LAB. CONCLUSION Overall, the use of yeasts and LAB starters showed potential to create coffee beverages with desirable characteristics by standardized fermentation. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Na Zhao
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki, Japan
| | - Mito Kokawa
- Institute of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Taroh Suzuki
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki, Japan
- SAZA COFFEE HOLDINGS LTD, Hitachinaka, Japan
| | | | - Weixue Dong
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki, Japan
| | - Minh-Quan Nguyen
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki, Japan
| | - Yutaka Kitamura
- Institute of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
4
|
Junior HL, Rocha RB, Kolln AM, Silva RNDP, Alves EA, Teixeira AL, Espíndula MC. Genetic Variability in the Physicochemical Characteristics of Cultivated Coffea canephora Genotypes. PLANTS (BASEL, SWITZERLAND) 2024; 13:2780. [PMID: 39409650 PMCID: PMC11479012 DOI: 10.3390/plants13192780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/17/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
The objective of this study was to characterize the genetic divergence and selection gains of the physicochemical grains traits of 68 genotypes of C. canephora most cultivated in the Western Amazon. For this purpose, the following characteristics were evaluated over two harvests: aqueous extract, ash, acidity, pH, protein, ether extract, soluble solids, phenolic compounds, soluble sugars, reducing sugars, and non-reducing sugars. The genotype × measurement interaction effect was significant for all characteristics, with a predominant simple interaction, resulting in smaller changes in the ranking of genotypes. Out of a total of 45 genotypic correlation estimates, 8 were significant, of which 5 were related to acidity. The dispersion of the first two components associated with reference points shows that the genotypes BRS3193, AS1, AS2, AS3, N16, CA1, and AS7 were closest to the ideal type of higher performance. Selection for the main characteristic of soluble sugars resulted in estimates of genetic progress lower than those observed using selection indices. The genetic materials present high genetic diversity, allowing the selection of reference plants with high levels of sugars (BRS3193, AS3, GJ25, and LB30), proteins (BRS2357), lipids (GJ30), and phenolic compounds in their green beans (BRS3193) and high water solubility (AS2).
Collapse
Affiliation(s)
- Hilton Lopes Junior
- Legal Amazon Biodiversity and Biotechnology Network (Bionorte), Federal University of Rondônia (UNIR), Porto Velho 76801-058, RO, Brazil
- Federal Institute of Education, Science and Technology of Rondônia (IFRO), Jaru 76890-000, RO, Brazil; (A.M.K.); (R.N.d.P.S.)
| | - Rodrigo Barros Rocha
- Brazilian Agricultural Research Corporation (EMBRAPA Coffea), Brasília 70770-901, DF, Brazil; (R.B.R.); (A.L.T.); (M.C.E.)
- Capixaba Institute for Research, Technical Assistance and Rural Extension (INCAPER), Vitória 29052-010, ES, Brazil
| | - Alana Mara Kolln
- Federal Institute of Education, Science and Technology of Rondônia (IFRO), Jaru 76890-000, RO, Brazil; (A.M.K.); (R.N.d.P.S.)
| | - Ramiciely Nunes de Paula Silva
- Federal Institute of Education, Science and Technology of Rondônia (IFRO), Jaru 76890-000, RO, Brazil; (A.M.K.); (R.N.d.P.S.)
| | - Enrique Anastácio Alves
- Brazilian Agricultural Research Corporation (EMBRAPA Rondônia), Porto Velho 76801-058, RO, Brazil;
| | - Alexsandro Lara Teixeira
- Brazilian Agricultural Research Corporation (EMBRAPA Coffea), Brasília 70770-901, DF, Brazil; (R.B.R.); (A.L.T.); (M.C.E.)
- Capixaba Institute for Research, Technical Assistance and Rural Extension (INCAPER), Vitória 29052-010, ES, Brazil
| | - Marcelo Curitiba Espíndula
- Brazilian Agricultural Research Corporation (EMBRAPA Coffea), Brasília 70770-901, DF, Brazil; (R.B.R.); (A.L.T.); (M.C.E.)
- Capixaba Institute for Research, Technical Assistance and Rural Extension (INCAPER), Vitória 29052-010, ES, Brazil
| |
Collapse
|
5
|
Hu R, Xu F, Zhao L, Dong W, Xiao X, Chen X. Comparative Evaluation of Flavor and Sensory Quality of Coffee Pulp Wines. Molecules 2024; 29:3060. [PMID: 38999011 PMCID: PMC11243470 DOI: 10.3390/molecules29133060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/18/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024] Open
Abstract
Coffee pulp wines were produced through the mixed fermentation of Saccharomyces cerevisiae, and the flavor and sensory characteristics were comparatively evaluated. A total of 87 volatile components were identified from five coffee pulp wines, of which 68 were present in all samples, accounting for over 99% of the total concentration. The sample fermented contained significantly higher levels of volatile metabolites (56.80 mg/g). Alcohols (22 species) and esters (26 species) were the main flavor components, with the contents accounting for 56.45 ± 3.93% and 31.18 ± 4.24%, respectively, of the total. Furthermore, 14 characteristic components were identified as potential odor-active compounds, contributing to sweet and floral apple brandy flavor. Although the characteristic components are similar, the difference in the content makes the overall sensory evaluation of the samples different. The samples formed by fermentation of four strains, which obtained the highest score (86.46 ± 0.36) in sensory evaluation, were further interpreted and demonstrated through the Mantel test. The results of the component analysis were effectively distinguished by OPLS-DA and PCA, and this validation was supported by sensory evaluation. The research results provided a technical reference for the production of coffee pulp wines.
Collapse
Affiliation(s)
- Rongsuo Hu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning 571533, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, China
| | - Fei Xu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning 571533, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenjiang Dong
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning 571533, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, China
| | - Xingyuan Xiao
- College of Tropical Crops, Yunnan Agriculture University, Pu'er 665000, China
| | - Xiao Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Vaz CJT, de Menezes LS, de Santana RC, Sentanin MA, Zotarelli MF, Guidini CZ. Effect of fermentation on the physicochemical characteristics and sensory quality of Arabica coffee. 3 Biotech 2023; 13:403. [PMID: 37982081 PMCID: PMC10654292 DOI: 10.1007/s13205-023-03768-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 09/06/2023] [Indexed: 11/21/2023] Open
Abstract
This work aims to assess the physicochemical characteristics and final sensory quality of Yellow Catuai IAC 62 Arabica coffee fermented with Saccharomyces cerevisiae. For such a purpose, a Composite Central Rotational Design (CCRD) was performed to investigate how fermentation time,temperature and pH conditions, moisture content and concentration of sugars and organic acids affect its sensory quality on two different roast levels in accordance with Specialty Coffee Association (SCA) protocols. It was found that fructose concentration decreased from 12 g/L to around 5 g/L during fermentation, regardless of temperature condition. Furthermore, longer fermentation times and higher temperatures have lowered sucrose and glucose concentrations from 4 to 2 g/L and 7 g/L to zero, respectively. Glycerol concentration was higher as time and temperature increased, and optimal conditions ranged at temperatures between 24 °C and 32 °C from 35 to 45 h of fermentation time. pH decreased as fermentation time elapsed, but there was a more significant reduction due to higher temperatures, starting at around pH 5 and, lower than 4 under extreme conditions. Contents of organic acids such as acetic, propionic, succinic, and lactic acids, were measured at the final stage of each fermentation process under studied conditions. It was observed that coffee samples achieved final scores ranging from 81 to 85 (SCA score), even in longer times and extreme temperature conditions, thus all samples have been classified as specialty coffees. This work described the initial step towards parameterizing fermentation processes, given that the response variables of temperature and fermentation time, were optimal and enhanced the sensory quality of coffee as beverage. Saccharomyces cerevisiae, a commercial product which has already been made available for producers, can ensure an increase in the sensory quality of coffee.
Collapse
Affiliation(s)
- Carlos Johnantan Tolentino Vaz
- Multidisciplinary Research, Science and Technology Network (RMPCT), Federal University of Uberlândia, School of Chemical Engineering, Patos de Minas, MG 38700-126 Brazil
| | - Larissa Soares de Menezes
- Multidisciplinary Research, Science and Technology Network (RMPCT), Federal University of Uberlândia, School of Chemical Engineering, Patos de Minas, MG 38700-126 Brazil
| | - Ricardo Corrêa de Santana
- Multidisciplinary Research, Science and Technology Network (RMPCT), Federal University of Uberlândia, School of Chemical Engineering, Patos de Minas, MG 38700-126 Brazil
| | - Michelle Andriati Sentanin
- Multidisciplinary Research, Science and Technology Network (RMPCT), Federal University of Uberlândia, School of Chemical Engineering, Patos de Minas, MG 38700-126 Brazil
| | - Marta Fernanda Zotarelli
- Multidisciplinary Research, Science and Technology Network (RMPCT), Federal University of Uberlândia, School of Chemical Engineering, Patos de Minas, MG 38700-126 Brazil
| | - Carla Zanella Guidini
- Multidisciplinary Research, Science and Technology Network (RMPCT), Federal University of Uberlândia, School of Chemical Engineering, Patos de Minas, MG 38700-126 Brazil
| |
Collapse
|
7
|
de León-Solis C, Casasola V, Monterroso T. Metabolomics as a tool for geographic origin assessment of roasted and green coffee beans. Heliyon 2023; 9:e21402. [PMID: 38028010 PMCID: PMC10651463 DOI: 10.1016/j.heliyon.2023.e21402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/02/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Coffee is widely consumed across the globe. The most sought out varieties are Arabica and Robusta which differ significantly in their aroma and taste. Furthermore, varieties cultivated in different regions are perceived to have distinct characteristics encouraging some producers to adopt the denomination of origin label. These differences arise from variations on metabolite content related to edaphoclimatic conditions and post-harvest management among other factors. Although sensory analysis is still standard for coffee brews, instrumental analysis of the roasted and green beans to assess the quality of the final product has been encouraged. Metabolomic profiling has risen as a promising approach not only for quality purposes but also for geographic origin assignment. Many techniques can be applied for sample analysis: chromatography, mass spectrometry, and NMR have been explored. The data collected is further sorted by multivariate analysis to identify similar characteristics among the samples, reduce dimensionality and/or even propose a model for predictive purposes. This review focuses on the evolution of metabolomic profiling for the geographic origin assessment of roasted and green coffee beans in the last 21 years, the techniques that are usually applied for sample analysis and also the most common approaches for the multivariate analysis of the collected data. The prospect of applying a wide range of analytical techniques is becoming an unbiased approach to determine the origin of different roasted and green coffee beans samples with great correlation. Predictive models worked accurately for the geographic assignment of unknown samples once the variety was known.
Collapse
Affiliation(s)
- Claudia de León-Solis
- Instituto de Investigaciones Químicas, Biológicas, Biomédicas y Biofísicas, Mariano Gálvez University, 3 Avenida 9-00 zona 2, 01002, Interior Finca El Zapote, Ciudad de Guatemala, Guatemala
| | - Victoria Casasola
- Instituto de Investigaciones Químicas, Biológicas, Biomédicas y Biofísicas, Mariano Gálvez University, 3 Avenida 9-00 zona 2, 01002, Interior Finca El Zapote, Ciudad de Guatemala, Guatemala
| | - Tania Monterroso
- Instituto de Investigaciones Químicas, Biológicas, Biomédicas y Biofísicas, Mariano Gálvez University, 3 Avenida 9-00 zona 2, 01002, Interior Finca El Zapote, Ciudad de Guatemala, Guatemala
| |
Collapse
|
8
|
Wen L, Sun L, Chen R, Li Q, Lai X, Cao J, Lai Z, Zhang Z, Li Q, Song G, Sun S, Cao F. Metabolome and Microbiome Analysis to Study the Flavor of Summer Black Tea Improved by Stuck Fermentation. Foods 2023; 12:3414. [PMID: 37761123 PMCID: PMC10527649 DOI: 10.3390/foods12183414] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Tea is the most popular and widely consumed beverage worldwide, especially black tea. Summer tea has a bitter and astringent taste and low aroma compared to spring tea due to the higher content of polyphenols and lower content of amino acids. Microbial fermentation is routinely used to improve the flavor of various foods. This study analyzed the relationship between the quality of black tea, metabolic characteristics, and microbial communities after microbial stuck fermentation in summer black tea. Stuck fermentation decreased the bitterness, astringency sourness, and freshness, and increased the sweetness, mellowness, and smoothness of summer black tea. The aroma also changed from sweet and floral to fungal, with a significant improvement in overall quality. Metabolomics analysis revealed significant changes in 551 non-volatile and 345 volatile metabolites after fermentation. The contents of compounds with bitter and astringent taste were decreased. Sweet flavor saccharides and aromatic lipids, and acetophenone and isophorone that impart fungal aroma showed a marked increase. These changes are the result of microbial activities, especially the secretion of extracellular enzymes. Aspergillus, Pullululanibacillus, and Bacillus contribute to the reduction of bitterness and astringency in summer black teas after stuck fermentation, and Paenibacillus and Basidiomycota_gen_Incertae_sedis contribute positively to sweetness. In addition, Aspergillus was associated with the formation of fungal aroma. In summary, our research will provide a suitable method for the improvement of tea quality and utilization of summer tea, as well as provide a reference for innovation and improvement in the food industry.
Collapse
Affiliation(s)
- Lianghua Wen
- College of Horticulture, South China Agricultural University, Guangzhou 510000, China;
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Junxi Cao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Zhaoxiang Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Qian Li
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China;
| | - Guang Song
- Guangzhou Yitang Biotechnology Co., Ltd., Guangzhou 510277, China;
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Fanrong Cao
- College of Horticulture, South China Agricultural University, Guangzhou 510000, China;
| |
Collapse
|
9
|
Lai YT, Hou CY, Lin SP, Lo YC, Chen CH, Hsieh CW, Lin HW, Cheng KC. Sequential culture with aroma-producing yeast strains to improve the quality of Kyoho wine. J Food Sci 2023; 88:1114-1127. [PMID: 36660881 DOI: 10.1111/1750-3841.16468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/12/2022] [Accepted: 12/29/2022] [Indexed: 01/21/2023]
Abstract
Despite many non-Saccharomyces yeasts being considered spoilage microorganisms, they can increase aroma and flavor diversity in alcoholic beverages. The purpose of this study was to investigate nontraditional inoculation strategies using aroma-producing yeast strains for Kyoho wine fermentation, followed by an instrumental analysis and sensory evaluation. The winemaking process was carried out using Saccharomyces cerevisiae Gr112, Hanseniaspora uvarum Pi235, and Pichia kluyveri Pe114. Multiple inoculation strategies were explored. In instrumental analysis results, mixed culture could promote the formation of esters (5.9-folds) and glycerol (1.3-folds) and reduce the content of ethanol (-0.5% [v/v]) in wine. The sensory analysis results suggested that the three yeast strains sequential inoculation treatment was associated with the aroma attributes "floral," "red fruity," and "tropical fruity." Co-cultivation contributed to an increase in complexity and aromatic intensity, with the three-strain inoculation treatment presenting a more distinctive appearance. PRACTICAL APPLICATION: The inoculation of S. cerevisiae improved the accumulation of volatile acids and esters by inhibiting the growth of non-Saccharomyces yeast strains. Inoculation of H. uvarum and P. kluyveri would effectively solve the defect of excessive content of higher alcohols in wines produced by S. cerevisiae. The suitable inoculation strategy between non-Saccharomyces yeasts could improve the overall quality of Kyoho wine whose starter might be widely used in fermentation industry.
Collapse
Affiliation(s)
- Yen-Tso Lai
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Shin-Ping Lin
- School of Food Safety, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chen Lo
- Institute of Food Science Technology, National Taiwan University, Taipei, Taiwan
| | - Chien-Hao Chen
- Department of Food and Beverage Management, National Kaohsiung University of Hospitality and Tourism, Taipei, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Hui-Wen Lin
- Department of Optometry, Asia University, Taichung, Taiwan
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.,Institute of Food Science Technology, National Taiwan University, Taipei, Taiwan.,Department of Optometry, Asia University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
10
|
Zani Agnoletti B, dos Santos Gomes W, Falquetto de Oliveira G, Henrique da Cunha P, Helena Cassago Nascimento M, Cunha Neto Á, Louzada Pereira L, Vinicius Ribeiro de Castro E, Catarina da Silva Oliveira E, Roberto Filgueiras P. Effect of fermentation on the quality of conilon coffee (Coffea canephora): Chemical and sensory aspects. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
van Mullem JJ, de Sousa Bueno Filho JS, Dias DR, Schwan RF. Chemical and sensory characterization of coffee from Coffea arabica cv. Mundo Novo and cv. Catuai Vermelho obtained by four different post-harvest processing methods. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6687-6695. [PMID: 35620803 DOI: 10.1002/jsfa.12036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/20/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND After the harvest, green coffee beans are dried on the farm using several methods: the wet process, natural process, pulped natural process, or mechanical demucilaging. This study evaluated how the choice of a specific processing method influenced the volatile organic compounds of the coffee beans, before and after roasting, and the sensory characteristics of the beverage. Coffea arabica beans of two varieties (cv. Mundo Novo and cv. Catuai Vermelho) were subjected to these four processing methods on a single farm in the Cerrado area of Brazil. RESULTS Analysis by gas chromatography-mass spectrometry headspace solid-phase microextraction identified 40 volatile organic compounds in green coffee beans and 37 in roasted beans. The main difference between post-harvest treatments was that naturally processed green beans of both varieties contained a different profile of alcohols, acids, and lactones. In medium-roasted beans, those differences were not observed. The coffee beverages had similar taste attributes but distinct flavor profiles. Some of the treatments resulted in specialty-grade coffee, whereas others did not. CONCLUSION The choice of a specific post-harvest processing method influences the volatile compounds found in green beans, the final beverage's flavor profile, and the cupping score, which can have a significant impact on the profitability of coffee farms' operations. © 2022 Society of Chemical Industry.
Collapse
|
12
|
Identification of changes in the volatile compounds of robusta coffee beans during drying based on HS-SPME/GC-MS and E-nose analyses with the aid of chemometrics. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Wang X, Wang Y, Hu G, Hong D, Guo T, Li J, Li Z, Qiu M. Review on factors affecting coffee volatiles: from seed to cup. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1341-1352. [PMID: 34778973 DOI: 10.1002/jsfa.11647] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/20/2021] [Accepted: 11/15/2021] [Indexed: 05/05/2023]
Abstract
The objective of this review is to evaluate the influence of six factors on coffee volatiles. At present, the poor aroma from robusta or low-quality arabica coffee can be significantly improved by advanced technology, and this subject will continue to be further studied. On the other hand, inoculating various starter cultures in green coffee beans has become a popular research direction for promoting coffee aroma and flavor. Several surveys have indicated that shade and altitude can affect the content of coffee aroma precursors and volatile organic compounds (VOCs), which remain to be fully elucidated. The emergence of the new roasting process has greatly enriched the aroma composition of coffee. Cold-brew coffee is one of the most popular trends in coffee extraction currently, and its influence on coffee aroma is worthy of in-depth and detailed study. Omics technology will be one of the most important means to analyze coffee aroma components and their quality formation mechanism. A better understanding of the effect of each parameter on VOCs would assist coffee researchers and producers in the optimal selection of post-harvest parameters that favor the continuous production of flavorful and top-class coffee beans and beverages. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- College of Agriculture, Guangxi University, Nanning, PR China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, PR China
| | - Yanbing Wang
- College of Agriculture, Guangxi University, Nanning, PR China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, PR China
| | - Guilin Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
| | - Defu Hong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
| | - Tieying Guo
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, PR China
| | - Jinhong Li
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, PR China
| | - Zhongrong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
| | - Minghua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
| |
Collapse
|
14
|
Insights on Single-Dose Espresso Coffee Capsules' Volatile Profile: From Ground Powder Volatiles to Prediction of Espresso Brew Aroma Properties. Foods 2021; 10:foods10102508. [PMID: 34681557 PMCID: PMC8535219 DOI: 10.3390/foods10102508] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022] Open
Abstract
Single-dose coffee capsules have revolutionized the coffee market, fueling espresso coffee popularity and offering access to a wide selection of coffee blends. Nevertheless, scarce information related to coffee powder and brew’s combined volatile characterization is available. In this study, it is hypothesized that coffee brew aroma characteristics can be predicted based on coffee powder’s volatile composition. For this, headspace solid-phase microextraction (HS-SPME) combined with comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry detection (GC × GC-ToFMS) was used. The data were combined via chemometric tools to characterize in depth the volatile composition of eight blends of capsule-coffee powder and respective espresso brews, simulating the consumer’s perception. A total of 390 volatile compounds were putatively identified, 100 reported for the first time in roasted coffee or brews. Although the same chemical families were determined among the coffee powders and espresso brews, a different volatile profile was determined for each matrix. The Pearson correlation of coffee powders and respective brews allowed to identify 15 volatile compounds, mainly terpenic and esters recognized by their pleasant notes, with a strong relationship between the amounts present in both matrices. These compounds can be key markers to predict the volatile aroma potential of an espresso brew when analyzing the coffee powder.
Collapse
|
15
|
Agnoletti BZ, Folli GS, Pereira LL, Pinheiro PF, Guarçoni RC, da Silva Oliveira EC, Filgueiras PR. Multivariate calibration applied to study of volatile predictors of arabica coffee quality. Food Chem 2021; 367:130679. [PMID: 34352695 DOI: 10.1016/j.foodchem.2021.130679] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/09/2021] [Accepted: 07/20/2021] [Indexed: 01/29/2023]
Abstract
The chemical complexity of coffee influences the sensory evaluation of the beverage, the main method used to define the quality of the coffee. In view of the subjectivity that method offers, we propose the association of an instrumental method with multivariate calibration (PLS and GA-SVR) to predict the quality of arabica coffee as support for sensory analysis. Arabica coffee samples were submitted to sensory evaluation using the Specialty Coffee Association (SCA) protocol and HS-SPME-GC/MS analysis. The models presented RMSEp results from 0.20 to 0.25, within the evaluation range the quality levels of sensory attributes (0.25). For the fragrance/aroma attribute, a value of R2p equal to 0.8503 was reached. 15 volatile compounds were identified as responsible for predicting the quality of arabica coffee, among which, 1-nonadecene was first reported as an impact compound in the prediction of important sensory attributes.
Collapse
Affiliation(s)
- Bárbara Zani Agnoletti
- Federal University of Espirito Santo/UFES, Department of Chemistry, Campus Goiabeiras, Avenida Fernando Ferrari, 514, CEP 29075-910 Vitória, Espírito Santo, Brazil.
| | - Gabriely Silveira Folli
- Federal University of Espirito Santo/UFES, Department of Chemistry, Campus Goiabeiras, Avenida Fernando Ferrari, 514, CEP 29075-910 Vitória, Espírito Santo, Brazil
| | - Lucas Louzada Pereira
- Federal Institute of Espírito Santo, Department of Food Science and Technology, Avenida Elizabeth Minete Perim, S/N, Bairro São Rafael, CEP 29375-000 Venda Nova do Imigrante, Espírito Santo, Brazil
| | - Patrícia Fontes Pinheiro
- Federal University of Viçosa, Department of Chemistry, Avenida Peter Henry Rolfs, S/N, CEP 36570-900 Viçosa, Minas Gerais, Brazil
| | - Rogério Carvalho Guarçoni
- Capixaba Institute of Technical Assistance, Research and Extension - INCAPER, Department of Statistics, Rua Afonso Sarlo, 160, Bento Ferreira, CEP 29052-010 Vitória, Espírito Santo, Brazil
| | - Emanuele Catarina da Silva Oliveira
- Federal Institute of Espírito Santo, Department of Food Science and Technology, Avenida Elizabeth Minete Perim, S/N, Bairro São Rafael, CEP 29375-000 Venda Nova do Imigrante, Espírito Santo, Brazil
| | - Paulo Roberto Filgueiras
- Federal University of Espirito Santo/UFES, Department of Chemistry, Campus Goiabeiras, Avenida Fernando Ferrari, 514, CEP 29075-910 Vitória, Espírito Santo, Brazil
| |
Collapse
|
16
|
Abstract
Coffee is one of the most consumed beverages in the world, and its popularity has prompted the necessity to constantly increase the variety and improve the characteristics of coffee as a general commodity. The popularity of coffee as a staple drink has also brought undesired side effects, since coffee production, processing and consumption are all accompanied by impressive quantities of coffee-related wastes which can be a threat to the environment. In this review, we integrated the main studies on fermentative yeasts used in coffee-related industries with emphasis on two different directions: (1) the role of yeast strains in the postharvest processing of coffee, the possibilities to use them as starting cultures for controlled fermentation and their impact on the sensorial quality of processed coffee, and (2) the potential to use yeasts to capitalize on coffee wastes—especially spent coffee grounds—in the form of eco-friendly biomass, biofuel or fine chemical production.
Collapse
|